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GROUPS WHICH ARE MINIMAL WITH RESPECT TO
NORMALITY BEING INTRANSITIVE

DEREK J. S. ROBINSON

A ^-group is a group in which normality is transitive and
a minimal non-^-group is a group which is not a ^-group but
all of whose proper subgroups are ^-groups. In this note all
the finite minimal non-St-groups are determined and it is shown
that this classification also accounts for all the minimal non-
2-groups which are either locally finite or 2-groups.

1* S-groups and non-2^groups* Let X denote the class of all
groups in which normality is a transitive relation: in other words a
group G belongs to X if and only if H <\ K <| G always implies that
H <\G. X denotes the narrower class of all groups G such that
H <] K <| L ^ G implies that H <\L. A group belonging to a class
of groups X is called an H-group and other groups are called non-H-
groups. A minimal non-ϋ-group is a non-X-group all of whose
proper subgroups are 3>groups.

The problem of determining all the finite minimal non-X-groups
has been studied by several authors when 36 is the class of abelian,
nilpotent, supersoluble or soluble groups. Our principal object here
is the classification of all the finite minimal non-S-groups or, what
is obviously the same thing, the finite minimal non-S-groups. Although
the nature and even the existence of infinite minimal non-ϊ-groups
is problematic, our classification does account for all minimal non-2-
groups which are locally finite or 2-groups or Si-groups (in the sense
of Euros [5J, vol. 2, § 57).

The finite minimal non-X-groups. Such groups are all soluble
and it turns out that they fall naturally into seven types, which will
now be listed under four headings, beginning with the primary groups.

I. The primary groups.
(a) The generalized quaternion group of order 16.
(b) <x, y: xpm = 1 = ypn, x~ιyx = ?/1+?>n~1> where p is any prime,

m > 0 and n > 1.
(c) <#, y, z:z = [x, y], 1 = xpm = ypn = zp = [x, z] = [y, z]> w h e r e

p is any prime, m > 0 and n > 0.
II. The nonprimary groups with quaternion subgroups. The

semi-direct product of a quaternion group of order 8 with a cyclic
group of order 3m (m > 0) which induces an automorphism permuting
cyclically the three maximal subgroups of the quaternion group.

III. The supersoluble, nonprimary groups. Let p and q be
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primes such that p = 1 mod q and let qf divide p — 1 where / > 0.
<(α> x ζpy is an elementary abelian p-group of order p2 and X = <(x}
is a cyclic group of order qm where m ^ /. Let f be a primitive
qf th root of unity in GF(p).

The semi-direct product of <V> x <(6)> with X in which α r 1 ^ = aξ

and ar^a; = bη where ^ = f̂ *̂ "1 and 0 < k < q.
IV. The nonsupersoluble groups without quaternion subgroups.
(a) Let p and q be distinct primes such that p ^ 1 mod g and

let F be the field obtained by adjunction to GF(p) of ?, a primitive
tfth root of unity. Let A be the additive group of F and let X —
<V> be a cyclic group of order qm where m > 0.

The semi-direct product of A with X where x induces in A the
automorphism a—>aζ (aeA).

(b) Let p and q be primes such that p = 1 mod q and let qf~ι

be the highest power of q dividing p — 1. A is an elementary
abelian p-group of order pq with basis {α0, , αff_J and X — <V> is
a cyclic group of order qm where m ;> /. Let λ be a primitive g/ - 1th
root of unity in GF(p).

The semi-direct product of A with X where x induces in A the
automorphism in which ai—-+ai+1, (i = 0, , q — 2), and α9_x—>a?s.

Thus our principal result is precisely

THEOREM 1. A finite group is a minimal non-%-group if and
only if it is of one of the above seven types.

It is easy to verify that each finite minimal non-S-group is a
2-generator, 3-step soluble group with order divisible by at most 2
primes. Consequently using the local theorem for the class Z ([9],
p. 22, Corollary 2) we obtain at once

THEOREM 2. A locally finite group is a X-group if and only
if each of its 2-generatory 3-step soluble subgroups with order
divisible by at most 2 primes is a X-group.

