PACIFIC JOURNAL OF MATHEMATICS
Vol. 31, No. 3, 1969

A STUDY OF ABSOLUTE EXTENSOR SPACES

CARLOS R. BORGES

In the enclosed paper, we will prove, among others, the
following results: (a) A sufficient condition that a space L be
an absolute extensor for the class of stratifiable spaces in
that L be hyperconnected (this is a refinement of the concept
of equiconnected space). This condition is also necessary if L
is a metrizable space. (b) Every hypogeodesic space is hyper-
connected, (c) Every equiconnected space is co-hyperconnected.
(d) Every co-hyperconnected space is an absolute extensor for
the class of CW-complexes of Whitehead.

Some of the merits of our results are the following: (1) The
well-known extension theorem of Dugundji (Theorem 4.1 of [2]) as
well as part of Theorem 4.3 of [1] are immediate consequences of our
Theorem 4.1. (2) It is easily verified that the space Y of Theorem 3.4
of [3] (of course, we need to interchange the roles of the first and second
variables of F' in order to agree with Dugundji’s definition of \-stable),
is locally hypogeodesic and, therefore, Theorem 3.4 of [3] is an easy
consequence of our Theorems 3.3 and 4.4. (3) Our results generalize
Theorems 3 and 4 of Himmelberg [4] and Theorem 3.4 of Dugundji
[3] by removing the stringent hypothesis that the range space be
metrizable.

Our many attempts to solve the question “Is every equiconnected
metrizable space an AE (metrizable)"””, which is raised in [3], have,
so far, ended in failure. However, our Theorem 4.3 offers a partial
solution which leads us to conjecture an affirmative answer to this
question, especially in view of the “replacement-by-polytopes” technique
of Dugundji [2] (If only we could do it!).

2. Definitions. Throughout, let P,_, denote the unit simplex in
Euclidean n-space R* (i.e., P,_, = {te R"|>~,t; =1 and each ¢, = 0},
I the closed unit interval, and A" the n-fold cartesian product of any
set A. Furthermore, let §;: A — A" be the map defined by

5i(au M) an) = (au ey Ay Qyrgy 0y an)

for +=1,2, ---, n.

It seems appropriate to start our definitions by recollecting the
concept of an “equiconnected space”, which was introduced by Fox
[4] and is called a UC-space by Serre [9, p.490], not only because

1 We use the following abbreviations: AE = absolute extensor, ANE = absolute
neighborhood extensor, AR = absolute retract, ANR = absolute neighborhood retract.
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it is closely related to the new concepts we will introduce but also
because it will make them more plausible. It should also be observed
that the similarity of our Definitions 2.2 and 2.3 with Definitions 1.1
and 5.1 of Michael [8] is, by far, not accidental.

DEFINITION 2.1. A space L is equiconmnected if there exists a
continuous map F: L X L x I — L such that F(a, b, 0) = a, F(a,b,1) = b
and F'(a,a,t) =a for all (a,b)e L x L and teI. (The function F' will
be called an equiconnecting function.) The space L is said to be locally
equiconnected if F' is defined only on U x I with U some neighborhood
of the diagonal of L x L.

DEFINITION 2.2. A space L will be called respectively hypercon-
nected, m-hyperconnected, if there exists funections h;: L' x P,_, — L,
for ¢ =1,2, ---, which satisfy conditions (a), (b), (¢) and conditions (a),
(b), (d) respectively:

(a) teP,_, and t; = 0 implies &, (x, t) = h,_,(0,x, 0;t) for each x ¢ L"
and n = 2,3, -+,

(b) for each xe L", the map ¢— h,(z,t), from P,_, to L, is con-
tinuous,

(¢) for each xze L and neighborhood U of x, there exists a neigh-
borhood V of z such that

Uh(Vix P)cU

and VU,
(d) for each xe L and neighborhood U of 2, there exists a neigh-

borhood V of x such that
Uh(V: x P)cU

and V < U (we should observe that, in this case, the functions #,, for
k= m + 1, may be assumed to be constant functions). The space L
will be called co-hyperconnected provided that L is m-hyperconnected
for m = 1,2, ---. The space L will be called locally hyperconnected
provided that, for each x ¢ X, there exists a neighborhood of # which
is hyperconnected. We similarly define locally m-hyperconnected and
locally co-hyperconnected.

