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COMMUTATIVITY IN LOCALLY COMPACT RINGS

JAMES B. LUCKE

A structure theorem is given for all locally compact rings
such that = belongs to the closure of {x": n = 2}, in particular,
all such rings are commutative, a result which extends a well-
known theorem of Jacobson. Similarly we show the commuta-
tivity of semisimple locally compact rings satisfying topological
analogues of properties studied by Herstein,

Jacobson has shown that a ring is commutative if for every x
there is some n(x) = 2 such that 2" =« [5, Th. 1, p.212]. Herstein
has generalized this result, and certain of his and other generalizations
are of interest here. A ring is commutative if (and only if) for all x
and y there is some #n(x, ¥y) =2 such that (x"? —x)y = y(x"*? — 1)
[4, Th. 2]; a ring is commutative if (and only if) for all z and ¥
there is some n(x,y) =2 such that zy — yx = (xy — yx)"*» [3, Th.
6]; a semisimple ring is commutative if (and only if) for all x and y
there is some n(x, ¥) = 1 such that a**=¥y = yz»=* [4, Th. 1] or if
for all « and y there are n, m = 1 such that a*y™ = y™x" [1, Lemma
1]. The investigation of analogous conditions for topological rings is
the major concern of this paper.

1. A topological analogue of Jacobson’s condition. If 2" =z
for some n = 2, then an inductive argument shows that z*"—1+' = g
for all k= 1. A possible topological analogue of Jacobson’s condition
would thus be that for every x there is some n(x) = 2 such that
lim, a*™®-b+ = g But this implies that 2" = x, since

m*ﬂ(a:) — xn(x)——lx — xn(x)—l limk xk(n(z)—-l)—{-l — hmk x(k+1)(n(x)—1)+1 = .

Thus all topological rings having this property have Jacobson’s property
and hence are commutative.

A less trivial analogue of Jacobson’s condition is that for every
x in the topological ring A4, x belongs to the closure of {x": n =2}. In our
investigation of these rings, rings with no nonzero topological nilpotents
play an important role. Reecall that an element « of a topological ring
is a topological milpotent if lim, x = 0. We shall prove that a locally
compact ring has no nonzero topological nilpotents if and only if it is
the topological direct sum of a discrete ring having no nonzero nilpotents
and a ring B that is the local direct sum of a family of discrete rings
having no nonzero nilpotents with respect to finite subfields. From
this it is easy to derive a structure theorem for locally compact rings

187



188 J. B. LUCKE

having the topological analogue of Jacobson’s property mentioned above.

LEemMmA 1. If A is a locally compact ring with no nonzero
topological nilpotents, then A s totally disconmnected.

Proof. The connected component C of zero in A is a closed ideal
of A and so is itself a connected locally compact ring with no nonzero
topological nilpotents. By hypothesis, C is not annihilated by any of
its nonzero elements, for if #C = (0), then 2* =0, so x =0. Thus C
is a finite-dimensional algebra over the real numbers (cf. [6, Th. III]).
As the radical of a finite-dimensional algebra is nilpotent, C is a semi-
simple algebra. If C = (0), then by Wedderburn’s Theorem, C has an
identity e, and clearly (1/2)e would then be a nonzero topological nil-
potent contrary to our hypothesis. Thus C = (0), and so A4 is totally
disconnected.

LEMMA 2. A compact ring A has no nonzero topological nilpotents
if and only 1f A is the Cartesian product of finite fields.

Proof. Necessity: By Lemma 1, A is totally disconnected. Thus
the radical J(A) of A is topologically nilpotent [11, Th. 14], and hence
is the zero ideal. Thus A is a compact semisimple ring, and so A is
topologically isomorphic to the Cartesian product of a family of finite
simple rings [11, Th. 16]. A finite simple ring is a matrix ring over
a finite field, and unless the matrix ring is just the finite field itself,
it will have nonzero nilpotent elements. Thus as A has no nonzero
nilpotents, A is topologically isomorphic to the Cartesian product of a
family of finite fields. Sufficiency: Clearly zero is the only topological
nilpotent in the Cartesian product of a family of finite fields.

