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SEMI-SIMPLE RADICAL CLASSES

PATRICK N. STEWART

The purpose of this paper is to characterize all semi-simple
radical classes (those classes of rings which are semi-simple
classes and at the same time radical classes).

Andrunakievic has shown that the class of Boolean rings is a semi-
simple radical class. More recently, Armendariz has considered such
classes.

For "J is an ideal of the ring R" we shall write "J <| R".
Following Divinsky [6], but substituting classes of rings for ring

properties, we define:
( i ) A nonempty class of rings ^ is a radical class if and only

if 9f satisfies the following conditions:
(A) Homomorphic images of rings in ^ are in < \̂
(B) Every ring R has an ideal ίT (i2) e £T such that if I <\ R and

leϊ? then I^^(R).
(C) The only ideal of the factor ring R/^(R) which is in <& is

the zero ideal.
(ii) If ^ is a radical class, a ring R is ^ semi-simple if and

only if <ϊf(R) = (0).
(iii) A nonempty class of rings ^ is a semi-simple class if and

only if & satisfies the following conditions:
(E) Every nonzero ideal of a ring in ^ can be homomorphically

mapped onto a nonzero ring in ^ .
(F) If every nonzero ideal of a ring R can be homomorphically

mapped onto a nonzero ring in cέ? then R e rέ?.

2* Rings without nilpotent elements* Our purpose in this
section is to establish:

THEOREM 2.I.1 A ring R without nilpotent elements is isomorphic
ί to a subdirect sum of rings without proper divisors of zero.

It will be convenient to first prove:

LEMMA 2.2. // R has no nilpotent elements and 0 Φ X e R then
( i ) χr = {y e R: xy = 0} <j R and xr = xt = {y e R: yx = 0},
(ii) x£xu

1 The author wishes to thank the referee for pointing out that this result has
also been obtained by V. Andrunakievic and Ju. M. Rjabuhin, Rings without nilpotent
elements, and completely simple ideals, Dokl. Akad. Nauk. SSR. 180, 9-11 (Translation,
Soviet Mathematics 9 (1968), 565-568).
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(iii) if r eR and rxe xt then r e xu

(iv) the factor ring B/xt has no nilpotent elements.

Proof. Let R be a ring with no nilpotent elements and 0 Φ x e R.
If a e R and ax = 0 then (xa)2 = 0 so xa — 0. Similarity if xa — 0
then ax = 0. This establishes (i). Since x2 Φ 0, (ii) is clear. If α,
b e R and ab2 = 0 then {bob)2 = 0 so bob = 0, but then (ab)2 = 0 so
α& = 0. From this (iii) and (iv) follow immediately.

To prove the theorem it is sufficient to find, for each 0 Φ x e R>
an ideal I(x) of R for which R/I(x) has no proper divisors of zero and
x £ I(x). Let Z(x) = {I <i R:x£l, if rxel then r el, and R/I has no
nilpotent elements}. By 2.2 xL e Z(x) so Z(x) Φ 0 and it is clear that
the union of an ascending chain in Z(x) is also in Z(x). Thus we may
choose, by Zorn's Lemma, I(x) maximal in Z(x).

If a e R and a g I{x) let J = [y e J?: αy e I(x)} S /(a;). Then ///(a?) =
(α + /(a?))r in R/I(x) and by 2.2 (i) (a + /(a?)), = (α + I(x))r < Λ/I(a?)
Since α g /(«), αx g /(x) so x 0 J. lΐrxeJ then arx e I(x) so ar e I(x), hence
r e / . Finally by 2.2 (iv)R/J ~ R/I(x)/J/I(x) has no nilpotent elements,
so JeZ(x). Hence J = I(x) so R/I(x) has no proper divisors of zero.

Note 2.3. The generalized nil radical Ng of Andrunakievic [4]
and Thierrin [10] (see also [6]) is the upper radical with respect to
the class of rings without proper divisors of zero. A ring R is Ng
semi-simple if and only if R is isomorphic to a subdirect sum of rings
without proper divisors of zero. In this context, 2.1 can be restated
as: A ring R is Ng semi-simple if and only if R has no nilpotent
elements.