DEFINITION 2.8. A space L is said to be hypogeodesic if there
exists a function F: L x L x I— L satisfying the following conditions:

(a) fora,yeLandtel, F(z,y,0)=x, F(z,y,1)=yand F(z,x,t)=u,

(b) for each ye L, the map (x, t) — F(x, vy, t), from L x I to L,
is continuous,
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(¢) for each x,a,ye L and neighborhood U of y, there exist
neighborhoods V of @ and W of y (V and W depend on ) with
W c U, such that

F(a, 2, tye W implies F(b, x,t)e U

for any be V,
(d) for each x e L there exist neighborhood bases {V,} and {U,}
of x, with V,c U, for each «, such that

yeV,zeU, implies F(z,y,t)e U,

for each tel.

(The function F' will be called an hypogeodesic function for L.)

The space L is said to be locally hypogeodesic if F is defined only on
U x I with U some neighborhood of the diagonal on L x L.

Clearly, every locally convex linear topological space is hypogeodesic,
and every linear topological space is equiconnected. Furthermore, every
equiconnecting function is easily seen to satisfy conditions (a), (b), and
(c) of Definition 2.3.

3. Hypo, equi and hyper.
THEOREM 3.1. If L s hypogeodesic then L 1s hyperconnected.

Proof. (Similar to the proof of Proposition 5.3 of Michael [8].)

Throughout this proof we will make use of the following notation:
(1) If xe L™, then £ e L” is defined by &; = x; fori =1, .--, n.
(2) If teP, and t,., # 1 then e P, , is defined by

L

foo__ b
l_tn—l-l

for v=1,--,n.
P . A
Clearly ;% = (0;x) and 6,t = (0;t), wheneverte P,_,,xe L”and 1 <1 < n.
Let h;: L x {1} — L be defined by h,(x,1) =, and let F be an
hypogeodesic function for L. By induction, assume we have defined
maps h;: L' X P,_,— L, for 1 =1, --., n, which satisfy parts (a) and
(b) of Definition 2.2. Now let

Tnt1 if bpyy = 1

3 hn (z, t) = ~ A~ .
(3) A0 = B @ By 0t B by £ 1

Let us check that the functions %, satisfy conditions (a), (b) and (c)
of Definition 2.2.

2.2(a). Clearly h,(x, t) = h,(6;x, 6,t) whenever ¢, = 0. Hence let us
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assume that &,(x, t) = h,_,(0;x, §,t) whenever ¢; = 0 and let us shown
that &,..(x, t) = h,(0;x, 0;t) whenever f, =0(1l <i<n+1): Ifi=n+1
then h,..(, t) = F(hn(ﬁ(/'\, 5n+1t)! Tpi1y 0) = h, (&, 00ty |t]) = 7a(00s1%, 0,1,8)
by (3) and Definition 2.3(a). If ¢ <% + 1 and ¢,,, =1, then &, (2, t) =
Lprr = h,(0;2, 0;t), by 8). If i< m +1 and ¢,., = 1, then

hn+1(x’ t) = F(hn(@!f)y Lnt1s tn-i—l)
= F(h,_,(0:, 51'5), Tpr1y Cntr)

N Py
= F(h,_((0;%), (0:1)); Bps1y tnsr) = ha(0:2, 0:t) .
By induction, we get that the functions h, satisfy Definition 2.2(a).

2.2(b). Proof by induction. Clearly the map ¢— h,(x, t) = z, from
P, to L, is continuous. Suppose that the map ¢— #k,(w, t), from P,_;
to X, is continuous, for each we L*. Pick a fixed point z e L**' and
let us show that the map ¢t — ... (z, t), from P, to L, is also continuous:
Let se P,. Then

Case 1. s,., 1. For some neighborhood U of s in P, te U
implies ¢,., %= 1. Therefore, for te U, h,.(%, t) = F(h,(Z, ), Tyisy turs)
and hence the continuity of the map t— h,.,(z, t) at se P,, follows
from Definition 2.3(b) and the inductive hypothesis. (Indeed, pick
sequence #(1), t(2), --- in U c P, such that lim; ¢(%) = s. Then one
casily sees that lim; £(3) = 8 and thus lim; hu(8, {Q2) = h.(3, §) by the
inductive hypothesis. Consequently, lim; A, (2, (£(2)) = lim; F'(h,(Z, t/(g)),
ZTprry E(D)ns) = F(h(Z, 8)y Xpsyy Spr) = Rpon(, s) which shows that the
map t— h,..(x, t) is continuous at s.)

Case 2. s,., = 1. Then h,.(x, s) = x,.,, by (3). We will show
that h,..(x, t) is close to x,., if ¢,., is close to 1, as follows: Let
A= {h,Z,t)|te P,_} and, for each te I, let f.: A— X be defined by

f,(a) = F(ai Lrt1 T) .
Then

hoir(y 1) = fo, ., () for some a,¢ A if ¢,., # ¢,
hn+1(x7 t) = Tu if tn-H =1 .

