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TOTALLY POSITIVE DIFFERENTIAL SYSTEMS

BlNYAMIN SCHWARZ

Totally positive (TP), and strictly totally positive (STP)
differential systems are defined. These real, first order, linear
systems are characterized by the form of their coefficient
matrices, and by the decrease of the number of sign changes
of their solution vectors as functions of the independent
variable. A bound is given for the combined number of zeros
of the first and last components of any particular solution
vector of STP system and a similar result is obtained for TP
systems. Examples show that no such bounds exist for the
number of zeros of any other component.

In this paper we consider real differential systems of the form

(1.1) y'(t) = A(t)y(t) .

Here the solutions y(t) are real column vectors y(t) = (yγ(t), •••, yn{t))
and A(t) is a given n x n matrix (α»i(£))Γ whose elements ai:i(t) are
real functions which are continuous in the open interval (α, b), — oo <ς
a < b ^ oo. Together with the vector differential equation (1.1) we
consider also the corresponding matrix differential equation

(1.2) Y'(t) = A(t)Y(t),

where Y(t) = (y >&))?. Let Y(t) be any solution of (1.2); for each

integer p, 1 ^ p ^ n, we denote the p th compound of Y(t) by Cp(Y(t)).

) x ( j matrix B{p)(t),

such that

(1.3) [CP(Y(t))]' = B™(t)Cp(Y(t)) .

(B{1)(t) = A(t).) The elements of B{p)(t) are easily expressed by the
given n2 elements aiό{t) of A(t) (Theorem 1). Special cases of these
compound systems were previously considered: Mikusiήski [6] con-
sidered the differential system satisfied by the 2 x 2 Wronskians of
the solutions of the equation u{n)(t) + p(t)u(t) = 0 and Nehari [7]
considered all compound systems (1.3) in the case where (1.1) is
equivalent to an nth order linear differential equation. We remark
that for p — n — 1 (1.3) is closely related to the system adjoint to
(1.2); and for p = n (1.3) reduces to Liouville's equation

(1.4)

where Δ(t) = Cn(Y(t)) is the determinant of Y(t). We state an im-
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mediate consequence of Theorem 1, showing a characteristic difference
between the elements ai3(t) with | i — j | — 1 and the other off-diagonal
elements of A(t), as a corollary.

A real n x n matrix is totally positive (TP) is all its minors are
nonnegative, and the matrix is strictly totally positive (STP) if all its
minors are positive. For each r, a < r < 6, we denote the fundamental
solution Y(t) of (1.2) satisfying

(1.5) Y(r) = I,

(J = (δ{j)ΐ), by Y(t) = Y(t, r). We call the system (1.2), and the
corresponding system (1.1), totally positive (TP) in (α, b) if for each
pair (r, t), a < r <̂  t < 6, F(ί, r) is TP. J/ /or eαcA pair (r, t), a <
r < t <b, Y(ty r) is STP £Λ,ew £/*,e systems (1.2) cmc£ (1.1) are called
strictly totally positive (STP) in (a, 6). In § 3 we characterize these
systems by the form of the matrix A{t) — (α^ (£))Γ. The system (1.2)
is TP in (α, b) if and only if A(t) is a (variable) Jacobi matrix (i.e.,
aiό(t) = 0 for I i — j | ^ 2) with nonnegative off-diagonal elements (i.e.,
aiίi+ι{t) ^ 0, ai+1,i(i) ^ 0, i = 1, , w - 1). This result (Theorem 2)
was first proved by Loewner [5]. Our proof (based on Corollary 1)
is quite elementary and leads also to the following modification of
Loewner?s result: The system (1.2) is STP in (α, b) if and only if
A(t) satisfies the above conditions and none of the functions ai>i+1(t)
and αi+lfi(ί) vanishes identically in any interval contained in (α, b)
(Theorem 3).

In § 4 we consider vector solutions y(t) of a STP system. The
system (1.1) is shown to be STP in (α, b) if and only if S+(y(s)) £ S~(y(r))
holds for all nontrivial solutions y(t) and all pairs (r, s), a < r < s < b,
(Theorem 4). This result on the number of sign changes, following
from the variation-diminishing properties of STP matrices, leads now
to results on the number of zeros of the components y^t) and yn(t) of
any given vector solution y(t) of (1.1). The combined number of zeros
of these two extreme components cannot exceed n — 1 (Theorem 5).
No such restriction exists for the interior components y2{t), , yn-ι{t).
We illustrate this dissimilarity between the extreme and the interior
components by examples in the last section (§6). In § 5 we consider
vector solutions of TP systems and the results are now weakened
versions of the corresponding results for STP systems. We rely
strongly on the recent book by Karlin [4], but we give all necessary
definitions in order to keep this paper reasonably selfcontained.

2* The compound differential systems* For given integers n
and p, 1 ^ p ^ n, we consider the ^-tuples of increasing integers
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Jl <J2< * * * <jp

and we arrange these N — (nj p-tuples in lexicographic order. We

denote these p-tuples of indices also by

& = (in i» , ip) , β = Ui, - , jP) .

For a n x n matrix Y = {yi3)ΐ, we denote the minor, determined by
these rows and columns, by

» ^2τ * * i Jp

The £>th compound CP(Y) of Y is the N x N matrix having these
minors (in lexicographic order) as elements. The elements of the
N x N matrix B{p) are denoted by bαβ = b(i19 , jp). In
the following the matrices A and 5 ( p ) will be continuous functions of
t, Y and CP(Y) will therefore be continuously diίferentiable functions
of ί. Using this notation we obtain the following relation between
the given system (1.2) and its compound systems (1.3).

THEOREM 1. Let Y(t) = (3/<5 (ί))Γ, α <t <b, - o o ^ α

solution of the differential system

(1.2) F'(*)

where A(t) — (aio{t))l and the n2 real functions α i ? (ί) are continuous
in (a, 6). T%e p ίΛ compound Cp(Y(t)) of Y(t), 1 ̂  p ^ n, satisfies in
(a, 6) ίΛe equation

(1.3)

, N = is given by

(2.1)
baβ(t)

b

' 0 if at most p — 2 of the indices
i of a coincide with indices j
of β;
( — lYJrmaiyJm if exactly p — 1 of
the indices of a coincide with
indices of β, but %/ Φ j m , 1 ^

Σ v = .