The basis for the determination of the finite minimal non-S-
groups is the following result (R), which was obtained in a previous
paper ([11], Th. 1). A finite group is said to satisfy the p-normalizer
condition if every subgroup of a Sylow ^-subgroup is normal in the
normalizer of that Sylow ^-subgroup.

(R) A finite group which satisfies the p-normalizer condition
for all primes p is a soluble %-group.1

1 The p-normalizer condition is equivalent to the property that every cyclic
p-subgroup is pronormal ([11], p. 936), so (R) may be restated in terms of pro-
normality. A special case of this form of (R) was later given by Peng in [7].
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Notation. If X and Y are subgroups of a group, CX(Y) and
NX(Y) are respectively the centralizer and normalizer of Y in X.
ζSy is the subgroup generated by the subset S. If S and T are
subsets, Sτ is the subgroup generated by all the conjugates sf = t~ιst,
and [S, ϊ7] is the subgroup generated by all the commutators [s, t] =
s-H-'st = s-V, (seS, te T).

2* Proof of Theorem 1* The verification of the fact that
each of the above seven types of groups is a minimal non-ϊ-group is
routine and details will not be given. Notice that it is sufficient to
verify that in each case the group is not a ϊ-group but every maximal
subgroup is a X-group: this is in view of a theorem of Gaschiitz
according to which a finite soluble ϊ-group is a ϊ-group ([2]). We
proceed now to determine the structure of finite minimal non-ϊ-groups.

The primary case. Let G be a finite minimal non-S-group and
assume that G is a p-group where p is a prime. Then every proper
subgroup of G is either abelian or hamiltonian. Now the finite
minimal nonabelian groups have been determined by Miller and
Moreno ([6]) and, in somewhat greater detail, by Redei ([8]). The
p-groups among these are of three kinds, namely type I(b), type I(c)
and the quaternion group of order 8, which is, of course, ineligible
in our case.

Thus we can suppose that G has a nonabelian maximal subgroup
A. Clearly p = 2 and A is a normal hamiltonian subgroup of index
2 in G: let

where Q is a quaternion group of order 8 and E is an elementary
abelian 2-group. For any x e G\A,

G = ζx, A} and x2 e A .

Clearly Q' x E <] G, so ζx, Qr x Ey is a cyclic extension of an ele-
mentary abelian 2-group. Since Q does not have this structure,
0 , Q' x EyφG and ζx, Q' x £7>e2; but Q' x E is an elementary
abelian 2-group, so

[E, x] = 1 and E < G .

Of course A/E = Q and x induces in A/E an automorphism of order
1, 2 or 4, so x must leave invariant at least one of ζiEy, (jEy and
ζkEy, where <T>, <i> and ζky are the three maximal subgroups of Q
and the usual relations i2 — j2 = k\ ij — k, jk = i and ki = j hold.

Suppose first that x2 %Qr x E. If, say, x2 = ie where e e E, let
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i* = ie, j * = je and &* = k: then Q* = <i*, j * , &*> = Q and A =
Q* x E, so we may assume that x2 = i. Now α? certainly leaves
ζiEy invariant: if x also leaves (jEy invariant, then x2 ~ i centralises
jE, which is not the case. Hence x leaves ζiEy invariant and inter-
changes (jEy and ζkEy. Since x2 = ΐ, we can suppose that for
example

j x = k~ιe and k* = je

for some e e E. If e Φ 1, \ G \ = 16. | E | > 16. Let H = <xj, i>.
Since <i, e><] G and (ay)2 = ^fc-'ej = i% \ H\ = 4 x 2 x 2 = 16 and
hence HeZ. Therefore (ay)* = xj^eζxjy and ay-1 = (αy)3 = ay3e,
which implies that e = 1. By this contradiction e = 1 and j * = Λr1

and kx = j . Let iζ = <(&% j>: then .τy = xkj — xi~ι — x~\ and xi = i 2

and x8 = 1. Hence if is a generalized quaternion group of order 16.
Since K&Z, G = K. If on the other hand j x = ke and &* = j~ιe
where eeE, a similar argument shows that e = 1 and i x = k and
&x = i" 1 . Hence xj = x* and {xj~1)2 = 1, by a simple calculation.
The group L = <V, xi-1)> is therefore a dihedral group of order 8.
Hence G = L, which is impossible since G has order Ξ> 16.