3. ^-rings* If x £ R, let [x] = the subring of R generated by x*

DEFINITION 3.1. R is a ,^-ring . = . for all xeR, [x] = [xf.

Let R be a ring and xe R. Clearly [x] = [x]2 if and only if x e [xf
if and only if there are integers α2, •••,<&* such that x — ^=2aix

i.
Using this it is clear that homomorphic images of ,^-rings are ^γ-
rings and that if A/B and B are ^-rings then A is a ,^-ring. It
then easily follows that the class of .^-rings (which we shall denote
by ^ i ) is a radical class.

LEMMA 3.2. A nonzero ,^γ-ring without proper divisors of zero
is a field of prime characteristic which is algebraic over its prime
subfield.

Proof. Let R be a nonzero ,^-ring without proper divisors of
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zero. If x is a nonzero element of R there are integers α2, , ak such
that x = Σ<=2«î S hence βa. = Σ i U α ^ " 1 is an identity for [x]. Since
x is not a zero divisor ^ is an identity for R. If w e R, w Φ 0,
ew e [w] = [wf so ew e [w]>w^Rw thus R = Rw. Since R is nonzero,
i? is a division ring.

Let e be the identity of R. Then [2e] = [2e]2 = [4e] so Λte = 0
for some positive integer N. Consequently the characteristic of R is
a prime and since e — ew e [w] for all nonzero w eR, R is algebraic
over its prime subfield. Therefore, by Theorem 2, page 183 of Jacobson
[7] R is a field.

COROLLARY 3.3. If R is a ^[-ring then R is isomorphic to a
subdirect sum of algebraic fields of prime characteristic. So, in
particular, R is commutative.

Proof. If xeR, xN = 0 and R e έ§\, then [x] = [x]2 = = [x]N =
(0) so x = 0. Hence ^i^-rings do not have nilpotent elements so the
corollary follows from 2.1 and 3.2.

THEOREM 3.4. A ring R is a ^^-ring if and only if every
finitely generated subring of R is isomorphic to a finite direct sum
of finite fields.

Proof. Let R e &ι and R! be a finitely generated subring of R»
Then Rf e ̂  and hence is commutative, so by the Hubert Basis
Theorem Rr has maximum condition on ideals. If Pτ Φ Rf and P ' is
a prime ideal of Rf then Pf is a maximal ideal of R' since by 3.2 R'/P'
is a field. Since Rr is finitely generated, commutative, and [g] has an
identity for each generator g of R', R! has an identity. Then by
Theorem 2, page 203 of [11] Rf has minimum condition on ideals. But
then Rf is a commutative Wedderburn ring so Rr is isomorphic to a
finite direct sum of fields each of which must be finite since they are
finitely generated, algebraic and of prime characteristic.

The converse is obvious; in fact, if xeR' and Rr is isomorphic to
a finite direct sum of finite fields then there is an integer n(x) ^ 2
such that xn{x) = x. Thus we have:

COROLLARY 3.5. R is a ^[-ring if and only if for each xeR
there exists an integer n(x) ^ 2 such that xn{x] — x.

A class of rings ^ is said to be hereditary if I<\ Re^ implies
that Ie^. Analogously we say:

DEFINITION 3,6. A class of rings cέΓ is strongly hereditary . =
if S is a subring of R e ̂  then
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PROPOSITION 3.7. // J^~ is a strongly hereditary finite set of
finite fields then a ring R is isomorphic to a subdirect sum of fields
in J^~* if and only if every finitely generated subring of R is iso-
morphic to a finite direct sum of fields in

Proof. Since j ^ ~ is a finite set of finite fields there exists an in-
teger N ^ 2 such that xN = x for all xeFe

Let R have ideals Ia:aeA such that R/Ia ~ Fae^ and
Π {Ia: aeA} = (0). Let R' be a finitely generated subring of R. Then
R' e . ^ since xN = x for all x e R a R', so by 3.4 B! ~ A, 0 . 0 Ak

and the A{ are finite fields. Choose a{ e R! such that [α<] = A{. Then
a,i Φ 0 so a{ % Iβ. for some ftei but Iβ. Π [α<] <] [αj so J^ Π [αj = (0).
Therefore A{ ~ [a{] = [αj + Iβi/Iβί is isomorphic to a subring of Fβ..
Since J ^ is strongly hereditary R' is isomorphic to a finite direct sum
of fields in j ^ ~ .