Proof. We choose two p-tuples of increasing indices α = (i19 , ip),
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with

kx < k2 < < kp

and consider the minor Y(J}9 \ *."/]?)• Differentiating this minor by

rows and using (1.2) we obtain

yilkί -

Σ <v •••Σ-
We rewrite this as

(2.2)

2, * * * , rCp

^2) ^Zi ' '

The row indices on the r.h.s are, in general, not in increasing order
and the pn determinants appearing there are hence, in general, not
minors of Y. But each of these determinants either vanishes or is
equal to a minor of Y or is equal to ( — 1) times a minor. We thus
can write (2.2) in the form

(2.3)
rl .*"-•

Σ b(ilt ,ip

To obtain (2.1) we compare (2.2) and (2.3). We first note that on the
r.h.s. of (2.2) appear only ^-tuples of row indices for which at least
p — 1 of the indices belong to the p-tuple a = (i19 •••, ip). This
gives the first part of (2.1). Secondly, if v does not belong to α,
then the p-tuples

(v, i* , iP), (in v,i*, , ip)i , (i» ι %-n ̂ ) ι

appearing as row indices on the r.h.s. of (2.2), have to be rearranged
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by putting the index v = j m in its proper place in order to obtain an

increasing p-tuple which in (2.3) is denoted by β = (j\, •• ,i 2 )). For

the p-tuples corresponding to the first sum on the r.h.s. of (2.2) this

may be achieved by m + 1 transpositions, for those of the second sum

by m + 2 transpositions and, in general, for those of the ^ t h sum by

m + / transpositions. This implies the second part of (2.1). Finally,

if we choose v = %x in the first sum on the r.h.s. of (2.2), v = i2 in

the second sum and so on, we obtain the last part of (2.1) and we

have thus proved Theorem 1.

We illustrate this result by expressing the elements baβ of B{p)

in terms of the elements aί3- in the simplest cases: n = 3, p = 2, n — 4,

p = 2 and n = 4, p = 3.
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We remark that each diagonal element α« appears as a summand

in ( n ~~ 1 ) diagonal elements of B{p\ Each ai3 , i Φ j , appears, possiblyin ( 1 ) diagonal elements of B\ Each ai3, i Φ j , appears, possibly

with the sign - 1 , ί _ J j times as an off-diagonal element of B{p).

In each row and each column of B{p) p(n — p) off-diagonal elements

are of the form ±ai3 (i Φ j) and, for 2 ̂  p ^ n — 2, the remaining

off-diagonal elements are zeros. (2.1) implies also the following symme-

try of the dependence of B{p) on A: if, for a Φ β, baβ = aij9 baβ = — aiά

or baβ = 0 then bβa = α^, δ^α = — α^ or 6^ = 0 respectively.
For p = n, (2.1) gives Bw(t) = 6(1, . , ̂  11, . . , n) = Σ ίU ««(*)»

and the differential system of the nth compound Δ{t) = Cw(F(ί)) is
Liouville's equation

(1.4) Δ(t)' = [Σ aM)Δ(t) .

We now consider the case p = n — 1. Let Y(t) be a fundamental
solution of (1.2), then

i — 1, i + 1

Here the superscript T denotes the transposition operation, and if
M — (mi3)l we define M = (m^ )? by

With this notation [ C ^ Γ ^ ) ) ] ' = B(—"(QC^ίΓίί)) gives

(2.5) [Cn^(Y(t))Y = B^WC^iYit)) .

(Y(t)-1)τ is a solution of the system adjoint to (1.2):

(2.6) (Y(t)-y = -A(ί)Γ(Γ(t)- 1)Γ .

Differentiating (2.4) and using also (1.4), (2.5) and (2.6) we obtain

(2.7) - A{t)τ - B^\t) - (± ad

(2.7) gives the connection between the adjoint equation and the equation
for the (n — 1) st compound.

In the next section we use the following consequence of Theorem 1.

COROLLARY 1. Let A(t) = (a^t))? and B[p)(t) = φaβ(t))? be the
coefficient matrices of the system (1.2) and its compound systems,
1 ^ p ^ n. Then,

( i ) None of the matrices B{p)(t) contains elements of the form
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-o>i,i+i(t), -ai+lti(t), i = 1, , n - 1.

(ii) For each pair (i, j), \ i — j \ ̂  2, i, j — 1, , n, — ai3(t) is
an off-diagonal element of B{2)(t).

Proof. ( i ) Formula (2.1) implies that ±aktk+ι(t) and ±α fc+ι, fc(f),
k = 1, , n — 1, can appear as elements of B{p)(t) only if they are
an element b(i19 •••, ίp\j19 •• ,i2 )), where #> — 1 of the indices of the
two p-tuples a = (iιy •••,%) and β = (j\, , jp) coincide, but v ^ im»
and where the set {v, jm} is the set {&, k + 1}. If a given (p — 1)-
tuple of increasing indices, which contains neither k nor k + 1, is
completed to a p-tuple of increasing indices by inserting k or k + 1,
then it is necessary to insert either one of them at the same place,
i.e., between the same two elements of the (p — l)-tuple. Hence / = m.
and (2.1) implies (i).

(ii) Iΐl<,i<i + 2^j^n then (2.1) gives 6(i, i + 11 i + 1, j) =
- α ^ ; and if l ^ j < j + 2 ^ i ^ ^ then 6(i + 1, i \ j , j + 1) = — a4 i.

3* Positive, strictly positive, totally positive and strictly totally
positive systems* Totally positive (TP) and strictly totally positive
(STP) systems were defined in the introduction. To define positive
and strictly positive systems we agree to call a real n x n matrix
positive if all its elements are nonnegative; and the matrix is strictly
positive if all its elements are positive. The differential system

(1.2) Γ'(ί) = A(t)Y(t) ,

is called positive in (α, 6), if for each pair (r, t), a < r ^ t < 6, Y(t, r)
is positive. (Here Y(t) — Y(t, r) is the fundamental solution of (1.2)
satisfying (1.5).) (1.2) is strictly positive in (α, b) if for each pair
(r, t), a < r < t < &, Y(t, r) is strictly positive. We start with a
criterion for the positivity of the system.

LEMMA 1. Let the n2 real functions ai:j(t), i, j = 1, •• ,n, be

continuous in (α, 6), - o o <ς a < b ^ CXD, ami seί A(£) = (a i y(i))r. T%e

differential system (1.2) is positive in (a, 6) i/ ami only if all off-
diagonal elements ai3(t), i Φ j, i, j = 1, , n, are nonnegative in (a, b).

This lemma is known [1, p. 173, exercise 2]. For completeness,
and also in view of the proof of the next lemma, we prove Lemma 1.

Proof. To show the necessity of the condition, suppose to the
contrary that there exist indices ί* and j*, i* Φ j*, and a point r in
(α, b) such that a^^r) < 0. Let Y(t, r) = (yi3 (t))ΐ be the solution of
(1.2) satisfying (1.5). Then yl*,>(r) = 0 and y^r) = a^r) < 0. Hence,
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Vi*j*(t) < 0 for all t in some interval (r, r + ε), ε > 0, and the system
(1.2) is not positive.

We first prove sufficiency in the special case where all diagonal
elements ai{(t) of A(t) vanish identically in (α, b). Each element of
A(t) is thus nonnegative, and the Peano-Baker expansion

(3.1) Y(t, r) = I+ [A(τ)dτ

shows that the same holds for each element of Y(t, r), α < r S t < 6.
To prove sufficiency in the general case (of arbitrary diagonal

elements α (̂£) of A(t)) we choose a point r, re (α, &), and define

ct

(3.2) ^ ( ί , r ) = e x p \ a { i { τ ) d τ , a < t < b , i = l, - - - , n .

Using these n positive functions we now build the diagonal matrix

(3.3) Pr{t) = diag (ptf, r), , pn(t, r)) , a < t < b .

If F(ί) is an arbitrary solution of (1.2) we define Ϋr(t) by

(3.4) Y(t) = Pr(t)Ϋr(t) , a < t < b .

