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PRODUCT INTEGRAL REPRESENTATION OF TIME
DEPENDENT NONLINEAR EVOLUTION

EQUATIONS IN BANACH SPACES

G. F. W E B B

The object of this paper is to use the method of product
integration to treat the time dependent evolution equation
u'it) = A(t)(u(t)), t ^ 0, where u is a function from [0, oo) to
a Banach space S and A is a function from [0, oo) to the set
of mappings (possibly nonlinear) on S. The basic requirements
made on A are that for each t ^ 0 A(t) is the infinitesimal
generator of a semi-group of nonlinear nonexpansive transfor-
mations on S and a continuity condition on Ait) as a function
of t.

The product integration method has been used by T. Kato in [5]
to treat evolution equations in which A(t) is the infinitesimal generator
of a semi-group of linear contraction operators. In [6] Kato treats
the nonlinear evolution equation in which A(t) is m-monotone and the
Banach space S is uniformly convex. For other investigations of non-
linear evolution equations one should see P. Sobolevski [9], F. Browder
[1], J. Neuberger [8], and J. Dorroh [3].

1* Definitions and theorems. In this section definitions and
theorems will be stated. For examples satisfying the definitions and
theorems below, one should see § 4. Let S denote a real Banach space.

DEFINITION 1.1. The function T from [0, oo) to the set of mappings
(possibly nonlinear) on S will be said to be a ^-semi-groups of mappings
on S provided that the following are true:

( 1 ) T(x + y) = T{x)T(y) f o r x,y^0.
( 2 ) T(x) is nonexpansive for x ^ 0.
(3) If p e S and gp(x) is defined as T(x)p for x ^ 0 then gp is

continuous and ^(0) = p.
(4) The infinitesimal generator A of T is defined on a dense

subset DA of S (i.e., if peDAg'p
+(0) exists and Ap = g'/(0)) and if

Agp(u)du for x ^ 0, g'p
+

0

is continuous from the r ight on [0, ^ ) , and \\gp+ \\ is nonincreasing on
[0, co).

DEFINITION 1.2. The mapping A from a subset of S to S will be
said to be a ^-mapping on S provided that the following are true:

(1) The domain DA of A is dense in S.
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( 2 ) A is monotone on S, i.e., if ε > 0 and

p, q e DA\\(I - εA)p - (I - eA)q\\ ^ \\p - q\\ .

( 3 ) A is m-monotone on S, i.e. A is monotone on S and if ε > 0
then Range (/ — εA) = S.

( 4 ) A is the infinitesimal generator of a ^-semi-group of map-
pings on S

DEFINITION 1.3. Let each of m and n be a nonnegative integer
and for each integer i in [m, n] let K{ be a mapping from S to S.
If m > n define Π?=«£* = J If m g w define ΠfU-K* = #™ and if
m + 1 ^ j £ n define Π ί ^ = i f J I / r i X,. Define Π ί m ^ - Π?-« «•+«-•.
If each of a and 6 is a nonnegative number then a chain {sj^o from
a to δ is a nondecreasing or nonincreasing number-sequence such that
s0 = α and s2m = 6. The norm of {sj !^ is max {| s2i — s2ΐ_21 | ί e [1, m]}.

DEFINITION 1.4. Let F be a function from [0, <χ>) x [0, oo) to the
set of mappings on S. Suppose that p e S, a,b ^ 0, and u is a point
in S such that if ε > 0 there exists a chain {s;}!™0 from a to b such
that if {ίj^o is a refinement of {s,}^0 then

u — 11

Then u is said to be the product integral of F from a to b with respect

to p and is denoted by Πϊ ™'τ ~7r"~

REMARK 1.1. Let A be a ^"-mapping on S and define the function
F from [0, c>o) x [0, oo) to the set of mappings on S by F(u, v) —
(I — vA)-1 for u, v ^ 0 (Note that (/ — vA)~ι exists and has domain S
by virtue of the m-monotonicity of A). The following result in [10]
will be used in the theorems below:

If A is a ^-mapping on S, T is the ^-semi-group generated
by A, and F is defined as above, then for p e S and x ^ 0 T(x)p =
Πί F(I, dl)p.

