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A STUDY OF ABSOLUTE EXTENSOR SPACES

CARLOS R. BORGES

In the enclosed paper, we will prove, among others, the
following results: (a) A sufficient condition that a space L be
an absolute extensor for the class of stratifiable spaces in
that L be hyperconnected (this is a refinement of the concept
of equiconnected space). This condition is also necessary if L
is a metrizable space, (b) Every hypogeodesic space is hyper-
connected. (c) Every equiconnected space is oo-hyperconnected.
(d) Every oo-hyperconnected space is an absolute extensor for
the class of CPF-complexes of Whitehead.

Some of the merits of our results are the following: (1) The
well-known extension theorem of Dugundji (Theorem 4.1 of [2]) as
well as part of Theorem 4.3 of [1] are immediate consequences of our
Theorem 4.1. (2) It is easily verified that the space Y of Theorem 3.4
of [3] (of course, we need to interchange the roles of the first and second
variables of F in order to agree with Dugundji's definition of λ-stable),
is locally hypogeodesic and, therefore, Theorem 3.4 of [3] is an easy
consequence of our Theorems 3.3 and 4.4. (3) Our results generalize
Theorems 3 and 4 of Himmelberg [4] and Theorem 3.4 of Dugundji
[3] by removing the stringent hypothesis that the range space be
metrizable.

Our many attempts to solve the question "Is every equiconnected
metrizable space an AE (metrizable)1", which is raised in [3], have,
so far, ended in failure. However, our Theorem 4.3 offers a partial
solution which leads us to conjecture an affirmative answer to this
question, especially in view of the "replacement-by-polytopes" technique
of Dugundji [2] (If only we could do it!).

2* Definitions. Throughout, let P n - 1 denote the unit simplex in
Euclidean w-space Rn (i.e., Pw_x = {t e Rn | ΣίU U = 1 and each t{ ^ 0},
I the closed unit interval, and An the w-fold cartesian product of any
set A. Furthermore, let δi:A

n-^ An~'1 be the map defined by

δi(alf , O = (a19 , α^, αi+1, , an)

for i = 1, 2, , n.
It seems appropriate to start our definitions by recollecting the

concept of an "equiconnected space", which was introduced by Fox
[4] and is called a C/C-space by Serre [9, p. 490], not only because

1 We use the following- abbreviations: AE = absolute extensor, ANE = absolute
neighborhood extensor, AR == absolute retract, ANR = absolute neighborhood retract.
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it is closely related to the new concepts we will introduce but also
because it will make them more plausible. It should also be observed
that the similarity of our Definitions 2.2 and 2.3 with Definitions 1.1
and 5.1 of Michael [8] is, by far, not accidental.

DEFINITION 2.1. A space L is equiconnected if there exists a
continuous map F: L x L x I—» L such that F(a, 6, 0) = α, F(a, 6,1) = b
and F{a, α, t) = a for all (α, b) e L x L and tel. (The function F will
be called an equiconnecting function.) The space L is said to be locally
equiconnected if F is defined only on U x I with U some neighborhood
of the diagonal of L x L.

DEFINITION 2.2. A space L will be called respectively hypercon-
nected, m-hy per connected, if there exists functions h^ Lι x P{_γ —> L,
for i = 1, 2, , which satisfy conditions (a), (b), (c) and conditions (a),
(b), (d) respectively:

(a) t e Pn-! and t{ = 0 implies hn(x, t) = hn^{8iX, Sjb) for each x e Ln

and n = 2, 3,
(b) for each #eZ/\ the map t—*hn(x,f), from P Λ - 1 to L, is con-

tinuous,
(c) for each x e L and neighborhood U of a;, there exists a neigh-

borhood V oΐ x such that

U ^i(F* x Pi-i) c Ϊ7

and F c Z7,
(d) for each a e L and neighborhood U of #, there exists a neigh-

borhood V of x such that

[JhiiV* x Pi-Oc C/
i = l

and V CLU (we should observe that, in this case, the functions hk, for
k ^ m + 1, may be assumed to be constant functions). The space L
will be called <*>-hyperconnected provided that L is m-hyperconnected
for m = 1, 2, . The space L will be called locally hyper connected
provided that, for each xe X, there exists a neighborhood of x which
is hyper connected. We similarly define locally m-hyperconnected and
locally °°-hyperconnected.