(1.2) and (3.2) to (3.4) imply that each Ϋr(t) satisfies the equation

(3.5) ?;(«) = Άr(t)Ϋr(t) , a < t < b ,

where Ar(ί) = (ai5{t, r))f is defined by

(o.b) ttijXc, r) = α^-(̂ ) J — - , i =£ j , i, J = 1, , n , a < t < o ,

and

(3.7) α«(ί, r) = 0, ί = 1, , n , α < t < b .

The matrix Άr(t) has thus, together with the given matrix A(t),
nonnegative off-diagonal elements but its diagonal elements vanish
identically. By the special case considered above, it follows that the
system (3.5) is positive in (α, b). Let now Ϋr(t, r) be the fundamental
solution Ϋr(t) of (3.5) which satisfies Ϋr(r) = I. Then Ϋr(t, r) is
positive for all t in [r, b). As Pr = J, it follows from (3.4) that

(3.8) Y(t,r) = Pr(t)Ϋr(t, r) ,

where Y(t, r) is the solution of (1.2) satisfying (1.5). (3.8) implies
that this matrix Y(t, r) is positive for all t in [r, 6). Since r was
arbitrary in (a, 6), this completes the proof of Lemma 1.

For the next lemma it is convenient to use the following termi-
nology. We denote the set of the n2 elements aiS{t) of A(t) by S.
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With each subset F of S we associate a matrix C = (co )Γ in the
following way: cu = 1 if α^ί) e i*7, c iy = 0 if α^ (£) $ F. Then we call F
irreducible or reducible if the associated matrix C is, respectively,
irreducible or reducible. If we associate with F a directed graph Γ of
n vertices P19 , Pn, having a (directed) arc from P{ to Pd if and only
if a{j e F, then F is irreducible if and only if Γ is strongly connected.
(A matrix C — (c^ )Γ is reducible if the index set {1, , n} can be split
into two nonvoid sets {ilf , %/) and {j\, , jm], s+ m = n such that
cik3 = 0 for λ = 1, , /, μ — 1, , m. If no such partition of the
index set exists, then C is irreducible. A directed graph Γ is strongly
connected if and only if for every ordered pair (P^ Pd) of its vertices
there exists a (directed) path leading from P{ to Po. The matrix C
is irreducible if and only if the corresponding graph Γ is strongly
connected. [9, pp. 18-20].)

LEMMA 2. Let the n2 real functions α^ (ί), i, j = 1, •••,%, be
continuous in (a, 6), — co ^ a < b ̂  oo, αwd seί ^.(ί) = (aiό(t))% Let
S be the set of the n2 functions aio(t). For each r, r e (α, 6), the
subset F(r) of S is defined in the following way: a^it) eF(r) if and
only if ai5(t) does not vanish identically in any interval [r, r + ε],
0 < ε < b — r. The differential system (1.2) is strictly positive in
(α, b) if and only if the following two conditions hold:

( a ) Each off-diagonal element ai5(t), i Φ j , i, j = 1, , n, is
nonnegative in (α, b).

( b ) For each r, a < r < 6, £Ae set F(r) is irreducible.

Proof The necessity of condition (a) follows from Lemma 1.
We prove the necessity of (b) by negation and thus assume that there
exists r,re{a,b), such that F(r) is reducible. As the graph Γ(r) is
thus not strongly connected it follows that there exists ε, 0 < ε < 6 — r
and two indices i*,i*, i* Φ j * , such that for every given ordered set
(i0, ii, , v ) of indices (with repetition), for which ίQ = ί*, i/ = j * 9

at least one function α i v ί v + 1(ί), v — 0, , / — 1, vanishes identically in
[r, r + ε]. For / = 1 this implies

(3.9), j ^ V i Wdr = 0 .

For / = 2 we obtain

(3.9)2 Γ+Σ a^iτ^a^iτjdτ.dτ = 0 ,
J

and similar equalities hold for / ^ 3. Using these equalities it follows
from (3.1) that the off-diagonal element y{^,(r + ε, r) of the matrix
Y(r + ε, r) vanishes and F(r + ε, r) is thus not strictly positive.
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We prove sufficiency of conditions (a) and (b) again first in the
special case where all diagonal elements au(t) of A(t) vanish identically
in (α, 6). By (b), the set F(r) is, for each r e (α, 6), irreducible and
in this special case F(r) does not contain diagonal elements au(t). This
and (a) imply that for any given r, r e (α, 6), and any ordered pair
(i*,j*) of (not necessarily distinct) indices there exists an ordered set
(%j in ' •> V) of indices, iQ = ί*, %/ — j* and iv Φ iv+γ for v = 0, ,
/ — 1, such that

for all t in (r, b) and all v, v = 0, , / — 1. But this implies that
for all such t

\ aiHι{τ)\ di^fa) I

and it follows that the element in the place (ί*,j*) of the (s + 1) th
summand of the r.h.s. of (3.1) is, for ί e ( r , 6), positive. As r and
the pair of indices were arbitrary it follows that the system (1.2) is,
in this special case, strictly positive in (α, b).

The sufficiency of conditions (a) and (b) in the general case (of
arbitrary diagonal elements au(t) of A(t)) follows again by reduction
to the special case (formulas (3.2) to (3.8)). We now use also the
fact that if the set F(r) is irreducible, so is the set F(r) which is
obtained from F(r) by deletion of its diagonal elements and by multi-
plication of its off-diagonal elements with positive functions. This
completes the proof of Lemma 2.

These criteria for positivity and strict positivity and the corollary
of § 2 lead to the main results of this section.

T H E O R E M 2 . L e t the n 2 real functions ai3 (t), i, j = 1, •••, w, be
continuous in (α, 6), — oo <; a < b <̂  oo, and set A(t) = (αίJ (Q)Γ The
differential system

(1.2) Y'(t) = A(t)Y(t) ,

is TP in (α, b) if and only if the following two conditions hold:

(a) aiS(t) = 0, \i - j \ ^ 2 , i,j = 1, . . . , r c , a < t < b.
( b ) α ί f ί + 1 (ί) ^ 0 , α ί + l f i ( ί ) ^ 0 , i = 1, *>,n- 1, α < ί < 6.

Proof. As total positivity of the system (1.2) implies its positivity,
it follows from Lemma 1 t h a t all off-diagonal elements aiό{t), i Φ j , of
A(t) have to be nonnegative in (α, 6). If an element α^ (ί), \i — j \ ^ 2f
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were to be positive for some t part (ii) of Corollary 1 would imply that
the matrix B{2)(t) of the second compound system has an off-diagonal
element which is somewhere negative, and Lemma 1, applied to this
second compound system, then shows that (1.2) is not TP. Conditions
(a) and (b) are thus necessary. Their sufficiency follows from part (i)
of Corollary 1 and the sufficiency part of Lemma 1, applied to all
compound systems (1.3). (We remark that we also use that the p th
compound of the unit matrix / = (δid)? is again / = (δaβ)?. Hence if
Y(t) = Y(t, r) is the solution of (1.2) which satisfies (1.5), then its
compound also satisfies Cp(Y(r)) = 7.)