Therefore, in order to prove that the map ¢t — 4,..(x, t) is continuous
at s, it suffices to show that f.— f, uniformly as z-—1 (note that
fi(a) = x,,, for each a € A, by Definition 2.3(a)): From Definition 2.3(b)
we get that f. — f, pointwise. Moreover A is compact, because £, is
continuous and {x} x P, is compact, and the family {f.|z e I} is evenly
continuous (see page 235 of [7]), by Definition 2.3(c). (Let ac AC L
and y e L and let U be a neighborhood of y. By Definition 2.3(c), pick
neighborhoods V of @« and W of ¥y (V and W depend on z,.,) with
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W < U such that whenever Fl(a, ®,.,, t)e¢ W then F(b, %,.,, t)e U for
all be V. Then we obviously get that f.(V)c U whenever f.(a)e W,
which shows that the family {f.|ze€l} is evenly continuous.) By
Theorem 23 (page 237) of [7], the family {f.|7 eI} is equicontinuous
(note that, for each ac A, {f.(a)|zel}C F(A X {x,.,} X I) a compact
subset of L, because of Definition 2.3(b)). Therefore, the topologies
of pointwise convergence and uniform convergence coincide on {f. |7 € I},
by Theorem 15 (page 232) of [7], and hence f. — f, uniformly as z—1.

It is now easily seen that the map ¢ — h,.,(x, t) is continuous at
each seP,.

2.2(¢c). Let xeL and open U c L such that xe€ U. Then, by
Definition 2.3(d), there exists neighborhoods ¥V and W of x such that
VcWcU and F(z,y,t)€ W whenever ycV and ze W. By an
inductive argument, one easily sees that

Uh(V*x P,)cWcCU,
which completes the proof.

THEOREM 3.2. If L 1is equiconnected then L is co-hyperconnected.

Proof. Exactly the same as the proof of Theorem 3.1, except that
we must verify that the functions %,,n = 1,2, ..., satisfy condition
(d) of Definition 2.2: Let us first observe that, for each neighborhood
U of z one easily finds a neighborhood V of x with V < U,

F(VxVxIcU,

because F' is continuous, F'(x, x,t) = « for each te [l and I is compact.
Clearly L is l-hyperconnected. Therefore let us assume that L is n-
hyperconnected and show that L is (» + 1)-hyperconnected. Pick xe L
and neighborhood U of x. Then pick neighborhoods V and W of «

such that
FvxVxDhcUh,(W*xP,_)cV,WcVcU.

Using the definition of #,.,, it is trivial to check that
hoir( W X P)C U .

This concludes our inductive argument and completes the proof.

Because of the proofs of Theorems 3.1 and 3.2, the following
result is clearly valid and easily verified:
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THEOREM 3.3. If L 1is locally hypogeodesic (locally equiconnected)
then L 1s locally hyperconnected (locally oo-hyperconnected).

4. Extension theorems.

THEOREM 4.1. Ewvery hyperconnected space L 1is an AE (strati-
JSiable).

Proof. The proof of this result is very similar to the proof of
Theorem 4.3 in [1]. We will thus indicate the general procedure without
details. We briefly comment on some recurring notation throughout
ensuing proof: Letting U — {U,};-, be a stratification of X (see foot-
note 1), we let n(U, ) =min{n|xc U,} and U, = U,p,», — (X — {&Dr.00
for each open U X and xe U. It is easily seen (see Lemma 4.1 of
[1]) that each U, is an open neighborhood of =, U, N V, % & implies
that xe V or ye U (indeed, n(U, z) < n(V, y) implies that y ¢ U).

Now let X be a stratifiable space, A a closed subset of X, f: A— L
a continuous function. Let W =X — A, W' ={xe W|ze U, for some
ye A and open U containing y} and m(x) = max {n(U, y)|ye A and
xe U,}, for each xe W’. It is easily seen that m(x) < n(W, &) < co.

Using the paracompactness of W, let 7° be an open locally finite
(with respect to W) refinement of {W,|xe W}. For each Ve 7" pick
x,e W with Vc W,,. If v, e W’ pick a, € A and open S, containing
ay such that x, € (S,)., and n(Sy, a;) = m(x;); if x, € W, let a, be the
fixed point a, € A.