In this case let T(x) be denoted by exp (xA) for x ^ 0.
Let A be a function from [0, oo) to the set of mappings on S

such that the following are true:
( I ) For each t ^ 0 A(t) is a ^-mapping on S
(II) There is a dense subset D of S such that if £ ̂  0 the do-

main of A(t) is D
(III) A is continuous in the following sense: If α, b ^ 0, M is

a bounded subset of D, and ε > 0, there exists δ > 0 such that if
%,ve [α, b] and | M — v\ < δ then || A(u)z — A(v)z || < ε for each ^ 1 .
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THEOREM 1. Let A satisfy conditions (I), (II) and (III). If pe S
and α, b >̂ 0 the following are true:

( 1 ) // T(u, v) = exp (vA(u)) for u,v^0, then Hi T(I, dl)p exists.
(2) // L(u, v) = (I - vA{u))~ι for u, v ^ 0, then HI L(I, dl)p

exists and HI L(I, dl)p = HI T(L, dl)p.

THEOREM 2. Let A satisfy conditions (I), (II) and (III) and define
U(b, a)p = Πα T(I, dl)p for pe S and α, b ̂  0. TΛβ following are true:

( 1 ) U(b, a) is nonexpansive for a, b ̂  0.
( 2 ) Z7(6, c) U(c, a) = U(b, a) for α, b ̂  0 α^d c e [α, 6] and U(a, a) =

I for a ^ 0.
( 3) If pe S and a ^ 0 ί/̂ βw Z7(α, ί)p is continuous in t
( 4) If peS,0 ^a^t, and U(t, a)p e D, then d^U(t, a)p/dt -

A(t)U(t, a)p and if p e S, 0 < s g δ, αwd ί7(s, 6)p e Z), then

d~U(s, b)p/ds = -A(s)U(s1 b)p .

2. Product integral representations. In this section, Theorems
1 and 2 will be proved. Before proving part (1) of Theorem 1 three
lemmas will be proved each under the hypothesis of Theorem 1.

LEMMA 1.1. / / p e D, α, b >̂ 0, and

b then
f-o is a chain from a to

Π '

Proof.

π

2i_ιy I s2i - s2i_2 \)p - p

i - i , I S2i - S 2 ί _ 2 \)p -

m II m

^ Σ Π τ(8tj_lt

=S Σ I I TX^ -t, I

= Σ
t=i| Jo

m

^ Σ | s 2 < -

- s 2 j _2 \)p - Π Ά23-U I % - s 2 ί _2 \)p

i ~ s2-i—2 t

LEMMA 1.2. If pe D,a,b^Q, {st }iΞ
s }^! is α sequence in [α, 6],

m /rom α ίo 6,

Π LW, I s 2 ί - s 2 ί _ 2 \)p-p S Σ I s2i - s 2 ί_ 21 || A{s\)p \\ .
ί = i i

Proo/.
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Π L(s'jf I s 2 j - s 2 j _ 2 \)p - - s2i_2 \)p

= Σ
i

s2i - s2i_2\)p

- L(s'i, I s2 i - s 2 i_ 21)(/ - I s 2 ί - s2i_2

LEMMA 1.3. If M is a bounded subset of D, a, b ^ 0, 7 > 0,
ε > 0, there exists δ > 0 ŝ cfe ίΛαί ΐ / ^, v e [α, 6], | u — v | < δ, 0 ^ x < 7,

« G ikΓ, then || Γ(u, aj)« — T(v, x)z || ^ x ε.