Suppose now that x2 e Q' x E. Assume that x interchanges ζjEy
and KkEy and let z = xj: then z2 = x2kj = i mod Qr x ί/, so z2 6 Q' x J57,
while G = <jz, A]>. Hence G is a generalized quaternion group of order
16. Thus we can assume that x fixes each of <iϊ7>, ζjEy, and
ζkEy. Suppose for example that ί* = ^ e , j * = j~ιf and A:x = /bβr
where e,f,geE and e/gr = 1. Set u = x/b: then ίu = ie, i t t = jf and
&tt = kg while G — <w, Ay and %2 = x2/b2βf eQ' x E. Hence we may
assume that ix — ΐe, i"5 = j / and A:̂  = fe^r where e/gr = 1. It is im-
mediate that ζxf ij ey Φ G, so that (x, ΐ, e) G ϊ and ix — iee ζίy.
Therefore e = 1 and similarly / = g = 1; hence [Q, x] = 1. If x2 — 1,
G = <V> x Q x E, which is hamiltonian. Hence x2 Φ 1 and con-
sequently (xi)y = xi~ι differs from both xi and xH\ Therefore
ζxijy £ X and G = <a?i, i>. However Q = (Q Π <^ΐ»<i>, so Q Π <xi>
has order 4 and xΐ e Q. Hence x e Q and therefore this case cannot
arise.

The nonprίmary case. Let G be a minimal non-S-group of com-
posite order. By the result (R) there is a prime p and a Sylow
^-subgroup P of G with a subgroup which is not normal in NG(P).
Since every subgroup of P is subnormal in NG(P), NG(P) = G and
P 0 G. By the Schur-Zassenhaus Theorem P has a complement in
G, say X. Since 1 < P < G, both P and X belong to £ and, of
course, they have relatively prime orders. Hence by Lemma 5.2.2.
of [9] there is an element x in X with prime power order qm which
does not induce a power automorphism in P, i.e., which does not
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leave every subgroup of P invariant. <(x, Py $ X, so G = ζx, Py and
X = <x).

Suppose that P is hamiltonίan—so p = 2—and that

P=Q x E

where Q is a quaternion group of order 8 and E is an elementary
abelian 2-group. Since <a?, ζ)' x 2ϊ> 9̂  G, it follows that

[E, x] =

Once again let <Y>, <i)> and <&> be the three maximal subgroups of
Q. Since a has odd order, it cannot centralize P/E. Moreover P/E = ζ>
and x has prime power order qm

1 so 9 = 3 and a? permutes
and <fci£)> cyclically. If for example

ix = j~ιe, j x = k~ιf and kx = ig

where e, /, g eE and efg — 1, let i* = i"1, i* = i and A:* = AT1. Then

i * j * z= &*, y*&* 1= i* and &*ΐ* = j *

and

(i*)a; = j*e, UΎ = k*f and (k*)x = i*g .

Thus we may assume that

ix = i^j i x = kf and kx = ig .

Since β/flr = 1, Q = <i/, jg, key ^ Q and Q is <α?>-invariant: therefore
<x, Qy is of type II. Since <x, Qy$X, G = <a?, Q>.

From now on we suppose that P is abelian. The first point to
notice is that P is elementary abelian. For let Pλ be the subgroup
generated by all elements of order p in P and assume that P1 Φ P.
Then <#, Pj> ^ (?, so ζx, Pΐ) e S. Therefore a? induces a power auto-
morphism in P x. Hence there is a positive integer r, relatively prime
to p, such that ax = ar for all aeP (see [2], p. 88). Let a be the
automorphism of P induced by x and let β be the automorphism of
P in which a —> α r. Then α/S"1 is an automorphism of P fixing each
element of order p; consequently aβ~λ ha? order equal to a power of
p, say p*. Obviously aβ = /Sα, so apS = βpS e </3>. But a has order
prime to p, so α:e</S> and a is a power automorphism of P, which
is impossible.