LEMMA 3. If A is a ring with no nonzero nilpotents, then every
idempotent is in the center of A.

Proof. If e is an idempotent and if ae A, an easy calculation
shows that (ae — eae)? = 0, hence ae — eae = 0. Similarly, ea = eae
and thus ae = ea.

We recall that the local direct sum of a family (4,),., of topological
rings with respect to open subrings (B,),., is the subring of the
Cartesian product T, A, consisting of all (a;) such that a,<c B, for all
but finitely many v, topologized by declaring all neighborhoods of zero
in the topological ring [, B, to be a fundamental system of neighbor-
hoods of zero in the local direct sum. It is easy to see that the local
direct sum equipped with this topology is indeed a topological ring.
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THEOREM 1. A locally compact ring A has no nonzero topological
nilpotents 1f and only 1f A is the topological direct sum of a discrete
ring having no monzero milpotents and a ring B (possibly the zero
ring) that s topologically isomorphic to the local direct sum of a
Jfamily of discrete rimngs having mo monzero nilpotents with respect
to finite subfields.

Proof. Necessity: As A is totally disconnected by Lemma 1, A
contains a compact open subring F' [7, Lemma 4]. By Lemma 2, F
is topologically isomorphic to the product of finite fields. Consequently
there exists in F' a summable orthogonal family (e,),., of idempotents
such that Fe, is a finite field and >),., e, = ¢, the identity of F.

By Lemma 3, ¢ is in the center of A4, so Ae and A(l — ¢) = {a — ae:
ac A} are ideals. The continuous mappings a — ae and a — (@ — ae)
are the projections from A onto Ae and A1l — ¢). Thus A is the
topological direct sum of Ae and A(1 — e¢). As e is the identity of
F,FNAQ —e) = (0). Thus as F is open, Al — e) is discrete and
hence has no nonzero nilpotents.

As F is open and as Ae, N F = Fe,, a finite field, Ae, is discrete
and is an ideal as e, is in the center of A. Consequently Ae, has no
nonzero nilpotents. It will therefore suffice to show that B = Ae is
topologically isomorphic to the local direct sum of the descrete rings
Ae,, with respect to the finite subfields Fle,.

Let B’ be the local direct sum of the Ae,’s with respect to the Fe,’s.
Let K:b— (be,) € JI, Ae,. Clearly b— be, is a continuous homomorphism
for each v, hence K is a continuous homomorphism from B into [], Ae,.
If be B, then (be,) is summable and >, be, = b3}, ¢,) = be = b. There-
fore as F' is open in B, be, € F' N Ae, = Fe, for all but finitely many
vel'. Thus K(B) & B'.

The mapping K is an isomorphism onto K(B), since if xe€ B and
if xe, = 0 for all vye I, then s =xe =23 ¢) =>,,xe, = 0. Let y, € Fle,,
and let z, = 0 for all v = 8, x; = y,; then (x,) = K(y;) € K(F') since (e,)7
is an orthogonal family. Thus K(F') contains a dense subring of ], Fle,,
and hence K(F') = I], Fe, as K(F') is compact. As the restriction of
K to F is thus a continuous isomorphism from conpact F" onto [, Fe,,
F' is topologically isomorphic to [], Fle, under K.

Thus it sufficices to show that K(B) = B’, for K is then, by the
definition of the local direct sum, a topological isomorphism from B
onto B’. If (b,e;) € B’, then b,e, € Fe, for all but finitely many v, say
Y+, Vue Call this set I, and let ' — I", = I",. Thus >,., be,cB
and b,e, € F' for all vyeI',., Hence as F is topologically isomorphic to
Il; Fe, b’ = >cr,be,€ B. Thus =¥+ >,,. be, € B, and be, = b,e,,
so K(b) = (b.e,). The sufficiency is clear.
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We will call a ring A a Jacobson ring if given any x e A there is
an n(x) = 2 such that z** = 2. All Jacobson rings are commutative
[5, Th. 1, p.212], and in extending this result to topological rings
we give the following definition, noting that it reduces to Jacobson’s
condition in the discrete case.

