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A NOTE ON GROUPS WITH FINITE DUAL SPACES

LARRY BAGGETT

If a locally compact group has only a finite number of
inequivalent irreducible unitary representations, then one is
tempted to conjecture that it is a finite group, The conjecture
is known to be true in certain special cases. We present here
a proof in case the group satisfies the second axiom of counta-
bility.

ProrosiTiON 1.1. If G is an abelian locally compact group
having only a finite number of imequivalent irreducible unitary
representations, then G is a finite group.

This follows immediately from the Pontrjagin duality theorem.

ProroSITION 1.2. If G is a compact group having only a finite
number of inequivalent irreducible unitary representations, then G
s a finite group.

We may deduce a proof of this from the Peter-Weyl theorem,
for example, as follows: L*G) is the direct sum >.I; of finite dimen-

sional subspaces [I;], where, for each <, I, is a minimal two-sided
ideal in L*(G). Further, there is a one-to-one correspondence between
the set [I;] of these ideals and the set of all equivalence classes of
irreducible unitary representations of G. If the latter set is finite,
as assumed, then L*@) is finite dimensional, and G is necessarily a
finite group.

The proof we give here for the second countable case depends
on Dixmier’s theory of square-integrable representations, which, in
turn, depends on some rather technical results concerning Hilbert
algebras. It would be desirable, of course, to discover an elementary
proof to what appears to be such an elementary theorem. I have
devised a fairly elementary proof—‘“elementary” in the sense that,
beyond the notion of Haar measure, the only deep result needed is
Kadison’s theorem on the algebraic irreducibility of a topologically
irreducible *-representation of a C*-algebra. This proof, however,
still suffers from being quite long, so I do not include it.

Regarding the situation when G is an arbitrary locally compact
group, there is no direct integral theory available in general, and we
therefore lose an important tool for moving from hypotheses about
the dual space to conclusions, for example, about the regular repre-
sentation. I can not make headway in resolving this conjecture even
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in the case when G is an uncountable discrete group. Of course, if
the conjecture is true, then the hypothesis of a finite dual must
imply that the dual space is actually discrete. Even this subsidiary
implication is apparently nontrivial in general.

2. Discrete decomposition of the regular representation. Let
G be a unimodular group, and let R denote the left regular repre-
sentation of G. The following theorem can be deduced from §14
of [1].

THEOREM 2.1. Let M be a closed subspace of L*G) which is
irreducible under R. Then the mapping (f, ¢) — fx¢ s defined on
LMG) x M 1into M, and there exists a constant k, such that
[ fxoll: = k[ Sl |91l for every f in LXG) and every ¢ in M.

LEMMA 2.2. Let M be a closed irreducible subspace of LXG),
and let k, be a constant which satisfies the tnequality in Theorem
2.1 above. Suppose N 1is a closed subspace of L*G) for which R|y
is equivalent to R|,. If f is an element of L¥G) and ¢ is an
element of N, then ||fx¢|l, < ky || .18l so that ky may be taken
to equal k.

Proof. Let 6 be an equivalence between R|, and R|,. Let ¢
be an element of N, f be an element of L*G), and [f,] be a sequence
of elements of L'(G) N L*G) which converges to f in L*G). Then:

| fx¢ll. = (by Theorem 2.1) lim || f,*¢ [l; = Lim [| £, +0(67'(¢)) |l
= lm || 6(Fox07(9) l. = | fox079) |l: = lim Ky [| £ 12 11 07(9) |]2
=k [|F 1o 1 8 ]e-

THEOREM 2.38. Let G be a unimodular group. Assume that R
1s a direct sum of irreducible subrepresentations and that only
finite number of inequivalent irreducible representations occurs in
this decomposition. Then G is a finite group.

Proof. We prove that L*G) is a convolution algebra, whence,
by [5], G is compact, whence, by Proposition 1.2, G is finite.
Thus, decompose L*G) as the direct sum 3>, M;, where, for each

1, M; is a closed irreducible subspace. For each 1, let k;, denote a
constant k., as guaranteed by Theorem 2.1. By Lemma 2.2 we may
assume that, if R|,, is equivalent to R, then k; = k;. By the
hypothesis that only a finite number of inequivalent irreducible re-
presentations occurs in R, we may conclude that the set [k;] of these
constants is finite, whence uniformly bounded by a positive number k.
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Now let f and g be two elements of L*G). Denote by g; the
projection of g onto the subspace M,;. Then:
| =gl = [l f*> g:1l; = (by the orthogonality of the [M] and by

Theorem 2.1)
Sl xoilli = S EF NN g: 1l = B NFIED 90113 = & IFAIRIAlE

Hence fxg is again an element of L*G).

3. Finiteness properties in the dual space. By the dual space
G, we shall mean the set of all equivalence classes of irreducible unitary
representations of a locally compact group G.

THEOREM 3.1. Let G be an infinite, second countable, uni-
modular group. Then the spectrum of the regular representation
R of G is infinite, i.e., R weakly contains an infinite number of
elements of G. (For the definitions of “spectrum” and “weak con-
tainment” see [2].)

Proof. Assume that R weakly contains only a finite number of
inequivalent irreducible representations of G. By the second counta-
bility of G, R is equivalent to a direct integral of irreducible repre-
sentations, [4], and we may assume, by [2], that the only irreducible
unitary representations which occur in this direct integral decompo-
sition are the elements of G which R weakly contains. Having
assumed that R weakly contains only a finite number of elements of
G‘r, this direct integral is equivalent to a direct sum of irreducible
unitary representations only finitely many of which are inequivalent.
We now have the hypotheses of Theorem 2.3. This implies that G
is finite, which is a contradiction.

COROLLARY 3.2. LAet G be a second countable group. Then G is
JSinite if and only if G is finite.

_Proof. Of course “G finite — G finite” is classical. Conversely,
if G is finite, then the spectrum of the regular representation is
finite, and the proof will be complete, by the theorem above, if we
can show that G is unimodular.

If 6 denotes the modular function of G, then §(G) is an abelian
group (a subgroup of the group of positive reals) whose dual space,
being in one-to-one correspondence with a subset of the dual space
of G, is finite. Hence, by Proposition 1.1, §(G) is finite, whence o
is identically 1.
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COROLLARY 3.3. LAet G be a sigma-compact group. Then G is
finite ©f and only i1f G is finite.

A proof follows from Corollary 3.2 together with the theorem of
[3] which states that, if G is a sigma-compact group, then there
exists a compact normal subgroup H for which G/H is second countable.
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