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A REPRESENTATION THEOREM FOR CERTAIN
CONNECTED RINGS

SILVIO AURORA

It is shown that if A is a semisimple, connected, locally
connected Q-ring with unit element such that every maximal
ideal disconnects A, then A is continuously isomorphic to a
dense subring of the ring of all continuous real-valued func-
tions on a suitable compact Hausdorff space.

Many authors have obtained representations for semisimple Banach
algebras as algebras of continuous functions. The object of this
note is to present a somewhat similar result which, however, does
not assume the presence of real or other kinds of scalars.

Specifically, it is established in Theorem 2 that if A is a semi-
simple, connected, locally connected Q-ring with unit element such
that every maximal ideal has a disconnected complement in A, then
A is continuously isomorphic to a dense subring of the ring & (@; R)
of all continuous real-valued functions on a suitable compact Haus-
dorff space .

The basic tool employed is Theorem 1, which asserts that if A4 is
a connected, locally connected ring with unit element such that the
removal of the zero element disconnects A, then A is algebraically
and topologically isomorphic to the field R of real numbers.

The remarks contained in this note arose as tangential observations
in connection with a somewhat different problem which was investi-
gated with the financial support of the Research Council of Rutgers
University; the author wishes to express his appreciation to the Re-
search Council for that assistance.

2. Topological rings which are disconnected by the removal
of a point. An important step in proving the representation theorem
is the characterization of those locally connected rings which are dis-
connected by the removal of a point.

THEOREM 1. Let A be a topological ring with wunit element.
In order for A to be algebraically and topologically isomorphic to
the field R of real numbers it is necessary and suffictent that A be
connected and locally conmected, but that the set A* of nonzero ele-
ments of A be disconnected.

Proof. The necessity is obvious.
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For the sufficiency, we first note that the additive group of A is
algebraically and topologically isomorphic to the additive group of
real numbers. (See for instance [1; Chap. 5, p. 28, Exercise 4], where
a proof of the fact is outlined.) In particular, A is locally compact.

If ¢ is a nonzero element of A then the mapping x —cx is a con-
tinuous endomorphism of the additive group of A;thus, the image of
A under this mapping is a connected subgroup of that group and
therefore coincides with A since the image contains the nonzero
element ¢l = ¢. Then 1 = ¢d for some d in A, and ¢ is right invert-
ible. It follows that A is a division ring.

Pontrjagin’s characterization of connected, locally compact division
rings (see for instance [3; Chap. 6, p. 160, Corollary 2 of Theorem 1])
implies that A is algebraically and topologically isomorphic to the field
R of real numbers, the field of complex numbers, or the division ring
of real quaternions. The fact that A* is disconnected eliminates the
last two alternatives, and the theorem follows.

In order to obtain the representation theorem we shall employ a
succession of simple lemmas. The first two of these lemmas follow.
The proofs are routine.

LEMMA 1. If A is a connected rimg with unit element then
every left ideal and every right ideal of A 1is commected.

LEMMA 2. Let A be a conmnected, locally conmected ring with
unit element, and let I be a closed tdeal which disconnects A. Then
A/I is algebraically and topologically tsomorphic to R.

3. The representation theorem. If @ is a compact Hausdorff
space then the symbol Z(@; R) will denote the ring of all continuous
real-valued functions on @, with the topology of uniform convergence
on @ as the topology of the ring. It is recalled that a topological
ring with unit element is a Q-ring provided that the set of invertible
elements is open; in a Q-ring with unit element, maximal ideals exist
and are closed sets.

THEOREM 2. Let A be a semisimple, connected, locally connected
Q-ring with unit element such that every maximal tdeal disconnects
A. Then there exists a compact Hausdorff space @ such that there
18 a continous isomorphism o of A onto a dense subring of = (®; R).

The proof is outlined by listing the lemmas which are employed
to construect it.
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LEMMA 3. There is a subfield P of A such that P contains 1
and P is algebraically isomorphic to the field of rational numbers.

Proof. If m is a natural number then no maximal ideal M can
contain » since otherwise A4/M, which is isomorphic to R by Lemma
2, would have finite characteristic. Thus, every natural number % is
an invertible element of A. If P is the set of all elements of A of
the form mn~', with m an integer and » a natural number, then P
clearly is the required field.

DEFINITION. A subset C of a ring A is said to be symmetric
provided that whenever x is in C then —x is in C.

LEMMA 4. If r is a positive rational number then there is a
connected symmetric neighborhood W of zero in A such that
p(W)c]—r, r[ for every continuous nonzero homomorphism ¢ of A
wnto N.

Proof. Since —r is invertible there is a neighborhood U of —7r
which contains only invertible elements. Thus, U is disjoint from
every maximal ideal M, and r + U is therefore disjoint from » + M
for every maximal ideal M.

There is a connected neighborhood V of zero contained in the
symmetric neighborhood (r + U) N (—(r + U)) of zero, so that W =
VU (—V) is a connected symmetric neighborhood of zero which is
contained in (r + U) N (—(r + U)) and therefore in r + U. It follows
that W is disjoint from » + M for every maximal ideal M.