Proo/. Let M' = {Π* ι L(v, s2ί - s2i_2)z \ z e M, v e [α, 6], 0 ^ x < 7,
and {s,;} w

0 is a chain from 0 to x}. Let 20 e M, let z e M, let v e [a, b],
let 0 ^ x < 7, and let {sj^o be a chain from 0 to x. Then,

Π

Further, by Lemma 1.2,

, s 2 i - s2i_2)zc

_g x max I
u e 10, x ]

< 3 - So

Then, || ΠΓ-.i L(v, s2ί - s2ί_2)^ || ^ || s - s01| + || s01| + a; maxMe[OiΓ] || A(u)z0 \\
and so M' is bounded. There exists δ > 0 such that if w, v G [α, ft],

u - v I < δ, and z e M', then || A(u)z - A(v)z\\ < ε. Then if 0 ^ ^ < 7,
ze M, {sj m

o is a chain from 0 to x, u, v G [α, δ], and | ^ — v \ < δ,

Π L(u, s2i - s2i_2)z - Π L(v, s2ί - s2ί_2)z||

w 11 w i—l

< y π L(u, s2, — s2 _2) Π L(v, s2k — s2k_2)z

m i

±j\(A/j &2j r>2j_2) Ĵ J_ ±J\V, Γ>2/c

 ίs>2k—2/~

L(u, s2ί - s2i_2)
fc = l

- t[L(v, s2k - s2k_2

Π L(v, s2k -

- (szi - s2i_2)A(u)) Π L(v, s2k - s2k_2)z\\
k II
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— 2-1 \S2i S2i-2/ A(v) Π L(v, s2k - s2k_2

- A(u) Π L(Vf s2k - s2k_2)z\\
II

= x-s .

Then, since T(u, x)z = Π? £ ( ^ , d i > and
Remark 1.1), || Γ(%, x)z - T(v, x)z\\ ^ x-εm

, x)z = Π? (see

Proof of Part (1) of Theorem 1. Let p e A let α, 6 ^ 0, and let
ε > 0. Let M = {ΠίLi ϊ 7 ^ ^ ! , | r2 ί - r2ί_2 |)p | a; e [α, 6] and {rJ?Ξo is a chain
from α to α;}. Then M is a bounded subset of D by Lemma 1.1. There
exists 8 > 0 such that if %, v e [α, 6], 116 — v \ < 5, 0 <; x ^ 1 and z e Λf,
then || T(w, α;)« — Γ(ι;, x)z\\ ^ ε x. Let {sj^o be a chain from α to b
with norm < min {δ, 1} and let {£J^O be a refinement of {sj ô, i.e.,
there is an increasing sequence u such that uQ = 0, ^ w = w, and if
I ^ i ^ m s 2 i = ί2w.. For l ^ ΐ ^ m let i ζ = T(82i^l9 | s2i — s2ί_2 () and
let Ji = UlU^+ΛUi-if I t2j - ί2j _21). Then,

Π T i t * - , I ί« — ί«_, |)j> —
i - -1

π Ji π κkP - n J, π κkP

Jt Π iΓ^ - κt π
A - L A; -^ 1

Π Tit \ t • Π Kkp
I

- h - ««•_, i) π κkP

Π.Γ(β«_., Π T(ttk_1,\ttk-ta_t\)nκkp
+ 1 A

- Π T(sΆ_ιt \t2r-t2r_2\) π

^ Σ Σ *« - t
tj_t I π

3 — 1π * — l

κkp

Σ

Hence, Πα ^ J , dJ)p exists. Further, using the fact that D is dense
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in S and T(u, x) is nonexpansive for u, x ^ 0 one sees that if p e S,
α, 6 ^ 0, then Πα Γ(/, dΓ)#> exists and thus part (1) of Theorem 1 is
proved.

Before proving part (2) of Theorem 1 three lemmas will be proved
each under the hypothesis of Theorem 1.

LEMMA 1.4. If p,qe S,a,c^ 0, and b e [α, c], then the following
are true:

( i ) || Πί T(I, dl)p - Ul T(I, dl)q \\ £ || p - q ||.
(ii) Ul T(I, dl) Ul T(I, dl)p = Ul T(I, dl)p.
(iii) Ifp e D then \\ Ul T(I, dl)p -p\\£\b-a\- max t t 6 [ M ] \\A(u)p\\.

Proof Parts (i) and (ii) follow from the nonexpansive property
of T(u, x), u, x ^ 0. Part (iii) follows from Lemma 1.1.

