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ON A CLASS OF DIFFERENTIAL EQUATIONS
FOR VECTOR-VALUED DISTRIBUTIONS

H. 0. FATTORINI

The aim of this paper is to seek necessary and sufficient
conditions on the linear operator A in a linear topological
space in order that the Cauchy problem for the equation
U(a) — AU= T should be well set in the sense of distributions
(see definition in §2). Here 0 < a < oo, U(a) is the fractional
derivative of U of order a. Such conditions are obtained for
a integer ^3 and then for any a > 0, this time with the ad-
ditional assumption of (at most) exponential growth of the
solutions at infinity.

Throughout this paper E will be a quasi-complete, barreled local-
ly convex linear topological space over the field C of complex numbers
([1], Chapter II, §4; [2], Chapter II, §1 and §2), A a closed linear
operator with domain D(A) dense in E and range in E.

The equation

(1.1) u{a)(t) = Au(t)

was studied in [3]. If a is an integer ;>3 and the Cauchy problem
for (1.1) is "well posed" (strong solutions exist for a dense set of
initial data, are unique and depend continuously on them) it was shown
that

(a) D(A) — E and A is continuous.
(b) The series ^=ot

3'Aju/(aj)l converges in E for all t,u.
The solutions of (1.1) are actually holomorphic and can be expressed
as u(t) = ΣKί Sk(t)u{k)(0), where Sk(t) = Σ~=o t

aj+kAju/(aj + fc)!, 0 ^
k ^ a — 1. Conversely, conditions (a) and (b) imply that the Cauchy
problem for (1.1) is well posed (see [3], Th. 3.1). A necessary and
sufficient condition for the solutions of (1.1) to increase at most ex-
ponentially at oo is the existence of R(X; A) for large | λ | and its
analyticity at oo ([3], 3.3). It has been suggested by J. L. Lions that
the above results will still hold if we only assume the Cauchy problem
for (l.l)-or, rather, for its inhomogeneous version—to be well set in
the sense of distributions (this notion was introduced by him in [7]
for the case a — 1). Lions also raised the question of whether the
results could be extended to the case of noninteger a > 2. We give
here some partial answers to these questions. Under a special assump-
tion, Theorem 3.1 of [3] is extended to the distribution setting, although
only for a integer; Theorem 3.3 is also extended for all values of
α > 2 . (Theorems 4.1 and 5.2 respectively.) We also examine the case
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a<2, always with the assumption of exponential increase at infinity
and give conditions on R(X; A) that insure the Cauchy problem to be
well set (Theorem 6.1). For a = 1, we obtain the condition of Lions
for generation of distribution semigroups.

2* The Cauchy problem• We denote by R the real numbers.
The symbol gf stands for a family {| |, •••} of semi-norms determin-
ing the topology of E (see [1], Chapter II, § 4; for instance, W can
be taken as the family of all continuous semi-norms in E), i.e., such
that the (generalized) sequence {uγ} converges to zero if and only if
\ur\—*0 for all | | e gf. We assume D(A), the domain of A endowed
with the topology generated by the semi-norms u—> | u |, u-+ \ Au |,
I I e f̂. D(A) is under this topology a quasi-complete locally convex
linear topological space.

In the following remarks the spaces F, G, are as E, quasi-
complete, barreled locally convex linear topological spaces. The space
Jίf(F, G) consists of all linear continuous operators from F into G
endowed with the topology of uniform convergence on bounded sets
of F. ^f(F, G) is a locally convex, quasi-complete linear topological
space (see [2], Chapter III, § 3, no. 7; it is not necessary for this re-
sult that G be barreled). We shall write ^f(F) instead of £?(F, F),
F* instead of ^(F,C), application of an element u*eF* to ueF
being denoted by <(%*, iι} or <(u, u*y.

We recall that the "equi-continuity principle" ([2], Chapter III,
§ 3, Theoreme 2) holds in £f(F, G) (thus in particular in Sf(F), F*);
if {Br} is a family of elements of Jzf{F, G) such that {Bru} is bound-
ed in G that is, such that supr | Bru | < oo for any continuous semi-
norm I I in G for every ue F, then {Br} is an equicontinuous family.
This principle will be used many times in what follows, sometimes
without explicit mention.

The space £&t (or simply &) consists of all complex-valued func-
tions t —•> φ(t) defined in R, infinitely differentiate there and with
compact support; the space &8tt is similarly defined but with reference
to functions (s, t) —> φ(s, t) of two variables. Both spaces will be
endowed with their L. Schwartz topologies ([10], Chapter III). ^
consists of all ^ e ^ with support in (0, oo). By definition, a genera-
lized sequence {φr} in ^ 0 converges to zero if and only if the supports
of the φγ are contained in a fixed compact subset of (0, oo) and
φ(

r

m)(t)-+O uniformly in (0, oo) for all m ^ 0. The space &'{F) (or
^t(F)) of F-valued distributions of one variable is £f(3f\ F); similar-
ly, &J,t{F) = £f(3ϊs,ΰ F). The space 2t,'(F) (F-valued distributions
defined in (0, oo)) is Sf(Ξί^ F). For any real α, the subspace of

consisting of distributions with support in [α, oo) will be denoted
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by ^a>oo)(F); it inherits the topology of &'(F). Finally,

and we assign to &\(F) the inductive limit of the topologies of the
&r'ίnf00)(F) ([1], Chapter II, §4). As customary, we write &'(C) =
&' and similarly for other distribution spaces.