THEOREM 3. Let the n2 real functions aiά(t),i,j = 1, •••,%, be
continuous in (α, b), — oo ^ a < b ^ oo, and set A(t) = (aiV(£))?. The
differential system

(1.2) Y'(t) = A(t)Y(t) ,

is STP in (α, b) if and only if the following three conditions hold:
( a) aiά{t) = 0, I i — j | ^ 2, ί, j = 1, , n, a < t <b .
( b ) αM + 1(ί) ^ 0, α i + l f i(ί) ^ 0, i = 1, . . , n - 1, a < t < b.
( c) None of the 2n ~- 2 functions mentioned in (b) vanishes

identically in any interval [r, s], a < r < s < b.

Proof The necessity of conditions (a) and (b) follows from
Theorem 2. To prove that condition (c) is necessary, we consider the
(0, 1) matrix C* = (c^Γ where c£ = 0 if \i - j\φl, and cf5 = 1 if
I i — j I = 1. Then the following statement holds, (i) C* is irreducible,
and (ii) if any element equal to 1 of C* is replaced by 0 then the
new matrix is reducible. This is easily seen by considering the
corresponding directed graph .Γ*. Assume now that condition (c) is
not satisfied and that one of the 2w — 2 functions ai)i+1(t) and ai+ί)i(t)
vanishes identically in a certain interval [r, s]. Part (ii) of the italicized
statement implies that the set F(r), defined in Lemma 2, is reducible
and Lemma 2 implies that the system (1.2) is not strictly positive in
(α, b). This contradicts the assumption of the present theorem and
condition (c) is thus necessary.

To prove the sufficiency of conditions (a) to (c), we consider also
the (0, 1) matrices C*(p), 1 <; p ^ n, which are built from the elements
<• of C* = C*(1) by the rule (2.1). Namely,

) and c*β = c*(iu . . , ip \ j \ , . , jp) = 0

except if exactly p — 1 of the indices of a coincide with p — 1 indices
of β and the two remaining indices satisfy | v ~ j / \ = 1; in this
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case ciβ = 1. For each p,l <L p ^ n, C* ( 2 > ) is irreducible. (For
p = 1 this is part (i) of the former italicized statement.) This is
again easily seen by considering the corresponding graph Γ*ίp). (Γ*lp}

has N vertices Pa = P(i19 , ip), Pβ = P(j\, , j p ) , etc. There are
arcs (in both directions) between Pa and Pβ if p — 1 of the indices of
a and /3 coincide and \i/— j / \ = 1. Clearly there exists a path of
length Σ?=i (ίv — y) leading from P α to the first vertex Pa* (a* = 1 =
(1, •••,#>)) and similarly there exists a path leading from Pa* to Pβ.
p*ίp) j s thus strongly connected). Using part (i) of Corollary 1 and
the irreducibility of C* ίp), 1 ^ p ^ n, it follows that the present con-
ditions (a) to (c) imply the validity of conditions (a) and (b) of Lemma
2 for each compound system (1.3). Each of these systems is therefore
strictly positive in (α, b) and (1.2) is thus STP. This completes the
proof of Theorem 3.

4* Vector solutions of strictly totally positive systems* Our
next result refers to the number of sign changes of a given nontrivial
vector solution y(t) of a STP system (1.1). We use the standard
notation [2, 4]. If x = (xί9 •••,#*) is a real vector, x Φ 0, then S~(x)
denotes the number of sign changes in the sequence obtained from
%L> X2> " i%n by deleting all zero terms; S+(x) denotes the maximum
number of sign changes possible by allowing each zero to be replaced
± 1 (or equivalently, S+(x) = \imy^x S~(y)).

THEOREM 4. ( i ) Let the differential system

(1.1) y'(t) = A(t)y(t) ,

be STP in (α, 6), — ̂  ^ a < b ^ cc and let y(t) be a nontrivial solution.
Then

(4.1) S+(y(s)) ^ S"(y(r)) for all (r, s) satisfying a <r < s <b .

(ii) Conversely, if (4.1) is valid for every nontrivial solution
y(t) of the system (1.1), then this system is STP in (α, b).

Proof ( i ) Let Y(t) = Y(t, r) be the fundamental solution of

(1.2) Y\t) = A(t)Y(t) ,

satisfying

(1.5) Γ(r) = 7 .

For all s and r in (α, δ)

(4.2) y(8) = Y(s, r)y(r) .
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By assumption the matrix F(s, r) is, for r < s, STP. (4.1) follows from
the variation-diminishing property of such matrices [4, p. 219, Th.
1.2, (a)].

(ii) Let the index k, 1 ^ k <Ξ n, and the point r, r e (α, 6), be
given and consider nontrivial solutions y(t) of (1.1) which satisfy

(4.3) yk(r) = 0 .

(4.2) and (4.3) give

(4.4) 2/(s) = Yk(8, r)c .

Here c is the (n - 1) vector (^(r), , yk^(r)9 yk+ι(r), , yn(r)) and
F*(s, r) is the n x (n — 1) matrix obtained from Y(s, r) by deletion
of the fcth column. By assumption (4.1), we have for r < s,

S+(!/(«)) ^ S-(τ/(r)) = S-(c) .

As this holds for every nonnull vector c, it follows that Yk(s, r) is,
for r < 8, strictly sign-regular of order n — 1 [4, p. 219, Th. 1.2, (b)];
i.e., all minors of Yk(s, r) are nonzero and, for each p, 1 ^ p <? n — 1,
all minors of order p have the same sign, possibly dependent on p.
But as Y(r9 r) = J, it follows that yA(r, r) has for each #>, 1 <: ^ ^
^ — 1, a minor equal to 1. It follows, by continuity, that all minors
of Yk{s9 r), r < s, are positive. As A: was an arbitrary index, this
implies that all minors, up to the order n — 1, of Y(s, r) are positive
for r < s. But the determinant of Y(s, r) is always positive and we
have thus proved that the system (1.1) is STP.

We remark that by the last two theorems property (4.1), for all
nontrivial solutions y(t), is equivalent to the properties (a) to (c) of
A(t) stated in Theorem 3. A direct proof of this equivalence, without
use of the variation-diminishing properties of the STP matrix Y(s, r),
seems to be rather tedious.

The next theorem, and the examples in the final section, will give
some information about the number of points at which each component
of a fixed solution of an STP system (1.1) may vanish. It might be
of interest to consider here briefly the case of such systems with
constant coefficients A(t) = A. A is thus a Jacobi matrix with positive
off-diagonal elements. But the class of Jacobi matrices B with negative
off-diagonal elements wτas studied in detail by Gantmacher and Krein
[2, Ch. 2, §1.]. For A(=-B) it follows that A has n distinct real
characteristic values Xjy \ < λ2 < < λΛ, (and that for the charac-
teristic vector uU) = (uij9 •• ,% n i ), corresponding to X3 , S

+(uU)) =
S~(uU)) = n — j, j = 1, , n). Every solution y(t) of the corresponding
system (1.1) is therefore of the form
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n

Vi(t) = Σ c^eW , ί = 1, , n ,

and it follows that in this case each component y^t) of a nontrivial
solution y(t) vanishes at most n — 1 times. (Note that for any system
(1.1) there always exist nontrivial solutions y(t) satisfying (n — 1)
homogeneous conditions.) As already mentioned in the introduction a
more precise statement holds for the total number of zeros of yλ(t)
and yn(t) for any STP system (Theorem 5, (ii)); and the examples will
show that, for any n, n Ξ> 3, there exist STP systems with variable
A(t) having a solution y(t) for which each interior component ^(ί),
i — 2, , n — 1, vanishes infinitely many times in (— oo, oo).