Conversely, if every finitely generated subring of R is isomorphic
to a finite direct sum of fields in j ^ ~ , R must be a ,^-ring since again
xN = x for all xeR. Thus by 3.3 there are ideals Ia: a e A of R such
that Π {Ia\ ae A) = (0) and R/Ia is a field of prime characteristic;
moreover, R/Ia must be a finite field since xN — x = 0 e Ia for all x e R.
Therefore, for each aeA, there exists xa e R such that [xa] + Jα//α =
R/Ia. But then iϋ//α is a homomorphic image of [xa] so i?/Jα is iso-
morphic to a field in j ^ ~ .

4* Semi'Simple radical classes*

LEMMA 4.1. If ^ is a class of rings such that subdirect sums
of rings in cώp are in rέ? and rέ? satisfies (A) then ^ is strongly
hereditary.

Proof. Let Re'df and S be a subring of R.
Set Ri = R for all i e Z+ — the set of positive integers. Now the

(discrete) direct sum Σ {R{\ i e Z+} is an ideal of the direct product
(complete direct sum) Π {#*: i e Z+}. If s e S let s(i) = s for all i e Z+.
Then S-+Λ(S) = {s:seS} is an embedding of S into U {R^. ie Z+}.
Λ(S) + Σ ί^i: izZ+} is a subdirect sum of copies of iϋ and hence is
in ^ , so

^ i G Z + }

Using a theorem of Amitsur [1] which states that every ring is
a homomorphic image of a subdirect sum of total matrix rings of
finite order over the ring of all integers, Armendariz in [5] proves
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that if a hypernilpotent radical class ^ is a semi-simple class, then
c<^ contains all rings. A hypernilpotent radical class is a hereditary
radical class which contains all nilpotent rings.

THEOREM 4.2. // rώ' is a semi-simple radical class and c^ g£ &t

then rέ? consists of all rings.

Proof. Let r<£' be a semi-simple radical class. If r&'' §£ . ^ then
there is a Re^ and xeR such that [x] Φ [x]2. In [8] Kurosh
shows that for any semi-simple class S^, subdirect sums of rings
in £f are in £f. Thus, by 4.1, [x]eέ and since [xf <j [x],
[x]/[xf e cώr'. Now [&]/[^]2 is a zero ring on a cyclic group and since
cέ? satisfies (F), C°° = the zero ring on the infinite cyclic group is in
^'. This implies (see [3] and [6]) that (ώ' contains all nilpotent rings.
Since & is a semi-simple class (see [2] and [6]) cώ' is hereditary, hence
^ is hypernilpotent. Therefore, by [5], v< is the class of all rings.

THEOREM 4.3. If cώ' is not the class of all rings then the follow-
ing are equivalent:

(1) cέΓ is a semi-simple radical class,
(2) there is a strongly hereditary finite set rέΓ(F) of finite fields

such that: R e r£' if and only if R is isomorphic to a subdirect sum
of fields in (S:\F),

(3) there is a strongly hereditary finite set ό'\F) of finite fields
such that: R e c^ if and only if every finitely generated subring of
R is isomorphic to a finite direct sum of fields in (c

Proof. By 3.7 we have that (2) and (3) are equivalent.
Assume that C6" satisfies condition (3). Clearly £Γ satisfies (A)

and (E).
If B <] A and both A/B and B are in ^ and A! is a finitely

generated subring of A then A + B/B = A'jA' Π B is isomorphic to a
finite direct sum of fields in r<£ (F). A slight modification of the proof
given for Proposition 1 on page 241 of Jacobson [7] shows that A' Γ\ B
is finitely generated as a ring. Thus A ' Π δ is also isomorphic to a
finite direct sum of fields in rό\F) and so A! ~ A'/A' n δ φ i ' Π δ .
Therefore A e ^ 7 . From this it is easy to show that if rώ\R) — the
sum of all ideals of R which are in Ϋf then ('^{R) e ι2f and
<af OK/ίf OR)) = (0). Thus, ^ satisfies (B) and (C).