Since P is an elementary abelian p-group, it may be regarded as
a module over &, the group algebra of X over GF(p). From now
on P will be written additively.

Assume first of all that P is reducible. By Maschke's Theorem
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P is a direct sum of irreducible modules Plf

 β , P Λ where k > 1.
Suppose that k > 2. <£, P 2 0 0 Pky is a proper subgroup of G
so it belongs to X and # induces in P 2 0 0 Pk an automorphism
a—*au for some integer u. Similarly x induces in Pγ 0 0 Pk_γ

an automorphism a—> av for some integer v. These automorphisms
must agree on P2, so % = i; mod p and hence x leaves every subgroup
of P invariant. By this contradiction k = 2. Clearly each P 4 is cyclic
as an additive group and p Φ 2. Let g r be the order of the auto-
morphism of P induced by x. If P1 = <̂α)> and P2 = <̂ί>)>, then

αx = aξ and &£ = bη

where ξ and ^ are distinct g ̂ th roots of unity in GF(p), at least one,
say ξ, being primitive. Then 0 < / fg m and g r | #> — 1. Since
ζx9, P)> Φ G, #* induces a power automorphism in P and

ζ* = ηq .

If r? = 1, f is a primitive gth root of unity in GF(p) and G is of
type III with f — 1 and k = q — 1. Suppose 27 ̂  1, so that ξ and ^
both have order qf. Then η = ξr for some integer r ί 1 modq f.
Now ςg = ^ = ζrQ, so r Ξ 1 mod qf~ι and we can assume that r =
1 + kqf~ι where 0 < k < q. Hence G is again of type III.

Suppose now that P is an irreducible ^-module and let 0 Φ ae P.
Then P = α ^ and the map r—>αr ( r e ^ ) is a homomorphism of
& (regarded as a right ^-module) onto P: its kernel K is a maximal
ideal of & and &\K ~ P. î 7 = ^r/ϋΓ is a finite field extension of
GF(p) obtained by adjoining ξ = x + K. Clearly ξ is a primitive
qfth root of unity over GF(p), where qf is the order of the auto-
morphism induced in P by x. Let G* be the semi-direct product of
the additive group of F with X, where x induces the automorphism
b->bζ (beF). Clearly G ~ G*, so we can identify G with G*.

Since <xg, P> ^ G, α;9 induces a power automorphism in P and
X = ξq belongs to GF(p). If λ = 1, then / = 1, ζ is a primitive gth
root of unity over GF(p) and p ξέ 1 mod g. Hence G is of type IVa.
Assume that λ ^ 1, so / > 1, λ is a primitive g ^ t h root of unity
in GF(p) and p = 1 mod g. Suppose that λ = rjq where η belongs to
GF(p). Then ξ and 27 are elements of the same order in F. Hence
ξ eζηy and f belongs to GF(p). However this implies that x induces
a power automorphism in P. Hence λ is not the gth power of any
element of GF(p); thus the polynomial tq — λ is irreducible over
GF(p) (see [12], p. 179) and must therefore be the minimal polynomial
of ζ. Let a, = aξ\ ΐ = 0, 1, , g — 1: then {α0, a19 , αg_J is a
basis for P over GF(p) and P has order pq. Also α, ,τ = α ί+1, i =
0, , g — 2, and α ρ _^ = αoλ. Finally <V> is the g-component of the
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multiplicative group of GF(p), so qf~ι is the highest power of q
dividing p — 1 and G is of type IVb.

3* Infinite minimal non-£-groups* Whether there are any
infinite minimal non-S-groups we have not been able to decide: the
following result represents our conclusions on this subject.

THEOREM 3. Let G be a minimal non-X-group and suppose that
G has a series whose factors are either locally finite or 2-groups
and whose terms are either ascendant or descendant in G. Then G
is finite.