To facilitate the proof of Theorem 5 we now state some evident
properties of the functions S+ and S~ as a lemma.

L E M M A 3. Let x — (x19 •••, xn), be a real nonnull vector. Then

(4.5) 0 ^ S~(x) ^ S+(x) ^ n - 1 .

// m components of x vanish, 1 rg m ^ n — 1, ί/̂ en

(4.6) S + W ^ m, S-(α?) ^ n - m - 1 .

If χi — 0> o r if %% = 0, ^ β n

(4.7) S+(x) - S"(x) ^ 1 .

If χι — 0 and #w = 0, then

(4.8) S+(a;) - S"(ίc) ^ 2 .

Part ( i ) of Theorem 4, and Lemma 3, now imply the following
theorem.

THEOREM 5. Let the differential system

(1.1) y'(t) = A(ί)2/(ί)

be STP in (α, 6), - oo ^ α < 6 ^ oo, and Zβί y(t) - (^(ί), , 2/Λ(Q) be

a nontrivial solution.
( i ) // S~~(y(r)) = 0, r e (a, &), ί/̂ en no component of y(t) vanishes

in (r, b). If S+(y(s)) = n — 1, s e (a, b), then no component of y(t)
vanishes in (a, s).

(ii) Let k and / be nonnegative integers and assume that

= 0, i = 1, , k, a < a, < < ak < b ,
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Then k + / ^ n — 1. Moreover, if k + /= n — 1, then no component
of y{t) vanishes in (a, min (alf βt)) U (max (ak, β/), b).

(iii) Assume that m components ofy(r), r e (a, b), vanish, and that

= 0, ΐ = 1, , k, r < ^ < < ak < δ ,

yn(βj) = 0, j = 1, , /, r < ft < < β, < b .

Then k + s^n — m — 1. Moreover, ifk + s=n — m — 1, then no
component of y(t) vanishes in (max (<xk, β/), b). A similar statement
holds for the number of zeros of yL(t) and yn(t) in (a, r) .

Proof. ( i ) S~(y(r)) = 0 and (4.1) imply S+(y(t)) = 0, r < t < b,
and the first inequality of (4.6) implies that no component of y(t)
vanishes. S+(y(s)) = n — 1 and (4.1) imply S~(y(t)) = n — 1, a < t < s,
and the other inequality of (4.6) gives the desired conclusion.

(ii) Denote the union of the sets {αjf and {βj}{ by

{t»}ΐ, ίi < < tp, (max (k, /) ^ p ^ k + /) .

Then

k + ^ Σ [<S+0/(£,)) - S-(y(ίv))l

(4-9) _ v r.Q+ίW/ \\ __ .Q-<W/ M̂ _L .Q+/WM\ _ S~(y(t))

O ) - S-(y(tp)) £ n - l .

Here the first inequality sign follows from (4.7) and (4.8), the second
inequality sign follows from (4.1) and the last one from (4.5). This
proves the main assertion of (ii). If k + / = n — 1, then (4.9) implies
S~(y(tp) = 0 and S+(y(t1)) = n — 1 and the remaining assertion of (ii)
now follows from (i).

(iii) Let t19 •• ,£2, have the same meaning as above. (4.9), the
assumption r < tγ and (4.1), and (4.6) give

k + / £ Siyfr)) - S-(y(tp))
g S~(y{r)) - S-(y(tp)) ^ n - m - 1 .

If k + /= n — m — 1, then (4.10) and S"(y(r) <̂  n — m — 1 imply
S~(y(tp)) — 0 and no component of y(t) vanishes in (tp, b). For zeros
to the left of r, a < tλ < < tp < r, we obtain

^ n - m - 1 .

If k + s = n — m — 1 this gives S+(y(t1)) = n — 1 and no component
vanishes in (α, ί̂ . This completes the proof of Theorem 5.
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We remark that the constants n — 1 of part (ii) and n — m — 1
of part (iii) of this theorem, are the best possible as there always*
exist nontrivial solutions of (1.1) satisfying n — 1 conditions yi)f(tu) =
0, 1 ^ iv ^ n, a < tu < b, v — 1, , n — 1. We conclude this section
with another direct consequence of (4.1). Let r and s be given points,
a < r < s < 6, and assume that y(t) is a nontrivial solution of (1.1)
such that k components of y(r) and / components of y(s) vanish. Then
k + / ^ n — 1. Moreover, if k + / — n — 1, then there exίsts-except
for a multiplicative constant-precisely one nontrivial solution y(t) of
(1.1) satisfying the given set of conditions yiv(r) ~ 0, y5 (s) = 0, v =

1, , k, μ — 1, , /. To prove the first part, we remark that, by (4.6),
S"(y(r)) <̂  n — k — 1 and S+(y(s)) ^ /. (4.1) gives therefore & + / ^
w — 1. Assume now k + ^ = n — 1 and let τ/(£) and w(ί) be twα
solutions satisfying the given set of (n — 1) conditions. We can then
form a linear combination v(t) = cLy(t) + c2u(Q such that k + 1 com-
ponents of i (r) and the former I — n — k — \ components of v(s)
vanish. v(t) violates the first part of the above statement unless it
reduces to the trivial solution. Hence u(t) = cy(t) (cf. [7, p. 507]).
This statement can also be obtained directly from the strict total posi-
tivity of the matrix Y(s, r).

5* Vector solutions of totally positive systems* According to
Theorem 4, the inequality (4.1) is characteristic for STP systems. It
follows from (4.1) that S~(y(t)) and S+(y(t)) are decreasing functions
of t. These consequences of (4.1) characterize the larger class of TP
systems.

THEOREM 6. ( i ) Let the differential system

(1.1) y'(t) = A(t)y(t) ,

be TP m (α, 6), — ̂ o ^ α < 6 ^ co, and let y(t) be a nontrivial solution,,
Then

(5.1) S~{y(s)) < S~(y(r)) for all (r, s) satisfying a < r <L s < b ,

and

(5.2) S+(y(s)) <; S Γ(y(r)) for all (r, s) satisfying a < r <̂  s < b .

(ii) Conversely, if (5.1) is valid for every nontrivial solution
y(t) of the system (1.1), or if (5.2) is valid for every y(t), then the
system (1.1) is TP in (a, b).

Proof. ( i ) We obtain the necessity of (5.1) and (5.2) by an
approximation procedure. Let the constant matrix C* = (cΐ)Γ be de-
fined as in the proof of Theorem 3 (c* = 1 if | i — j \ — 1, otherwise
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c% = 0). If the system (1.1) is TP in (α, 6), then it follows from
Theorems 2 and 3 that the system

(5.3) y'ε{t) = Aε(t)yε(t) , Aε(t) = A(t) + eC* ,

is, for ε > 0, STP in (α, 6). To prove (5.1) let the solution y{t) of
(1.1) and the point r be given. For any ε > 0, let yε(t) be the solution
of (5.3) satisfying

(5.4) yε(r) = y(r) .