DEFINITION 2.3. A space L is said to be hypogeodesic if there
exists a function F: L x L x I—+L satisfying the following conditions:

(a) for x,y e L and t e I, F(x, 2/, 0) = x, JP(O?, y,l) — y and F(x, x, £) = x,

(b) for each y e L, the map (x, £) —> F(x, y, t), from L x I to L,
is continuous,
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(c) for each x,a, y eL and neighborhood U of y, there exist
neighborhoods V of a and W of y (V and W depend on x) with
W c U, such that

jP(α, α;, ί) € TΓ implies F(6, x, t) e U

for any 6 6 V,
(d) for each x e L there exist neighborhood bases {Va} and {Ua}

of x, with V"α c Ua for each α, such that

yeVa,zeUa implies F(z, y, t) e Ua

for each tel.
(The function F will be called an hypogeodesic function for L.)
The space L is said to be locally hypogeodesic if F is defined only on
U x I with U some neighborhood of the diagonal on L x L.

Clearly, every locally convex linear topological space is hypogeodesic,
and every linear topological space is equiconnected. Furthermore, every
equiconnecting function is easily seen to satisfy conditions (a), (b), and
(c) of Definition 2.3.

3* Hypo, equi and hyper.

THEOREM 3.1. If L is hypogeodesic then L is hyper connected.

Proof. (Similar to the proof of Proposition 5.3 of Michael [8].)
Throughout this proof we will make use of the following notation:

( 1 ) If x e Ln+\ then xeLn is defined by xt = xt for i = 1, , n.
( 2) If t e Pn and tn+1 Φ 1 then t e Pn_, is defined by

ti — i for i — 1, , n .
I ^w-fi

Clearly δβ = $&) and 3{t = (5^), whenever t e Pn-n xε Ln and 1 < ί < n.
Let hγ\ L x {1} —* L be defined by h^x, 1) = x, and let F be an

hypogeodesic function for L. By induction, assume we have defined
maps hi\U x Pi^—^L, for i = 1, •••,%, which satisfy parts (a) and
(b) of Definition 2.2. Now let

( 3 ) K + 1(X, t) = \
(F(hn(x, t), xn+lt tn+1) if ίΛ+1 ^ 1 .

Let us check that the functions hn satisfy conditions (a), (b) and (c)
of Definition 2.2.

2.2(a). Clearly h2(x, t) = h^x, δj) whenever t{ = 0. Hence let us
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assume that hn(x, t) = ΛΛ_1(δίa?, δ{t) whenever tt = 0 and let us shown
that hn+1(x, t) = ^(δifl?, δiί) whenever ^ = 0 (1 ^ i g w + 1): If i = n + 1
t h e n ftn+1(α, ί ) = F ( h n ( x , δ n + 1 t ) , x n + 1 , 0 ) = h n ( x , δn+1 \ t \ ) = K ( δ n + 1 x , δ n + 1 t )
by (3) and Definition 2.3(a). If £ < w + 1 and ίΛ+1 = 1, then hn+1(x, t) =
x»+i = K&x, δj), by (3). If i < n + 1 and ίΛ+1 ^ 1, then

hn+1(x, t) = F{hn{x,t), xn+1, tn+1)

K^δS, δtt), xn+1, tn+1)

By induction, we get that the functions /&n satisfy Definition 2.2(a).

2.2(b). Proof by induction. Clearly the map t-^h^x, t) = x, from
Po to L, is continuous. Suppose that the map t-+hn(w,t), from P n - 1

to X, is continuous, for each w G L W . Pick a fixed point x e Z/+ 1 and
let us show that the map t—»hn+1(x, f), from Pn to L, is also continuous:
Let sePn. Then

Case 1. sn+1 ^ 1. For some neighborhood U of s in P n , ί e U
implies tn+1 Φ 1. Therefore, for teU, hn+ι(x, t) ~ F(hn(x, t), xn+1, tn+1)
and hence the continuity of the map t —> hn+1(x, t) at s G P W , follows
from Definition 2.3(b) and the inductive hypothesis. (Indeed, pick
sequence ί(l), ί(2), in U(zPn such that lim^ ί(i) = s. Then one

easily sees that lim^ t(i) = s and thus lim^ ΛΛ(ίc, t(i)) = fen(ίc, s) by the

inductive hypothesis. Consequently, limiK+^x, (t(ί)) = \iτniF(hn(xf t(ί)),

»»+i, (ί(ί)»+i) = ^ ( ^ ( ^ i s), xn+1, sn+1) = hn+1(x, s) which shows that the

map t—>hn+1(x, t) is continuous at s.)
Case 2. sn+1 = 1. Then hn+ί(x, s) = xn+1, by (3). We will show

that hn+ι(x, t) is close to xn+1 if tn+ι is close to 1, as follows: Let
A = {hn{x, t)\te PW_J and, for each τ e I, let /.: A —> X be defined by

/Γ(α) = F(α, xn+ί, τ) .