Here the term "series" is used in the sense of P. Hall ([4]). A
series in a group G is a set of subgroups {Λσ, Vσ: σ e Σ} where Σ is
a linearly ordered set and the following properties hold: Vσ <\ Λσ,
Λσ ^ Vτ if σ < τ and every nontrivial element of G belongs to some
Λσ\Vσ (c.f. "normal system" in Euros [5], §56).

We precede the proof with two observations about a minimal
non-S-group G. Such a group is necessarily finitely generated, since
otherwise every finitely generated subgroup of G belongs to % and
G belongs to % by the local theorem for the class %. Also every
subnormal subgroup H of G has subnormal index ^2 : for if H Φ G,
then H° Φ G and H < HG <\ G.

Proof of Theorem 3. (a) Assume first that G is a soluble
minimal non-£-group. Then G is finitely generated and every sub-
normal subgroup of G has subnormal index <Ξ2, so by Theorem A of
[10] G has a normal finite subgroup with nilpotent factor group. If
G is infinite, by elementary results about finitely generated nilpotent
groups G has an infinite cyclic factor group, say G/N. Then G =

where x has infinite order. If i > 1, <V, JV> Φ G and
6 X. Now <V, Ny is finitely generated— either because it has

finite index in G or because G satisfies the maximal condition on
subgroups—and a finitely generated soluble ϊ-group is finite or abelian
([9], Th. 3.3.1). Hence [x\ N] = 1 for all i > 1 and thus [x, N] =
1. Let a e N and y = xa. Then G — <j/, Ny and by the same argument
1 = [y, iV] = [α, N]. This implies that G is abelian, which is impos-
sible. Hence G is finite.

(b) Let G be a minimal non-ϊ-group which also a 2-group and
suppose that G is infinite. Let G{ be the subgroup generated by all
elements in G with order dividing 2\ Suppose that Gι is soluble
and let a and b be elements of order 2i+1 not in G> The group
F = ζaGi, bG^y is generated by two involutions, so it is a dihedral
2-group and in particular is soluble. If F0%, then F = G/Gi by
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minimality of G and this implies that G is soluble. If each FeZ,
then each F is abelian and therefore Gi+1/Gi is abelian and Gi+1 is
soluble. Hence by induction on j each G5 is soluble. But G is
finitely generated, so G = G3 for some j and G is soluble. By (a) G
is finite.

This argument shows also that a %-gτoup which is a 2-group is
soluble (and hence, by Theorem 6.1.1 of [9], is either abelian or
hamiltonian)

(c) Finally let G be as described in the statement of the theorem
and let {Λσ, Vσ: σeΣ} be the series in G. If xly —-,xm is a set of
nontrivial generators for G, then xieΛa\yβi for some ^ e ί and if
σ = max {σlf , σm), Vσ < Λσ = G. Let N = Vσ, so that N < G and
G/iV is either locally finite or a 2-group. A factor group of G is
either a ϊ-group or a minimal non-ϊ-group. Therefore from the
information obtained in (b) and the fact that G is finitely generated
we conclude that G/N is finite. Finite ^-groups and finite minimal
non-S-groups are soluble, so G/N is soluble and G > G'.

Let X be a finitely generated subgroup of G\ Since X Φ G,
XeZ and therefore X" = X"' = D say, since soluble ^-groups are
metabelian ([9], Th. 2.3.1). Suppose that D Φ 1. By intersecting
the given series in G with D, term by term, we obtain a series in
D of the same type. Now since X 6 % and each term of the series
in D is ascendant or descendant in D and hence in X, it follows
easily that each term is normal in X. Also X/D is a finitely generated
metabelian £-group, so it is either finite or abelian and in either
case is certainly finitely presented. Therefore by a well-known prin-
ciple D = a? aξ for some finite subset {a19 , an} (see for example
[3], p. 421). In precisely the same way as for G we can show that
D > Df. By this contradiction D = 1 and every finitely generated
subgroup of G' is metabelian. Hence G is soluble and the result
follows by (a).
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