(4.1) and (5.4) imply t h a t for any ε > 0, and for any s , s e (r, 6),

(5.5) S+(yε(s)) <S S-(y(r)) .

By a standard theorem on differential equations (cf. [3, p. 55, Corol-
lary 4.1])

lim yε(s) = y(s) .

This and the relation

S~(\imyε(s)) ^ lim S+(yε(s)) ,
ε->0 e->0

[4, p. 217, Lemma 1.1] imply

(5.6) S-(y(s))^lunS+(vA8)).
ε-+υ

(5.5) and (5.6) imply (5.1).
To obtain (5.2) let the solution y(t) of (1.1) and the point s be

given. For any ε > 0? let ye(t) be the solution of (5.3) satisfying

(5.40 ye(s) = y(s) .

(4.1) and (5.4') imply that for any ε > 0, and for any r, r e (α, s)

(5.5') S+(y(8)) ^ S-(yε(r)) .

For ε->0,

(5.6') ΊSiS-(

(5.5') and (5.6') imply (5.2). This completes the proof of part (i).
(We remark that (5.1) follows also directly from a theorem of Schoenberg
[8, Satz 1] (cf. [2, p. 290] and [4, p. 21]) applied to the vector equation
(4.2). Moreover (5.1) and (5.2) are equivalent as we shall show in
Lemma 4.)

(ii) To prove the first half of this converse assertion, we assume
the validity of (5.1) for all nontrivial solutions y(t) of (1.1). We now
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proceed as in the proof of part (ii) of Theorem 4. The index k and
the point r are fixed and we consider only nontrivial solutions of (1.1)
which satisfy

(4.3) yk(r) = 0 .

Defining c as before and now using S~(y(s)) ^ S~(c), r < s, we find
that the n x (n — 1) matrix Yk(s, r) (which is of rank n — 1) is, for
r < s, sign-regular of order n — 1 [4, p. 222, Th. 1.4]; i.e., for each
p, 1 5g p <Ξ n — 1, all nonvanishing minors of order p of Y^s, r) have
the same sign. But, for each p, Yk(r, r) has a positive minor of this
order and not all minors of order p of Yk(s, r) can vanish. It follows,
by continuity, that all minors of Yk(s, r) are nonnegative for r < s
and we thus proved the first half of (ii). (This follows again directly
from the converse theorem of Schoenberg [8, Satz 2]). The second
half of (ii) follows from the first half and the following lemma.

LEMMA 4. Let the n2 real functions ai3-(t)9 i, j = 1, , n, be
continuous in (a, b), — oo <; a < b ^ oo and set A(t) = (ai:}(t))ΐ and let
(1.1) be the corresponding differential system. If, for each nontrivial
solution y(t), S~(y(t)) is a decreasing function of t in (α, 6), then the
same holds for S+(y(t)). Conversely, if S+(y(t)) is, for each nontrivial
solution y(t), a decreasing function of t, then the same holds for

Proof. We shall use Theorem 2 and the (already proved) parts
of Theorem 6 relating to (5.1), i.e., the first half of part (i) and the
first half of part (ii). Let y(t) be a nontrivial solution of (1.1) and
d e f i n e y*(t) = (y*{t), ~-,y*(t)) b y

(5.7) yf{t) = ( - l ) % ( t ) , i = l, -- , n , a < t < b .

This and (1.1) imply that

(5.8) ^ - = B(t)y*(t) , a < t < b ,
dt

where B(t) = (biS(t))ΐ is given by

(5.9) biS(t) = (-l)i+''aiS(t), i, j = 1, , n , a < t < b .

We now define

(5.10) u(τ) = !/*(-τ) , -b < τ < -a ,

and

(5.11) C(τ) = -B(-τ) , -b<τ< -a.
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(5.8), (5.10) and (5.11) give

(5.12) - ^ = C(τ)u(τ) , -b < τ < -a .

dτ

(5.7) and (5.10) imply, that for each t, a < t < b,

(5.13) S+(y(t)) = (n - 1) - S-(y*(t)) = (n - 1) - S-(w(-ί)) .
We now assume that S~(y(t)) is, for each ?/(ί), a decreasing function
of ί. By the first half of Theorem 6, (ii), and by Theorem 2, it
follows that A(t) is a Jacobi matrix with nonnegative off-diagonal
elements. (5.9) and (5.11) show that the same holds for C(τ), hence
using once more Theorem 2 and the first half of Theorem 6, (i), it
follows that S~(u(τ)) is a decreasing function of r; £"(?/*(£)) is thus
an increasing function of t, and (5.13) implies that S+(y(t)) is a
decreasing function of t. Conversely, assume that S+(y(t)) is, for
each y(t), a decreasing function of t. S~~(u(τ)) is then also a decreasing
function of τ, C(τ) is a Jacobi matrix with nonnegative off-diagonal
elements, and the same holds for A(t). S~(y(t)) decreases therefore
for each y(t). This proves Lemma 4 and we have thus completed the
proof of Theorem 6.

(We shall use formulas (5.7) to (5.13) in the proof of the following
lemma. We remark here that Lemma 4 is only a special case of the
following statement: If the real n x n matrix M is nonsingular, and
if for every pair of nonnull vectors (x, z), z — Mx, S~~(z) ^ S~(.τ),
then S+(z) ^ S+(x) holds also for all these pairs. This follows easily
from the above mentioned theorems of Schoenberg, by obvious analogues
of (5.7) and (5.9) and a well-known formula for the minors of the
inverse matrix [4, p. 5].)

For the proof of our final theorem we need the following lemma.

LEMMA 5. Let the differential system

(1.1) y'(t) = A(t)y(t)

be TP in (α, &), — co <g a < b <£ oo, let y(t) = (yjf), , yn(t)) be a

nontrivial solution, and let the points r and s satisfy a < r < s < b*

( i ) i f

(5.14) Vι(r) = 0, yι(s) Φ 0 ,

or if

(5.15) yJx) = 0, yn(s) Φ 0 ,

then



222 B. SCHWARZ

(5.16) S+(y(r)) - S+(y(s)) ^ 1 .

Moreover, if both (5.14) and (5.15) hold, then

(5.17) S+(y(r))-S + (v(s))^2.

( ϋ ) //

(5.14') Vl(r) Φ 0, Vl(s) = 0 ,

or if

(5.15') 2/Λ(r) * 0, yn(8) - 0 ,

then

(5.16') S-(2/(r)) - S-(»(s)) ^ 1 .

Moreover, if both (5.14') and (5.15') hold, then

(5.17') S-(y(r)) - S~0/(s)) ^ 2 .