LEMMA 1.5. If M is a bounded subset of D, α, 6 ^ 0, and ε > 0,
there exists δ > 0 such that if u, v e[a, b], \v — u\ < 3, w e [u, v], and
zeM, then

dl)z - T(w, \v ~u\)z < I v ~ u\ ε .

Proof Let M' = {UΐΛ T(s2i_u | s2i - s2i_2 \)z\zeM,x,ye [α, δj, {sjίΐo
is a chain from ytox}. Then M' is a bounded subset of D by Lemma 1.1.
By Lemma 1.3 there exists d > 0 such that if u, ve[a,b],\u — v\ <
S ^ e t f and O ^ ^ l , then || T(u, x)z - T(v, x)z \\ ^ x-ε. Let
u,ve [α, 6], | v — u | < min {3,1}, w e [̂ , v], ze M, and let {st }?Ξ0 be a chain
from u to v. Then,

Π
|

I s 2 i - T(w, \v-u\)z

Π Φ/ o I o o |\Λ»

-*- \*>2i—I) I ύ 2 i ύ 2 i — 2 | / Λ

—1J I ^ 2 i ^ 2 i — 2 I) 1 1 J-
3=1

- T(w, I s2i - s2i_

\ Σ 1% - 2̂ί_2| ε

- S 2 ί _ 2

Π
3=1

- Sj_2 \)z\\

II

= |v - w| e .

T h u s , || Π ; r ( / , rf/)« - T(w, \v -u\)z\\^\v - u \ - ε .

L E M M A 1.6. If M is a bounded subset of D, a,b^ 0, and ε > 0,
£Λ,er0 exists δ > 0 sw/^ £&α£ if u, v e [α, δ], tt; e [w, v], | v — u \ < <5, z e Λf,
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and {sJlΞo is a chain from u to v, then

Π £(S2;-1> I S2i - S2i_2 \)z - Π L{W, \ S2i - S2i_2 \)z\\ ^ ( V - U \ S .
i II

275

Proof. An argument similar to the one in Lemma 1.3 proves
Lemma 1.6.

Proof of Part (2) of Theorem 1. Let peD,a,b^0, and ε > 0.
Let M = {Jla T(I, dl)p \ x e [α, 6]}. Then M is a bounded subset of D
by Lemma 1.4. By Lemmas 1.5 and 1.6 there exists δ > 0 such that
if u,ve [a, b], w e [u, v], \ u — v | < δ, z e M, and {SJJΞO is a chain from
u to v, then

Π 2i - s 2 < _ 2 1)2 - ί - s2ί_2 \)z\\ <,\v - u I ε/3| 6 - a \
II

and || Ul T(I, dl)z - T(w, \ v - u \)z \\ S I v - u | ε/3| b-a\. Let {r^U
be a chain from α to 5 with norm < δ. Let {sJ Ξo be a refinement
of {rjjlo such that there exists an increasing sequence u such that
u0 = 0, uq = m, if 1 g i ^ <? r2 i = s2%., and if l ^ i ^ q and {ίfc}ϊl0 is a
refinement of {sy}^,,^^ then

TT i v ( ^ 2 i i, I ί2A. ί I) TΊ
k = ί a

r

a

(Note that if

l ^ i £ q T(ru_ιt \ ru - r2i_:

α

r2i-2 a. r2i a

—see Remark 1.1). Let {ί<}?=0 be a refinement of {sJfΞo and let v be
an increasing sequence such that v0 = 0, ̂ m = w, and if 1 <̂  i ^ m
s2i = ί2,.. Then,

Π - Π Γ(/, dl)p

Π Π Π i»(ί,*_i, lίtt - ««-• DP
t i i i t H i k + ι

q r2i

- Π Π
i-1 r2i—2

Π Π
r2i—2

π
",d/)

r2i-2
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- a\

Σ Π Π L(r2i_ly I t2k - t,k_21) Π T(I, dl)p

i-i> I ^2i - r2i_21) Π Γ(/, dl)p

Σk2i-r2ί_2|.ε/3|6-α|

ε .

Thus, Πα ̂ ( ^ d/)p exists and is Πα Γ(J, dl)p for p e ΰ . Further,
using the fact that D is dense in S and L(u, x) is nonexpansive for
u, x ̂  0 one sees that Πα L(I, dl)p = HI T(I, dl)p for all peS.