DEFINITION. A topological ring A is a J-ring if for each x ¢ 4, »
belongs to the closure of {x":n = 2}.

LevmMA 4. If A is a J-ring, then A has no nonzero topological
nilpotents.

Proof. If lim,x" = 0, then since x belongs to the closure of
{e": n = 2}, we conclude that =z = 0.

THEOREM 2. A locally compact ring A s a J-ring if and only
if A 1s the topological direct sum of a discrete Jacobson ring and a
ring B which ts topologically isomorphic to the local direct sum of
a family of discrete Jacobson rings with respect to finite subfields.

Proof. Necessity: By Theorem 1 and Lemma 4, A is the topologi-
cal direct sum of a discrete ring C and a ring B which is topologically
isomorphic to the local direct sum of a family of discrete rings with
respect to finite subfields. As each of these rings is an ideal of A4,
each is a discrete J-ring and so is a Jacobson ring.

Sufficiency: Let B be the local direct sum of a family of discrete
Jacobson rings B,,ve" with respect to finite subfields F,,vel'. Let
(x;) e B and let U be a neighborhood of zero in B. Then we may
assume that there is a finite subset 4 of I such that z, e F, for all
v¢4 and U = [[,G,, where G, = F, for all v¢ 4. For each ve 4, let
n(v) > 1 be such that " =2x,. Let n =1+ [],c,(n(v) —1). An
inductive argument shows that z} = «, for all ve 4. Hence (x,)" —
(x,)e U. Thus B is a J-ring, and consequently A is also a J-ring.

As all Jacobson rings are commutative we have the following
analogue of Jacobson’s Theorem:

COROLLARY. A locally compact J-ring is commutative.

THEOREM 3. A locally compact ring A is a Jacobson ring if and
only if there exists N = 2 such that A 1is the topological direct sum of
a discrete Jacobson ring and a ring B that is topologically isomorphic
to the local direct sum of a family of discrete Jacobson rings with
respect to finite subfields of order < N.
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Proof. Necessity: Let |B,| = the order of B,. By Theorem 2
it suffices to show that sup|B,| < +oc. If sup|B;|= +<o, then
there exists (x,) € [[, B, such that the orders of the x,’s are unbounded.
Consequently for no n does 27 = «, for all v, i.e., for no n does (z,)" = (x,).

Sufficiency: Let (A4,), be a family of discrete Jacobson rings with
finite subfields B, such that |B,| < N for all v. Let (x;) be in the
local direct sum of the A,’s with respect to the B,’s. There exists
a finite subset 4 of I" such that if v¢ 4, #,€ B,. Since each A4, is a
Jacobson ring, for v e 4 there is n(v) such that 7" = «,.

If 22" =, an inductive argument shows that z;™"~"*' = g, for
all k. If z,eB,, then |B,| < N, so since |B,| — 1< N, ;""" = g,
for all k. Let n =1+ [(N!)II,cs(n(v) —1)]. Then 2} = x, for all
v, i.e., ()" = ().

2. Analogues of four of Herstein’s results. An analogue for
topological rings of the first of Herstein’s conditions that are mentioned
above is that for all x and ¥, xy — y« is in the closure of {x"y — yx": = 2},
and we say such a topological ring is an H,-ring. An analogue of the
second of Herstein’s conditions is that for all # and ¥, 2y — yx is in

the closure of {(xy — yx)": n = 2}, and we say such a topological ring
is an Hyring. (If (xy — yx)*** = xy — yx, then

(xy — ym)k["‘(ﬁ»y)—lﬂ-l — my _ yw

for all £ = 1; hence another topological analogue is the assumption that
for each x, y € A, there exists n(zx, y) = 2 that lim, (xy — yx)tr=¥ -1+t =
%y — yx; however by an argument similar to that of the first paragraph
of §1, this condition implies that (xy — yx)"*?¥ = vy — yx.) Similarly
an analogue of the third of Herstein’s conditions is that for all z, ¥y
in 4, lim, z™y — yx™ = 0, and we say such topological rings are H,-rings,
just as we will call H-rings those topological rings in which for all
%,y there is an m(x, y) = 1 such that lim, x"y™®=? — ym=vg» =0, We
shall prove that those H;-rings which are semisimple and locally compact
are commutative, 7 = 1, 2, 3, 4.