Proof. ( i ) We assume that (5.14) holds for a given pair (r, s),
α < r < s < 6. By the continuity of y(t), and by considering, if
necessary, —y(t) instead of y(t), it follows that there exist points
(r19 sx), r <: rι < si <̂  s, such that

(5.18) y(r,) = 0 , and y,{t) > 0 for all t in (rx, s j ,

and such that no component y^t) for which y^r^ Φ 0 vanishes in
[r1? s j . We now consider the possible values of y2(r1). (a) If y2(r1) > 0,
then our choice of [r19 s j implies that also y2(s1) > 0. The pair (y^t),
y2(t)) contributes in this case to S+iyirJ) and gives no contribution to
S+(y(s1)), and the remaining pairs (^(ί), 2/ί+i(ί))> i = 2, , w — 1, cannot
contribute more to S+(y(s1)) than to S+(y(r1)). Hence, in this case,

(5.19) S+Mr,)) - S+(τ/(Sl)) ^ 1 .

(b) The assumption y2(r^ < 0 implies y^s,) < 0. These inequalities
and (5.18), and once more, the fact that components which are Φ 0
at r1 remain so in [r19 s j , give S~(y1(r1)) < S^iy^s,)). This contradicts
(5.1) and this case is thus excluded. There remains the case (c)
2/2(̂ 1) — 0. y2(t) cannot vanish identically in [rlf s j as then the first
component of the equation (1.1), i.e., y[ = anyx + a12y2 contradicts
(5.18). Furthermore, y2(t) cannot become negative in (rx, s j , as y2{r^) —
0, y2(t) < 0 and (5.18) would again give ^-(^(n)) < S~(y(t)), r < t.
Hence there exists a point s2, s2 e (rly s j such that y2(s2) > 0, and we
obtain

<5.19') S+(rλ) - S+(s2) ^ 1 .
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As r £ rx < s2 £ s, £ s, (5.19), (5.19') and (5.2) imply (5.16). The
assumption (5.15) gives the same conclution. As t increases from r
to s, the decrease of S+(y(t)) is, under the assumption (5.14) due to
the pair (y^t), y2(t)). Under the assumption (5.15), it is due to the
pair (yn^(t), yn(t)), and it therefore follows that the simultaneous
validity of (5.14) and (5.15) implies (5.17).

(ii) This part now follows from part (i) by the previously used
transformation (formulas (5.7) to (5.13)). Together with the system
(1.1) also the system (5.12) is TP. (5.14') becomes u^-s) = 0, u^-r) Φ 0
and part (i) gives S+(u(-s)) - S+(u(-r)) ^ 1. This and

S+(u(-t)) = S+(y*(t)) = n - l ~ S~(y(t))

gives (5.16') and we have thus completed the proof of the lemma.
In Theorem 5 we obtained results on the behavior of solutions

y(t) of a STP system (1.1). // the system (1.1) is TP, but not STP,
then none of the assertions of Theorem 5 remains valid. To show
this, let A(t) = (αo (ί))Γ be a Jacobi matrix with nonnegative off-diagonal
elements in (α, b) and assume that for a given index g, 1 ^ q ^ n — 1,
and a given interval (a, β), a <£ a < β <̂  6, the element aq+1,q(t) vanishes
identically in (a, β). We now consider (1.1) only in this subinterval
(a, β). Here (1.1) may be satisfied by solution vectors y(t) for which
yq+ι(t) = = yjt) = 0. If we consider only such solutions y(t), then
the vector consisting of their first q components y(t) = (y^t), , yq(t))
satisfies an equation of the form

(5.20) y'(t) = A(t)y(t) , a < t < β ,

where

(5.21) A(t) = {aiά(t))l , a <t < β .

This q th order system (5.21) is again TP (possibly even STP) in (a, β),
and we obtain a g'-dimensional subspace of the solutions of (1.1) by
adding the n — q zero components yq+1(t) = = yn(t) = 0 to an
arbitrary solution of (5.20). These solutions of (1.1) do not satisfy
the assertions of Theorem 5. Indeed, let r e (a, β) and choose yL(r) ~
. . . = yq(r) = 1. Then S~(y(r)) = 0, but the n — q last components
of y{t) vanish identically in (r, β). If we choose y^r) = ( — 1)%
i = 1, •••, q, then S+(y(r)) = n — 1, but the last components vanish
identically (a, r). This shows that part (i) of Theorem 5 is not valid
for the present system. Parts (ii) and (iii) are not valid as yn(t) = 0
in (a, β). If we assume that an element of the first superdiagonal
aq>q+1(t) vanishes identically in (α, β), then we have to consider solutions
of (1.1) for which yγ(t) = yz(t) = = yq(t) Ξ 0 in (a, β) and the
remaining components satisfy a system of order n — q. Theorem 5
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does therefore not hold for TP systems; the following weakened
version is however valid for such systems.

THEOREM 7. Let the differential system

(1.1) V'(t) = A(t)y(t)

be TP in (a, b), — oo ^ a < b <£ °o, and let y(t) = (y^t), , yjt)) be a
nontrivial solution.

( i ) If S+(y(r)) = 0 , r e (a, b), then no component of y(t) vanishes
in [r, b). If S~(y(s)) — n — 1, se (a, b), then no component of y(t)
vanishes in (a, s].

(ii) Let

(α<)70 < <*i < % < α2 < . . < 7*-! < α* < 7fc(<δ)

6β 2A: + 1 points, such that for each i,i = l, ,k, at least one of

the following two conditions holds.

(5.22) yjy^) Φ 0, ySμίi = 0, yfa) Φ 0 ,

or

(5.23) 3Λ.(7<-i) ^ 0, yja,) = 0, ^ ( τ 4 ) ^ 0 .

Set mi — 1 if only one of these two conditions holds for the index ί,
and m{ = 2 if both conditions hold, i = 1, , k, and let k = Σ?=i m ί
Then k ^ n — 1. Moreover, if k = n — 1, ίfeβ^ ^o component of y(t)
vanishes in (a, 70] U [7fc, &).

(iii) Lei αίί ί/̂ β assumptions of (ii) fcoϋώ α^ώ, m addition, assume
that m components of y(r), re (a, b) vanish and that either r ίg 70 or

^ π — m — 1.

Proof. ( i ) (5.1), (5.2) and (4.6) yield these two assertions,
(ii) We have

(5.24) *=i

S + ( y ( Ύ k ) ) ^ S + i y i a J ) - S + ( y ( y k ) ) ^ n - 1 .

The first inequality sign follows from (5.22) and (5.23) by Lemma 5.
The second inequality sign follows by (5.2). This proves k <: n — 1.
If k = n - 1, then (5.24) implies S+(y(Ύk)) = 0, hence part (i) implies
that no component of τ/(£) vanishes in [7^ b). To show that, if k =
w — 1, no component vanishes in (α, 70] either, we use

/ κ o κ , * ^ Σ [5-^(7,-0) - S-d/te))] = Σ [S-iv&i-d) ~ S-(y(a^))]
(5.25) <=i *=2

- S-(y(ak)) ^ n - 1 .
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(5.25) and k = n — 1 imply S~(y(y0)) = n — 1, which gives the desired
nonvanishing in (α, τ0].

(iii) If r ^ To, then (5.25), (5.1) and (4.6) imply

k ^ S-(y(%)) ~ S~(y(ak)) ^ S~(y(r)) - S~(y(ak) ^ n - m - 1 .