Define U(b, a)p = Πα T(I, dl)p for p 6 S and α, 6 ̂  0.

Proo/ o/ Theorem 2. Parts (1), (2), and (3) of Theorem 2 follow
from Lemma 1.4. Suppose that p e S, 0 ̂  a ^ ί, and Ϊ7(£, α)p e D.
Let ε > 0. There exists d, > 0 such that if 0 < h < δ,

|| A(ΐ)T(ί, h)U(t, a)p - A(t)U(t, a)p \\ < ε/2

(see Definition 1.1, part (4)). By Lemma 1.5 there exists δ2 > 0 such
t h a t if 0 < h < δ21| U(t + h, t)U(t, a)p - T(t, h)U(t, a)p\\< h s/2. Then,

if 0 < h < min {δx, δ2},

- U(t, a)p) - A(t)U(t, a)p ||

h,t)U(t, a)p - U(t, a)p) - A(t)U(t, a)p \\

ε/2 + || (l/h)(T(t, h)U(t, a)p - U(t, a)p) - A(t)U(t, a)p

= ε/2 l/h\h[A(t)T(t, u)U(t, a)p - A(t)U(t, a)p]du\
Jo I

Hence, d+t/(£, a)p/dt = A(t)U(t, a)p. Suppose that p e S, 0 < s g 6,
and Z7(s, 6)p e D. Let ε > 0. There exists δL > 0 such that if 0 < ft < δ,
then 0 ̂  s - h and || A(s)T(s, h)U(s, b)p - A(s)C/(s, b)p\\ < ε/2. By
Lemma 1.5 there exists δ2 > 0 such that if 0 < h < S2

|| C/(s - ft, 8)U(8, b)p - T(8, h)U(s, b)p || < ft ε/2 .

Then, if 0 < ft < min {d19 δ2)

- ft, b)p - U{s, b)p) - (-A(8)U(8, b)p) \\

- ft, s)f7(s, b)p - [/(s, ft)p) - A(8)U(8, b)p \\

< ε/2 + || (l/h)(T(s, h)U(s, b)p - U(s, b)p) - A(s)U(s, b)p ||

= 6/2 + l/h\h[A(s)T(s, u)U(s, b)p - A(s)U(s, b)p]du\\ < ε .
Jo II

Hence, d-U(s, b)p/ds = -A(s)U(s, b)p.



PRODUCT INTEGRAL REPRESENTATION OF TIME DEPENDENT 277

3* Product integral representation in the uniform case* For
Theorem 3 A is required to satisfy, in addition to conditions (I), (II),
(III) of § 1, the following:

(IV) For each t :> 0 A(t) has domain all of S.
(V) If 0 <£ a ^ 6, M is a bounded subset of S, and ε > 0, there

exists δ > 0 such that if ue [a, 6], z, w e l , and \\z — w\\ < δ, then

|| A(u)z - A(u)w\\ < ε .

THEOREM 3. Let A satisfy conditions (I)—(V) and define

M(u, v) = (I + vA{u))

for ufv^0. If peS and a, b ^ 0, then Π« M(I, dl)p = U(b, a)p.

Before proving Theorem 3, three lemmas will be proved each under
the hypothesis of Theorem 3.

LEMMA 3.1. Let pe S and let α, b ̂  0. There is a neighborhood
Np,δ about p, a positive number 7, and a positive number K such
that if qe Np,δ, x, y e [α, 6], | y — x \ < 7, and {sj^o is a chain from
x to y, then

Π M(s2ί_L, I s2ί - s2i_2 \)q - q y - x\ K.

Proof. There exists a positive number K such that if u e [a, b]
and q e NP>1 then || A(u)q || g K. Let δ = 1/2 and let 7 - 1/2K. Let
q e NPtδ, x,ye [α, 6], | y - x \ < 7, {sjf™o a chain from x to y,l<^j ^m -
1, and suppose that || Π ΰ Λf(s2ί-i, I s2ί - s2i_2 \)q - q \\ g | s2i — s0 | ϋΓ.
Then,

ffiU
i = i

VII
VII

2» 11 \ S

f[M(

h 1 * , +

S2j + 2 ~

2i ^2i—2

\ &2i S2i_2 | ) # Q'

2 - s2j 1

- S 0 | . i ί .