LEMMA 5. All idempotents in an H-ring, © =1, 2, 3, 4, commute.

Proof. Let ¢ and f be idempotents in such a ring A. Then
(efe — ef)* =0, so {(efe — ef)"e — e(efe — ef)": m = 2} = {0}. Therefore,
if A is an H,-ring, then (efe — ef)e — e(efe — ef) = 0, so

0=(efe—ef)e = e(efe — ef) = efe — ef .

If A is an H,ring, then (ef)e — e(ef) = efe — ef = 0 since efe — ef is
in the closure of {[(ef)e — e(ef)]": n = 2} = {0}. Similarly in either case



192 J. B. LUCKE

efe = fe, so ef = fe. As 0 = lim, e"f — fe" = lim, e"f™ — f™e" = ef — fe,
the assention also holds for H, and H,-rings.

Since it is clear that all subrings and quotient rings determined
by closed ideals of H,-rings are H,rings, 2 =1, 2, 3,4, and since all
idempotents in such rings commute, we see that the following is
applicable.

LEMMA 6. Let P be a property of Hausdorff topological rings
such that:

(1) <f A is a Hausdorff topological ring with property P, then
every subring of A has property P and A/B has property P where
B is any closed ideal of A,

(2) tf A has property P, then all idempotents im A commute.
If A is a locally compact primitive ring with property P, them A
s a division ring.

Proof. Since A is a semisimple ring, A is the topological direct
sum of a connected ring B and a totally disconnected ring C, where
B is a semisimple algebra over R of finite dimension [7, Th. 2]. As
A is primitive, either A = B or A = C. In the former case A is a
matrix ring since it is primitive, and so has idempotents which do
not commute unless it is a division ring.

It suffices, therefore, to consider the case in which A is totally
disconnected. We shall first prove the assertion under the additional
assumption that A4 is a @-ring (i.e., the set of quasi-invertible elements
is a neighborhood of zero). We may consider A to be a dense ring of
linear operators on a vector space E over a division ring D. If E is
not one-dimensional, then E has a two-dimensional subspace M with
basis {z, 2,}. Let B ={acA:a(M) S M}, and let

N ={acA:aM) = (0)} = K.NK,

where K; = {ac A:a(z) = 0},1 =1, 2.

There exists u e A such that u(z,) = 2z, and hence x — 2u ¢ K,, for
all xe¢ A. If v¢ K,, then there exists w e A such that wv(z,) = 2, so as
w=wv+ (u—wv) and w —wve K, A = Au + K, = Av + K,. There-
fore K,, and similarly K, is a regular maximal left ideal, an observation
of the referee that simplifies the proof. Hence K, and K, are closed
(cf. [11, Th. 2]), so N is a closed ideal of B. By hypothesis B/N is
therefore a Hausdorff topological ring having property P. Thus all
idempotents in B/N commute; but B/N is isomorphic to the ring of
all linear operators on M, a ring containing idempotents which do not
commute. Hence E is one-dimensional and A is a division ring.

Next we shall show that A is necessarily a Q-ring, from which
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the result follows by preceding. As A is totally disconnected A has a
compact open subring D [7, Lemma 4]. If D = J(D), the radical of
D, then D and hence A are Q-rings. Assume therefore that J(D)c D.
We shall show that D/J(D) is a finite ring and hence is discrete.