If 7k ^ r, then (5.24), (5.2) and (4.6) give

k ^ S+iyiaJ) - S+(y(yk)) ^ S+iyfa)) - S+(y(r)) ^ n - m - 1 .

This completes the proof of Theorem 7.

6* Examples* We conclude this paper with a few examples.
All our examples are STP systems (1.1) and for each example we
consider only one particular vector solution y(t). We thus replace
(1.1) in each case by a vector equality where the matrix A(t), the
particular solution y(t) and its derivative y'(t) are shown explicitly.
As the case n = 2 is trivial, we start with an example for n = 3.

(6.1)

( — sin t\

— cost

\ — sin t

0 0

3 3
— — cos t 0 — + cos t
2 2

0 0

— sin t

— 2 + cos t)

This shows that, for n = 3, there exists a system (1.1) which is STP
in (-oo, oo) and for which the interior component y2(t) of a particular
solution y(t) vanishes infinitely many times. However, in this example
the extreme components yλ(t) and yz(t) do not vanish at all.

The next examples show that the assertion of Theorem 5, is, for
n = 3, essentially all that can be said about the number of zeros of
the components of any particular solution y(t) of a STP system. Let
a and β, a < β, be zeros of the extreme components y^t) and yz(t).
Theorem 5 (ii) implies that these extreme components have no other
zeros and that y2(t) does not vanish outside the interval (a, β); however,
no restrictions on the number of zeros of y2(t) in (a, β) are given by
Theorem 5. We combine system (6.1) with two other systems to show
that we may obtain an (except for its parity) arbitrary number of
zeros of y2(t) in the interval bounded by the zeros of the extreme
components. The matrix in (6.1) and the vector given there, will be
referred to as A(t) and y(t). We now consider the equality

(6.2)

x l \

0

0 0

_(2 - τ) 0 —(2 + r)

0

2 + τ\

2

2 4-

Note that the corresponding system
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(6.2') u'(τ) = B{τ)u{τ) ,

is STP in [ — 2,2]. Furthermore we note that if now u(τ) denotes
the particular solution shown in (6.2), then, for each integer k, the
equalities

(6.3) B(0) = A ( - J , u(0) = y(- | -

(and hence also u'(0) = y'( — π/2 + 2ftπ) hold. (6.3) allows us to
combine the examples (6.1) and (6.2) at their respective points t =
-π/2 + 2kπ and τ = 0.

We also consider the equality

(6.4)

-1)

0 0

4(2 + τ) 0 4 ( 2 - T )
4

0

4

1 0

/ 2 - τ

- 1

-2-rJ
The corresponding system

(6.4') v'(τ) = C(τ)v(τ)

is again STP in [ — 2,2] and, for each integer k,

(6.5) C(0) = A(1L + 2kπy v(0) =

and we thus may combine (6.1) and (6.4).
For any nonnegative integer k, we now define the system

(6.6), [y{1)(t)Y = A™(t)y™(t) ,

in [a19 βι],aι= -2 -π/2, β, = π/2 + 2kπ + 2, by setting

βft 4- — ̂  —2 — — < t < ——
\ 9 / 9 Z = = = 9 >

\ Δ / Δ Δ
Aί+\ <c /; <c , 1 2kπ

\ "2~ π) ' ~2 K = =~2

This systems is STP in [aιt /3J and has the particular solution

yw(t) = y(t),

v(t - f - 2^) , —
2

_ Ξ. < ί < iL +
2 ~~ ~ 2

2/cπ < t < — + 2/bπ + 2
~" ~ 2
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?i) = 0, y{

3

1](t) < 0 in [a19 A]> and y{

2\t) vanishes at the
2k + 1 points t = /π, ^ = 0, 1, , 2k.

If we define the system

(6.6)2 [y{2)(t)Y — A{2)(t)y{2)(t) ,

in [a2, β2], a2= - 2 + π/2, β2 = 3ττ/2 + 2^ττ + 2, (& = 0,1, •), by setting

ίr(t π\ 9 M
 π < f < π

2

then this system has a solution yί2)(t), for which ^32)(^2) = 1/32)(/52) = 0,
l/ί2)(ί) > 0 in [a2, β2], and ?/22)(̂ ) has again an odd number of zeros in
[a21 β2\.

Defining A™(t) in [α3, β3], a3 = - 2 - ττ/2, /93 = 3ττ/2 + 2kπ + 2, by

— + 2/cττ ̂  ί ^ — + 2kπ + 2 ,
Δ

—
Δ

we obtain a system which is STP in [a3, β3] and has a solution y{3)(t),
for which 2/ί3)( 3̂) = y{

3

Z)(β3) = 0, and τ/^3)(ί) has now an even number
of zeros in [α3, /33]. By using first C, then A and then again C, we

obtain similarly a fourth example for which = y[4)(β4) = 0 and

y{2]{t) has again an even number of zeros in [α4, /94]. These four
examples establish the italicized statement preceding (6.2); the parity
restriction on the number of the zeros of y2(t) follows easily by the
proof of part (ii) of Theorem 5. We remark that there is no need
to consider different systems for all four examples and all nonnegative
integers k. All these cases can be illustrated by considering distinct
solutions yij>k), j = 1, , 4, k = 0, 1, , of a single system (1.1) which
is STP in (—00,00). The corresponding matrix A(t) is given by
an(t) = aiz(t) = aB1(t) — α33(ί) = 0 and aL2(t) = a32(t) = 1 for all t, while

the elements a2ι{t) and α23(ί) are determined in the disjoint intervals
[ajk, βjk] by the above formulas and are (otherwise arbitrary) continuous
nonnegative functions of t, which only vanish at some of the end
points ajk and βjk.

For n = 4 our example is
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' Λsm£

cos t

cos t

sin t

(6.7)

- 1

X

3(2 - cos t)

1 + cos t

0

0

2 — cos t

— + sin t

— — + sin t

— 2 — cos t

—° Jt-s inί

— + sin t
ό

5
3

0

1 — cos t

- 1

3(2 + cos ί) )

J

The corresponding system is STP in (-co, oo) and the interior com-
ponents y2(t) and ys(t) of the particular solution y(t) have infinitely
many zeros. (6.7) is the special case n = 4 of a general example,
valid for any n, n ^ 4. The nonzero elements of the Jacobi matrix
A(t) = (dij(t))^ are in this general case given by

3 - n

(n - 1)(2 - cos t)

8
a22 = 5 — n —

, α12 = 1, α21 = 1 + cos t ,

4

n
, α23 = n — 4 +

- 1
— sin

(6.8)
Y c o s

2

= ?ι — 4

- — i = 3, 2 ,

— 1
+ sin ί, an_lyn_γ = 5 — n —

n — 1

α«-i,» = 1 - c o s ί, a w w _ i = 1, aTO% = - n

(n - 1)(2 + cos ί)

The particular solution is the vector τ/(ί), whose components are

= 2 - cos ί ,

= n + X ~ 2 '
w — 1

yjjb) = - 2 - cosί ,

sin ί , i = 2, .. , n -
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and all interior components vanish infinitely many times.

I am grateful to Professor Z. Nehari and Dr. M. Lavie for their
valuable advice offered during many discussions.
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