- s,_2 |)ί

| |A(s2 i + ]).

and so

1

3

~Γ Ά/Γ( <i
L •"•*• V"2i—U

s 2 ί - s 2 i_ 2 |)g

LEMMA 3.2. If p e S and a ^ 0 [/(£, is continuous in t.

Proof. Let p e S and α, 6 ^ 0. In a manner similar to Lemma
3.1 one proves the following: There is a neighborhood Nq>δ about q =
Ϊ7(&, α)p, 7 > 0, and if > 0 such that if z e Nq>δ, x, y e [a, 6], | y — x \ < 7,
and {sJiΞo is a chain from x to y then
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Π (/ - I s2i - s2i_2 \A{s2i_,))z - z y - x\ K.

Let ε > 0, let x e [α, b] such that | x — b | < 7, let {s;} Ξ0 be a chain
from a to b and k ^ m an integer such that s2A. = # and

U(b, a)p - Π L(s2i_19 I s 2 ί - %_2 \)p < min {ε,

and

Then,

U(x, a)p - Π L(s2i_iy I s 2 i - s2 i_2 \)p\\ < ε .
II

U(x,a)p- U{b,a)p\

\s2i- s 2 i _ 2 lAίs j j i^O) Π L ( s 2 i _ 1 9 \ s2i - s2i_2 \)p

m

- Π L ( s 2 i _ 1 9 I s 2 ί - s 2 i _ 2 \)p

< 2 ε + I 6 - x\-K.
Then, lim^ft U(x, a)p — U(b,a)p for xe[α, 6]. Further, by Lemma 1.4
l i m ^ i7(», α)p = U(b, a)p for a? g [α, 6].

LEMMA 3.3. Lβί p e S απd α ^ 0. There exists a neighborhood
NPtδ about p and 7 > 0 such that the following are true:

( 1 ) // ε > 0 £/̂ ere exists a > 0 swcfc £/m£ ΐ/ g e iSΓp,δ, α fg x ^ α + 7,
sjΐίo is α chain from a to x with norm < a, then

Π , a)q

( 2) // ε > 0 ί/̂ βrβ βα isίs α > 0 ŝ cΛ, ί/̂ αί i / g e JVpfί, max{0, α —7} ^
^ α, and {Si}l™0 is a chain from a to x with norm < ay then

- U(x, a)qΠ
llt=i

Proof. By Lemma 3.1 there exists δ > 0 and 7 > 0 such that if
q 6 jVPfa, α ^ x ^ α + 7, and {Si]fl0 is a chain from a to x then

i ^ , s2 i - s2ί_2)g e NP}2§ .
i — l

Let ε > 0. By Lemma 1.5 there exists ax > 0 such that if

u, v e [α, a + 7], 0 ^ 1; — ̂  < alf u ^ w ^ v ,
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and q e Np>21, then || U(v, u)q — T(w, v — n)q \\ ̂  (v — u)-e/2y. There
e x i s t s a2 > 0 s u c h t h a t if q e NPf2δ, ue[a,a + y]9 a n d 0 g x < a2, t h e n
|| A(u)T(u, x)q - A(u)q || < eβy (Note that

, x)q - q\\ = [*A(v,)T(u, t)qdt
Jo

g x-\\Aiu)q\\ g α

x (max || Λ(ί)« ||, ί e [α, α + 7], z e NPf2δ)) .