The radical, J(D), of D is closed [8, Th. 1], D/J(D) is compact
semisimple ring and thus D/J(D) is topologically isomorphic to the
Cartesian product of a family (#,),., of finite simple rings with identities
(f)rer [11, Th. 16]. As J(D) is topologically nilpotent [11, Th. 14], D
is suitable for building idempotents [12, Lemma 4] (cf. [11, Lemma 12]).
Suppose that I" has more than one element, say {a, 8} S I". Then there
are nonzero orthogonal idempotents e, ¢, in D such that e, + J(D),
e; + J(D) correspond, respectively, under the isomorphism to (%), (£
where 7 =0¢F, if vy =) and f} = f,. Let ¢ be the canonical mapping
x—x + J(D) from D onto D/J(D). As (f%) + (fF) annihilates the open
neighborhood [J,., G, of zero where G, = {0}, G, = {0}, and G, = F, for
v # a, B, we conclude that ¢(e, + ¢,) annihilates a neighborhood V of
zero in D/J(D). Consequently U = ¢~*(V) is a neighborhood of zero
in D, and (e, + e) Ule, + e;) S J(D) (cf. [7, proof of Th. 11]). Therefore
as (e, + e))Ule, + ¢€5) = U N (e, + e;)Ale, + ), (e, + €,)Ule, + €5) is a
neighborhood of zero in (e, + e;)A(e, + ¢;) consisting of quasi-invertable
elements, so (e, + €;)A(e. + ¢€;) is a Q-ring. As (e, + e;)A(e, + ;) is
primitive [6, Proposition 1, p. 48] and is clearly closed, (e, + ¢;)A(e, + €5)
is a locally compact, primitive @-ring with property P, so (e, + ¢;)
A(e, + e;) is a division ring. But it contains nonzero e,, ¢, satisfying
e.e; = 0, a contradiction. Thus I” can contain only one element, so
D/J(D) is isomorphic to a finite ring. Hence J(D), being closed in D,
is open in D and thus in A4, so A4 is a Q-ring.

LEmMMA 7. If A is an Hi-ring, 1=1,2,3,4 and if A is a locally
compact diviston ring, then A is a field.

Proof. If A is discrete and is an H;-ring (+ =1, 2,3,4) then A
is commutative [3, Th. 2; 4, Th. 1; 3, Th. 1; 1, Lemma 1].

If A is not discrete, then A has a nontrivial absolute value giving
its topology, and A is a finite-dimensional algebra over its center, on
which the absolute value is nontrivial [10, Th. 8].

If A is an H,-ring and « is nonzero in A4, then there exists some
nonzero z in the center of A such that |[z] < 1/|«|. Thus |zz| <1,
so lim, (x2)" = 0. Hence for any y ¢ A4, lim, (x2)"y — y(x2)" = 0, so as
(x2)y — y(xz) is in the closure of {(x2)"y — y(xz)":n = 2}, 0 = (x2)y —
y(x2) = 2(xy — yx). Hence xy = yzx, as 2% 0. Thus A is commutative.

If A is an H,ring and if x, y ¢ A satisfy a2y — yx == 0, then there
exists some nonzero z in the center such that |z| < 1/|zy — yx|. Thus
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[(x2)y — y(x2)| < 1, so lim, [(x2)y — y(x2)]* = 0. Hence 0 = (z2)y —
y(@z) = (xy — yx)z, so vy — yx = 0 as z # 0, a contradiction. Thus A
is commutative.

Assume that A is an H,-ring. As A is a division ring, A is either
totally disconnected or connected [7, Th. 2].

Case 1. A is totally disconnected. Then the topology of A is given
by a nonarchimedean absolute value. Suppose A is not commutative.
Then as A is a finite-dimensional and hence an algebraic extension of
its center C, there exists some x ¢ C having minimal degree m > 1 over
C. Let y be arbitrary in A, and assume that for no 1 <1< m — 1,
does z'y = yx’. Hence z'y —yx* %0, 1 <1 <m — 1, and we claim
{v'y —yx':1 <i<m—1} is a linearly independent set over C.
Suppose >3t Bi(x'y — yx) = 0, where B;€C, and let z =>"7' B,
Then 2y = yz. By the definition of m, either z e C on z has degree = m
over C. Suppose z¢ C. Then C[x] has dimension m over C, so m is
the degree of z as zeC[x]. Therefore Clx] = C[z], so as zy = yz,
every element of C[x] commutes with y, contrary to our assumption.
Thus zeC; let —8,=2. Then >\"'Bx'=0,8008,=0,0<1<m—1
since {1, x, ---, 2"} is linearly independent over C.