Let @ be a continuous nonzero homomorphism of A into R. Then
the kernel of » must be a maximal ideal M because the image of ¢
is necessarily the entire field R. Now » + M is disjoint from W, so
that » does not belong to o(W). We conclude that (W) cC]—7r, 7]
since (W) is a connected symmetric set of real numbers and does
not contain 7.

This proves the lemma.

LEMMA 5. The relative topology of P in A 1is the ordinary
topology of the field of rational numbers.

The proof involves a routine application of Lemma 4.

LEMMA 6. Let U be a neighborhood of zero in A, and let f be
a continuous nonconstant mapping of U into R such that

flo, + oo +2,) = fl@w) + -0 + fl2,)
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whenever ,, +++, &, &, + -+ + x, belong to U, and f(xy) = f(x)f (W)
whenever x, y, xy belong to U. Then there exists exactly one continu-
ous nonzero homomorphism ¢ of A into R such that the restriction
of @ to U 1is precisely f.

Proof. If x is in A then there is a natural number m such that
xf/r is in U whenever r is a natural number with » = m. We define
@(x) = mf(x/m). Then @ is well-defined, and the remaining details of
the proof are routine.

LEMMA 7. Let W be a connected symmetric meighborhood of
zero im A such that o(W)cC]—1,1] for every continuous monzero
homomorphism @ of A into R. Let @ be the space of all continuous
nonzero homomorphisms of A into R, with the topology for @ obtained
by identifying @ (in the obvious way) with a subset of the topological
product of the family {I,|xec W}, where each space I, is the closed
interval [—1,1]. Then @ is a compact Hausdorff space.

We note that Lemma 6 implies that @ can also be identified with
the set of all continuous nonconstant mappings f of W into R which
have the properties that f(z, + --- +,) = f(x) + --- + f(x,) when-
ever &y, -+, &, & + -+ + x, belong to W, and f(xy) = f(x)f(y) when-
ever , ¥, xy belong to W. It may be noted that the topology for @
has as a subbase the family of all sets

{po; @56} = {p e, |p@) — px)] <&},

where ¢, @, x € A, and ¢ is a positive real number. Furthermore, if
x is an arbitrary element of A then there is a natural number m such
that «/m € W; thus, every set {p,; 2: ¢} can also be written in the form
{po; x/m; ¢/m}, so that there is a subbase for the topology of @ which
consists of all sets of the form {p,; y; 6}, with p,c @,y W, and ¢ a
positive real number. The proof of Lemma 7 then becomes routine.

LEMMA 8. If = is an element of A then the function T defined
on @ by the rule Z(p) = p(x), for all ¢ in @, is a continuous real-
valued function on @.

The proof is routine.
LEMMA 9. Let o be the mapping of A into = (@;R) defined by

the rule o(x) = % for all x in A. Then o 13 a continuous isomorphism
of A into = (0; R).



A REPRESENTATION THEOREM FOR CERTAIN CONNECTED RINGS 567

An application of Lemma 4 establishes the continuity of ¢, while
the fact that ¢ is an isomorphism is proved in a routine manner.

LeMMA 10. o(A) 1s dense in & (0; R).

Proof. The closure of o(A) is a uniformly closed subring of
= (@; R) which contains all constant real-valued functions on @ since
it contains all constant rational-valued functions on @. It is also clear
that the closure of o(A) separates points of @, and the Stone-
Weierstrass Approximation Theorem (see for instance [2; p. 56, Th. 3])
implies that the closure of ¢(A) coincides with & (@; R).

This sequence of lemmas establishes the theorem.

An example demonstrates that the conclusion of Theorem 2 can
not be sharpened. If A is the set of all real-valued functions which
are defined and have a continuous derivative on [0, 1], with the obvi-
ous operations in A, and with the norm for A defined by

N(@) =sup{la@®) [0 =t =1} +sup{[a'(®)]|0 =t =1}

for each © in A, then A is a commutative Banach algebra which
clearly satisfies the hypothesis of Theorem 2. However, the topology
for A is strictly finer than the topology for & (@; R) in this example.
For instance, if x,(¢) = (2nrn)~'sin 2znt for 0 < ¢ < 1 whenever » is
a natural number, then the sequence {x,} converges uniformly to zero
(that is, {®,} converges to 0 in & (@; R)), but {x,} does not converge
to zero in A since N(z,) = (2nn)~" + 1 for every natural number n.
Thus, ¢ is not a homeomorphism of A with o(4).

The same example also shows that o(4) need not coincide with
& (0; R) even though o(4) is a dense connected subring of the latter.
For instance, the element z of & (®; i), where z(t) = |t — (1/2) | when-
ever 0 <t <1, is obviously not the image of an element of A.

REFERENCES

1. N. Bourbaki, ‘‘ Topologie générale,”” Chap. 5-6, 3rd ed., Eléments de mathématique,
Hermann, Paris, 1963.

2. , Topologie générale, Chap. 10, 2nd ed., Eléments de mathématique,
Hermann, Paris, 1961.

3. , Algebre commutative, Chap. 5-6, Eléments de mathématique, Hermann,
Paris, 1964.

Received April 28, 1969.

RUTGERS UNIVERSITY
NEWARK, NEW JERSEY