If every nonzero ideal of a ring R can be homomorphically mapped
onto a nonzero ring in rέ? then by 3.7, every nonzero ideal of R can
be homomorphically mapped onto a ring in r^(F). Sulinski [9] (see
also [6], Theorem 46) shows that this implies that R is isomorphic to
a subdirect sum of rings in W{F) and hence by 3.7 again, Re^. So
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^ satisfies (F) and hence 9f is a semi-simple radical class.
Conversely, suppose %" satisfies condition (1). Let c<f(F) = the

class of all fields which are in & and define A= H {R: ReW(F)}.
Since cέ? is a semi-simple class subdirect sums of rings in <& are in
W\ thus A e <&. By hypothesis, <ĝ  S ^ so by 3.4 all elements of A
must be torsion. From this it follows that there is a finite number
of primes p19 , pN such that every field in C^(F) is of characteristic
Pi for some 1 <̂  i <̂  AT. For each finite field i? e ^(i*7) choose a(R)
such that [α(i2)] = R and for each infinite field Rec^(F) set α(i?) = 0.
Then a — {a(R)}Reύ{R) is in A and by 3.5 aκ = a for some integer
K }> 2. Thus, for all finite fields iϋ in C^{F), the dimension of R over
its prime subfield is <^ K — 1. Hence there is only a finite number of
finite fields in ^(F). Suppose there is an infinite field Rec^{F).
By 3.2 R is of prime characteristic and is algebraic over its prime sub-
field so R has an infinite number of non-isomorphic finite subfields. All
these subfields are in r^(F) since ^ is strongly hereditary by 4.1.
This is impossible since there is only a finite number of finite fields in
cέr\F). Therefore C^(F) is a strongly hereditary finite set of finite
fields. If Re rtf then Re &γ so by 3.3 R is isomorphic to a subdirect
sum of fields all of which are in C^{F) since ^ satisfies (A). Con-
versely, any ring isomorphic to a subdirect sum of rings in cέ?(F) is
in cέ? since ^ is semi-simple class. Thus ^ satisfies (2).

REFERENCES

1. S. A. Amitsur, The identities of P. l.-rings, Proc. Amer. Math. Soc. 4 (1953), 27-34.
2. T. A. Anderson, N. Divinsky, and A. Sulinski, Hereditary radicals in associative
and alternative rings, Canad. J. Math. 17 (1965), 594-603.
3. , Lower radical properties for associative and alternative rings, J. London
Math. Soc. 4 1 (1966), 417-24.
4. V. Andrunakievic, Radicals in associative rings II, Mat. Sb. 55 (1961), 329-46.
5. E. P. Armendariz, Closure properties in radical theory, Pacific J. Math. 26 (1968),
1-8.
6. N. J. Divinsky, Rings and radicals, Univ. of Toronto Press, Toronto, 1965.
7. N. Jacobson, Structure of rings, Amer. Math. Soc. Coll. Publ. 37 (1964).
8. A. G. Kurosh, Radicals of rings and algebras, Mat. Sb. 33 (1953), 13-26.
9. A. Sulinski, Certain questions in the general theory of radicals, Mat. Sb. 44 (1958),
273-86.
10. G. Thierrin, Sur les ideaux complement premiers d'un annaux quelconque, Bull.
Acad. Roy. Belg. 4 3 (1957), 124-32.
11. 0. Zariski and P. Samuel, Commutative algebra, Vol. I, Van Nostrand ,Princeton
N. J., 1958.

Received November 6, 1968. The author holds a National Research Council of
Canada Postgraduate Scholarship.

UNIVERSITY OF BRITISH COLUMBIA