Then

fen+i(^> t) = ftn+1(
at) for s o m e «ί e A if ίΛ+1 ^ £ ,

n + 1 (

Therefore, in order to prove that the map t —> K+L(x, t) is continuous
at s, it suffices to show that fτ —> fγ uniformly as τ —> 1 (note that
/i(α) = a?n+1 for each α e i , by Definition 2.3(a)): From Definition 2.3(b)
we get that fτ-*fγ pointwise. Moreover A is compact, because hn is
continuous and {x} x Pn is compact, and the family {fτ \ τ e 1} is evenly
continuous (see page 235 of [7]), by Definition 2.3(c). (Let aeAaL
and y e L and let U be a neighborhood of y. By Definition 2.3(c), pick
neighborhoods V of a and W of y (V and W depend on xn+1) with
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W c U s u c h t h a t w h e n e v e r F(a, x n + ί , t ) e W t h e n F(b, x n + ί , t ) e U f o r
all be V. Then we obviously get that fr(V) c U whenever fτ(a) e W,
which shows that the family {fτ \ τ e 1} is evenly continuous.) By
Theorem 23 (page 237) of [7], the family {fτ\τel} is equicontinuous
(note that, for each aeA, {fτ(a)\τ el} czF(A x {xn+1} x I) a compact
subset of L, because of Definition 2.3(b)). Therefore, the topologies
of point wise convergence and uniform convergence coincide on {fr | τ e /},
by Theorem 15 (page 232) of [7], and hence fτ—>/x uniformly as τ—>1.

It is now easily seen that the map t —• hn+ι(x, t) is continuous at
each sePn.

2.2(c). Let xeL and open UczL such that xeU. Then, by
Definition 2.3(d), there exists neighborhoods V and W of x such that
V c W c U and F(z, y,t)eW whenever yeV and zeW. By an
inductive argument, one easily sees that

which completes the proof.

THEOREM 3.2. // L is equiconnected then L is <>o-hyper'connected.

Proof. Exactly the same as the proof of Theorem 3.1, except that
we must verify that the functions hn, n = 1, 2, , satisfy condition
(d) of Definition 2.2: Let us first observe that, for each neighborhood
U of x one easily finds a neighborhood V of x with V aU,

F ( V x V x I ) d U ,

because F is continuous, F(x, x^t) — x for each tel and / is compact.
Clearly L is 1-hy per connected. Therefore let us assume that L is n-
hyperconnected and show that L is (n + l)-hyperconnected. Pick x e L
and neighborhood U of x. Then pick neighborhoods F and W oί x
such that

x VxI)aU, hn(Wn x Pn_0 aV, WaVaU .

Using the definition of hn+1, it is trivial to check that

K+1(Wn+1 x Pn)dU.

This concludes our inductive argument and completes the proof.

Because of the proofs of Theorems 3.1 and 3.2, the following
result is clearly valid and easily verified:
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THEOREM 3.3. // L is locally hypogeodesic (locally equίconnected)
then L is locally hyper connected (locally °o-hyper connected).

4* Extension theorems*

THEOREM 4.1. Every hyper connected space L is an AE (strati-
fiable).

Proof. The proof of this result is very similar to the proof of
Theorem 4.3 in [1]. We will thus indicate the general procedure without
details. We briefly comment on some recurring notation throughout
ensuing proof: Letting U—>{Z7»}»=i be a stratification of X (see foot-
note 1), we let n(U, x) = min{n\x e Un) and Uz = Un{U)X) - (X - {x})ήw,χ) >
for each open UaX and xeU. It is easily seen (see Lemma 4.1 of
[1]) that each Ux is an open neighborhood of x, Ux Π Vy Φ 0 implies
that xe V or ye U (indeed, n(U, x) <£ n(V, y) implies that ye U).

Now let X be a stratifiable space, A a closed subset of X, f: A —> L
a continuous function. Let W — X — A, W — {xeW\xeUy for some
ye A and open U containing y) and m(x) = max {n( U,y)\y e i and
xe Uy), for each xe Wr. It is easily seen that m(x) < n(W, x) < oo.

Using the paracompactness of W, let 5^ be an open locally finite
(with respect to W) refinement of {Wx\xe W). For each VeY* pick
xve W with V a Wxγ. If xve W pick aveA and open Sv containing
av such that xv e (Sv)av and n(Sr, av) = m(xr); if xv e W, let av be the
fixed point α0 e A.