Let {p,| Ve7} be a partition of unity subordinated to ¥ and
define g: X— L by

g(®) = flx) for e A
g(x) - hn((f(al/1)$ ct Y f(aI’n))r (plfl(m)y tt 0y pl’n(x)) fOI' S W y

where V,, «---, V, are the only elements Ve 7" such that p,(x) = 0,
for xe X — A. C(learly ¢ is a well defined function from X to L. It
is not quite obvious that ¢ is continuous anywhere, as was the case
in Theorem 4.3 of [1].

We will first show that ¢ is continuous at each point be A. Let
0 be any open subset of L containing f(b) and let H be an open subset
of 0 such that f(b)e H and -, h,(H" x P,_,) C0. Since f is contin-
uous there exists an open neighborhood N of b such that f(AN N)C
Hco0. It is easily seen that g((V,),) <0, which shows that g is
continuous at each be A.

Finally we show that ¢ is continuous at each xe X— A. Let 0
be a neighborhood of

9(@) = h,((flay), -+, flar,)), (0r (), -+, Dy, (%))
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and let N be a neighborhood of & which intersects only finitely many
Ve7; say Vye+oey Vu ++*y Vi By Definition 2.2(b), there exists a
neighborhood W of (p, (%), -+ -, py (), 0, «++,0) € P,,;_, which is mapped
into 0 by the continuous map

t— hm—(—k((f(a’Vl)i cry f(ar’m+n)v t) .

Define a map p: N — P, CI"** by p(y) = (0r,(¥), * -+, Dv, ., () for
each ye N. Since p is clearly continuous, then there exists a neigh-
borhood U of « such that p(U)c W. It is now easily seen that
g(N N U)c0, with the help of Definition 2.2(a), which shows that ¢
is continuous at each x e X — A, thus completing the proof.

It is easily seen that the preceding proof remains valid if we
assume that L is only (» + 1)-hyperconnected and X — A is n-dimen-
sional (in the covering sense), for then we can choose the open cover
7" to be of order n and thus define the function ¢g in terms of f and
h,., only. We have, therefore, proved the following result.

THEOREM 4.2. Let X be a stratifiable space, A a closed subset
of X, L an (n + 1)-hyperconnected space and f: A— L a continuous
function. If dim (X — A) < n then f has a continuous extension g:
X— L.

The following result, when combined with Theorem 3.2, provides
a partial answer to the following question which is raised in [3]: Is
every equiconnected matrizable space an AE (metrizable)?

THEOREM 4.3. FEwvery co-hyperconnected space L is an AE (CW-
complex of Whitehead).

Proof. Let K be a CW-complex, A a closed subset of K and f:
A — L a continuous function. For each =, let K, be the n-skeleton
of K. It is well-known that dim K, is finite for each n. Therefore,
by theorem 4.2 (note that K is stratifiable because of Theorem 7.2 of
[1], for example) and induction, we can find continuous functions

9. AUK,— L forn=1,2, ..
such that
9.|A=fand g,..| (AU K,) = g,
for each n. Now define g: K— L by
9(2) = g.(x) if xtcAUK, .

It is easily seen that ¢ is a well-defined continuous extension of f to
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all of X, which completes the proof.

It is easily seen that all the preceding results of this section have
local analogues. For the sake of completeness, let us state and prove

one.

THEOREM 4.4. Ewvery locally hyperconnected space L is an ANE
(stratifiable).

Proof. By Theorem 4.1, L is a local AE (stratifiable) (i.e., for
each a e L there exists a neighborhood N of a such that N is an AE
(stratifiable)). Consequently, by Theorem 19.2 of Hanner [5], L is an
ANE (stratifiable).

5. Characterization of AR (metrizable) spaces.

THEOREM 5.1. A metrizable space M is an AE (stratifiable) if
and only vf M 1s hyperconnected.

Proof. Since the “if” part is an immediate consequence of
Theorem 4.1, we direct our attention to the “only if” part (the basic
technique is extracted from Michael [8]): Embed M in a Banach space
B and let H be the closed convex hull of M in B. Then there exists
a retraction r: H— M. For each n, define h,: M* x P,— M by

ha( ) = (3 tz),  for (s )e M* X P, .

Clearly, each #, satisfies conditions (a) and (b) of Definition 2.2. Since
7 is continuous, for each xe M and open subset U of H with x¢ U,
there exists a convex open set V < H with x¢ V c U such that

rVNnM)ycr(V)cUNM,;

hence Uz, h(VNM) x P,_))cUNM, and hence the functions 4,
satisfy condition (c) of Definition 2.2. Consequently M is hyperconnected.
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