Let a = min {αu α:2}, let g e Np,δ, let α ^ x ^ α + 7, and let {sj?^ be
a chain from α to a; with norm < a. Then,

Π
ί

2i^ s2i - s2i_2)q - Z7(a?, a)q

= B
ί 1

i, s2j_2) Π M(si3-_ιt s2ί - s2j_2)q

- Λf(s2 j_1( s 2 i - s2i_2) s 2 ί _M s 2 i - s2j_2)q

< ε/2 + i (S 2 ί_ 1 ? S2i S2ϊ _2)

m

= e/2 + Σ

3=1

" " [A(s 2 ί _ 1 )Γ(s 2 i _ 1 , ί) Π M(s2i_19 s2j - s2i__2;

J_χ J.VJLy€)2j .u &2j *^2j
3 I

< e/2 + Σ (s2i - s2ί_2) ε/27 < ε .
ί -1

A similar argument proves part (2) of the lemma.

Proof of Theorem 3. Let pe S and 0 g a < δ. Suppose that if
a <̂  α < δ Πα Λf(/, d/)p exists and is J7(α?, α)p. Let α ^ α; < δ, let {sJfΞo
be a chain from α to δ, and let j < m such that s2j- = x. One uses
the inequality

U(b,

VII

H

a)p -

h π
α

i- lift -
1 \i=1

m

II

m

α

M(%_i, s2i

ιι % — S 2 { _

f(Z, d/)p||

i

- s 2 ί, 2)p

—1> ^ 2 i S 2 ί _

S 2 j

2 ) ? > |
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and Lemmas 3.1 and 3.2 to show Hb

aM(I,dI)p exists and is U(b,a)p.
Suppose now that for a <; x <̂  b Π« M(I, dl)p = U{x, a)p. Let b < x,
let {Si}i=0 be a chain from a to a;, and let j < m such that s2i = 6.
One uses the inequality

U(x, a)p -

JJίrγ Tr\

+ ϋ(x,

m

ΠK

) U(b, t

δ)Π
i = i

ι)p

M(έ

^2i

1 &2i ί>2ί—2/P\\

^2ί—2/ 1 1
t = l

j

M(t

- s2 i_2)ί)

and Lemma 3.3 to show that there exists 7 > 0 such that i f δ ^ α ; < 6 + 7
then Πα M(I, dl)p exists and is U(x, a)p. Thus, if p e S and 0 ^ α ̂  6
then Y[b

aM(I, dl)p exists and is £7(6, a)p. With a similar argument one
shows that for pe S and 0 <£ α ̂  δ Π ? ^ ( ^ d-Oί* exists and is [7(α, b)p.

4. Examples* In conclusion two examples will be given.

EXAMPLE 1. Let S be the Hubert space and let A be densely
defined and m-monotone on S (Definition 1.2). In M. Crandall and A.
Pazy [2] and in T. Kato [6], it is shown that B is the infinitesimal
generator of a ^-semi-group on S (Definition 1.1). Let X be a function
from [0, co) to S such that X is continuous. Define A{t)p = Bp + X(t)
for pe Domain (B) and t ^ 0. Then A satisfies conditions (I)—(III).

EXAMPLE 2. Let S be a Banach space and let B be a mapping
from S to S such that B is m-monotone S and uniformly continuous
on bounded subsets of S. In [11] it is shown that B is the infinitesimal
generator of a ^-semi-group of mappings on S. Let C be a continuous
mapping from [0, ©o) to [0, oo), let D be a continuous mapping from
[0, oo) to (0, co), and let each of E and F be a continuous mapping
from [0, oo) to S. Define A(t)p = C(t) B(D(t)-p + E(t)) + F(t) for ί ^ 0
and ί)GS. Suppose £ ̂  0, ε > 0, and p, qe S. Then,

\\(I-sA(t))p-(I-εA(t))q\\

= (1/D(t)) || (I - εC(t)D(t)B)(D(t)p + S(<))

- (/ - eC(t)D(t)B)(D(t)q + #(*)) ||

^ (1/Z)(t)) || (D(ί)p + #(*)) - (D(ί)g + E(t)) \\

= UP - q\\

and so A(£) is monotone for t ^ 0. Suppose ί ^ 0, ε > 0, and pe S.
Let q' be in S such that (/ - sC(t)D(t)B)q' = D(t)p + E(t) + εD(t)F(t).
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Let q = (1/D(t))(q' - E(t)). Then (I - εA(t))q = p and so A(t) is m-
monotone. Then A satisfies conditions (I)—(V).
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