Let {pF I V e°Γ\ be a partition of unity subordinated to 5*7 and
define βf*. X—>L by

/(^) for α; e A

g(x) = hn((f(aVl), , / ( α r j ) , (pFl(α;), , prja;)) for a e TF ,

where Fi, •••, F n are the only elements Ve°F such that pv(x) Φ 0,
for x e X — A. Clearly g is a well defined function from X to L. It
is not quite obvious that g is continuous anywhere, as was the case
in Theorem 4.3 of [1].

We will first show that g is continuous at each point be A. Let
0 be any open subset of L containing f(b) and let H be an open subset
of 0 such that f(b) e H and (J?=L K(Hn x P ^ ) c 0. Since / is contin-
uous there exists an open neighborhood N of b such that f(A n N)a
f f c O . It is easily seen that g((Nb)b) c 0, which shows that g is
continuous at each be A.

Finally we show that g is continuous at each xeX—>A. Let 0
be a neighborhood of

- K((f(av), , f(avj)y (pVl(x), - ,pvjx)))
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and let N be a neighborhood of x which intersects only finitely many
Ve T\ say V19 , F m , , Vm+k. By Definition 2.2(b), there exists a
neighborhood W of (pVί(x), , vvjp), 0, , 0) e PTO+fc-i which is mapped
into 0 by the continuous map

t — λw + f c((/(αΓ l), , /(α Γ m + w ), t) .

Define a map p: N->Pn+k_1c:Inι+k by j)(y) = (pΓl0/), , Pvm+k(v)) for
each y e N. Since p is clearly continuous, then there exists a neigh-
borhood U of x such that p( U) c TF. It is now easily seen that
g(N f] ί 7 ) c θ , with the help of Definition 2.2(a), which shows that g
is continuous at each x e X — A, thus completing the proof.

It is easily seen that the preceding proof remains valid if we
assume that L is only (n + l)-hyperconnected and X — A is ^-dimen-
sional (in the covering sense), for then we can choose the open cover
ψ* to be of order n and thus define the function g in terms of / and
hn+ί only. We have, therefore, proved the following result.

THEOREM 4.2. Let X be a stratίfiable space, A a closed subset
of X, L an (n + l)-hy per connected space and f: A—> L a continuous
function. If dim (X — A) <^ n then f has a continuous extension g:

The following result, when combined with Theorem 3.2, provides
a partial answer to the following question which is raised in [3]: Is
every equiconnected matrizable space an AE (metrizable)?

THEOREM 4.3. Every co-hyper'connected space L is an AE (CW-
complex of Whitehead).

Proof. Let K be a CTF-complex, A a closed subset of K and /:
A —> L a continuous function. For each n, let Kn be the ^-skeleton
of K. It is well-known that dimKn is finite for each n. Therefore,
by theorem 4.2 (note that K is stratifiable because of Theorem 7.2 of
[1], for example) and induction, we can find continuous functions

gn: A U Kn -> L for n = 1, 2, . .

such that

gn I A = f and gn+1 \ (A U Kn) = gn

for each n. Now define g:K-+L by

g(x) = gn(x) if x e A U Kn .

It is easily seen that g is a well-defined continuous extension of / to
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all of X, which completes the proof.

It is easily seen that all the preceding results of this section have
local analogues. For the sake of completeness, let us state and prove
one.

THEOREM 4.4. Every locally hyper connected space L is an ANE
(stratifiable).

Proof. By Theorem 4.1, L is a local AE (stratifiable) (i.e., for
each ae L there exists a neighborhood N of a such that N is an AE
(stratifiable)). Consequently, by Theorem 19.2 of Hanner [5], L is an
ANE (stratifiable).

5* Characterization of AR (metrizable) spaces*

THEOREM 5.1. A metrizable space M is an AE (stratifiable) if
and only if M is hyper connected.

Proof. Since the "if" part is an immediate consequence of
Theorem 4.1, we direct our attention to the "only if" part (the basic
technique is extracted from Michael [8]): Embed M in a Banach space
B and let H be the closed convex hull of M in B. Then there exists
a retraction r: H-^M. For each n, define hn: M

n x Pn—>M by

K(z, t) = r ( Σ to), for (z, t) e Mn x Pn .

Clearly, each hn satisfies conditions (a) and (b) of Definition 2.2. Since
r is continuous, for each xe M and open subset U of H with x e U,
there exists a convex open set V c H with xe V aU such that

r ( 7 Π l ) c r ( F ) c U Π M

hence UΓ-i KiV Π My x P ^ ) c U Π M, and hence the functions hn

satisfy condition (c) of Definition 2.2. Consequently M is hyperconnected.
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