Since z is algebraic of degree m over the center C of A, there
exist o, eC,0=<1<m — 1, such that z™ = 37;'a,x’; thus for all
n = m, there exist a; ,€C,0=<17<m —1, such that z" = >, «a; 2%
We may also assume that |x| > 1, since all our assumption on x are
true for any Mz, e C*. We note that there is therefore some » such
that |z|"= ||, 0 1< m — 1.

Since 2" = 3" @, 07,

m—1 . .
oY — Yt = 3 @'Y — Yt

so lim, 2"y — yax* = 0 if and only if lim,e;, =0,1 <1< m — 1.
Since |2"| < max{|a;,||z[0=i<m — 1}, if |a;, | <L, 10 <
m — 1, then |z |" <|a,.|. Let r, be such that [ |°>|z|+ 1. Since
lim,«;, = 0,1 <¢<m — 1, there exists n, > r + r, such that |«,,,| <1,
for all » = n, and all ¢ such that 1 <7< m — 1. But for any n > n,,

m—2 m—1 i
xn+1 — Z a’“ xt+l + am—l,n( ZO aimz>
=0 3=

m—1 )
= am—l,nao + 2 [ai~1,n + (am—l,n)ai]xl y
=1
SO
[ | = Qo + Wy | = | Qo | — [ Ay | ]
z 2" — oz |z — |z =27 [(|z]*"—1) > 1.

a contradiction. Hence A is commutative.
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Case 2. A is connected. Then the center C of A contains the
real number field R, A is finite-dimensional over R, so the degree of
each element of A over R is less than or equal to 2, and the topology
is given by an absolute value. Suppose x¢ C. Then degx = 2; let
2= a, + a,x, and for each n =2, let 2" = «,, + @,,x, where «,,,
a@,, € R. As before we may assume that |x| > 1. Let r be such that
[z|" > max{|a,|, |a,|}. Let ye A be such that xy = yx. Then 0 =
lim, (z"y — y2*) = lim, &, ,(xy — yx), so lim,«a,, = 0. Let m, > r be
such that |a,,| <1 for all n = n,. Butif n = n, is such that [z |" >3
|z |7, then

|z ]" =], + &2 = |a,, |+ |a. ]| <|a.|+ |z,
so |2 — x| < |a,n|. As
"t =, 4 A (g 4+ o) = a0+ (@, + G 00)T
| Qin | = @, + (@) Z [, | — |, ] ] .

Hence |, | = ([2]" — [2]) — [z =3 |z — |z — |z[ =|2z]">1, a
contradiction. Hence A is commutative.

Finally let A be an H,-ring. If for all  and ¥, lim, 2"y — y2" = 0,
then A is an H;ring and so a field; so assume there are « and y in
A such that lim, 2"y — y2" + 0. Let W = {we A:lim, 2"w — wz™ = 0}.
Clearly W is a division subring of A, and since y¢ W, W is a proper
division subring. By hypothesis, for all a € A there is an » = 1 such
that a"e W; thus A is a field [2, Th. B].

THEOREM 4. All H;-rings that are locally compact and semistmple
are commutative, 1 = 1, 2, 3, 4.

Proof. P is a primitive ideal of such a ring A if and only if
P = (B: A) (by definition (B: A) = {x ¢ A: Ax < B}) where B is a regular
maximal to left ideal [5, Corollary to Proposition 2, p. 7]. Let ec A be
such that * — exe B for all xc¢ A. If xze(B: A), then exe B, so x ¢ B.
Hence (B: 4) & B.

If B is closed, then (B: A) is closed for if (x,) is a directed set
of elements of (B: A) converging to x, then for all ac A, ax,c B,

whence ax = lim ax, € B.
As A is semisimple, (0) = M {B: B is a closed regular maximal left

ideal} 2 N {P: P is a closed primitive ideal} [8, Th. 1]. By Lemma 6
and 7, A/P is a field if P is a closed primitive ideal. Thus for all
2, yc A, oy —yreP, so xzy—yxec){P:P is a closed primitive
ideal} = (0).
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