Let S be a distribution in, say, ]&'+(£f(E, F)), Te^r

+{E). We
recall briefly the definition of the convolution S*T as given in [9]
(Proposition 39, p. 167). It is a consequence of Proposition 33, p. 145,
that there exists a unique distribution Ve&'8tt(F) such that

for any ^ f e ^ (here φ(&ψ denotes the function in QίsΛ defined
by (φ ® Ψ)(s, t) = φ(s)ψ(t)) and whose support is contained in the
Cartesian product supp(S) x supp(T). S*T is then defined by

(S*T)(φ) = V(φ)

for any φ e £gr, where φ(s, t) = φ(s + t) (note that, since the inter-
section of the supports of V and φ is compact the expression V(φ)
has a sense although φ g ̂ r8tt if φ Φ 0). For any S, T we have

supp (S*T) g supp (S) + supp (T)

the convolution, as a linear map (we assume S fixed) from
J3?+(£f(E, F)) x £?'+(E) into £&+(E) is continuous (see again [9], Pro-
position 39 for proofs of these and other facts). The convolution S* T
can be defined in a similar way when S e ^ + and Te^+(F), when
SeW+(^f(E, F)) and Te£W'+(^f(G, £?)),••• and enjoys the same
properties as in the previous case.

Fractional derivatives will be defined by means of convolutions.
For any complex β we write

This distribution (see [10], Chapter II, §11, p. 43) coincides with the
function (h{t)ty-ιIΓ{β) for Re/3>0, h the Heaviside function (h(t)=O
for t < 0, k(t) = 1 for ί > 1). The function of /3 that results apply-
ing it to any φ e £gr admits of an analytic extension to the entire

1 Let i ^ _ be the space of all infinitely differentiable functions in R with support
bounded above endowed with its usual Schwartz topology ([10], Chapter VI, § 5, p.
172). Then £&+(F) g *&+(F) = j2^(£^_, F) algebraic and topologically. The reverse
inclusion is true if, say, F is a Banach space but not in general. See [8], p. 62, where
a similar situation is discussed with reference to distributions with compact support.
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plane, and its value at a given β is taken as definition of Yβ(φ) (see
[10], loc. cit. for details). For any β, Yβ e £$' and its support is con-
tained in [0, oo). If Ue]&+(F), 0 ^ a < co we define

jjia) = derivative of order a of U = Y-a*U

([10], Chapter VI, §5, p. 174); the definition is justified by the fact
that Y_n = δ!n\ n = 0, 1, . If U = 0 for t < α, the same it true
of U{a).

Finally, some notational conventions. If, say, Se ££f'(Jtf(E, F)),
ue E, we denote by Su the distribution (in £&'(F)) defined by (Su)(φ) =
S(φ)u, ψ e *&. Similar definition for AS, where A e £?(F, G). Follow-
ing [8], p. 51, if Te&',ueF, T(&u is the distribution in &f'(F)
given by (T®u)(φ) = T(φ)u. We shall use the same notation for an
F-valued function and for the distribution (in &'(F)) that it defines.

DEFINITION 2.1. Let 0 < a < co. The Cauchy problem for the
equation

(2.1) Uia) - AU= T

is well set (in the sense of distributions) if and only if
(a) (Existence) For every T e £&+(E) there exists a solution

UeI&'+(D(A)) of (2.1). _
(b) (Uniqueness) Let Ue&'+(D(A)) be a solution of (2.1) with

Te^f

+(E). Assume T = 0 if t < a. Then U = 0 for t < a.
(c) (Continuous dependence) Let {TΊ} be a generalized sequence of

elements of £&'+(E) with T7->0 in &\E), Tr = 0 for t < a (α>-oo)
for all 7. Let Ur e Jgr+(D(A)) be the corresponding solutions of (2.1).
Then £7r-> 0 in &r'(D{A)).

A few comments on (b) and (c) will be useful later. Observe first
that (b) implies

(b') Let u( ) be an infinitely differentiate Z)(A)-valued function
vanishing for large negative t and such that

u{a)(t) - Au(t) = 0

for t ^ 0. Then u(t) = 0 for t ^ 0.
It is also true that (&') implies (b). To see this, let U, T be the

two distributions of (b), φe^ with support in (—co,α). Define

<Pt(s) = <P(s - *)» (Iφ)(s) = φ(-s) .

Then if %(£) = ^7^) = (U*Iφ)(t), u( ) is a C°°,/)(A)-valued function
and u{a)(t) - Au(t) = r(^ t ) . Since T(φt) = 0 for t < 0 (Γ is zero for
ί < α), we have u(0) = U(φ) — 0, which shows that U itself is zero
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for t < a as claimed.
By definition of the inductive limit topology ([1], Chapter II, §4,

n° 6) a generalized sequence {Tr} in £&'+(F) converges to zero if and
only if Tγ—>0 in 3ί\F) and all the Γ/s are contained in a fixed
&ίa,co)(F) (that is, if Tr = 0 for all 7 and ί < some fixed α). This
shows that (c) amounts to the assertion that the map

(2.2) T-+U

from Ί^+(E) to £^+CD(A)) given by the equation (2.1) (which map, by
virtue of (a) and (b) is well-defined and linear) is continuous. It is
also plain that the map (2.2) commutes with translations. We deduce
more information about (2.2) by means of the following result.

AUXILIARY LEMMA 2.2 Let ^y£ he a linear continuous operator
from J3?'+(F) to 2&\(G) commuting with translations. Assume, more-
over that ^£ T = 0 in t < a whenever T = 0 in t < a. Then there
exists S e &l(J*f(F, G)) with support contained in t ^ 0 such that

Λ?T= S*T .

The proof is identical to that of the " scalar-valued" theorem
([10], Chapter VI, §3, p. 162; see also [7], p. 150 for the Banach
space case). We define a distribution S e &'(Jϊf (F, G)) by the formula
S(φ)u = {^/f{δ (g) u))(φ), φe ^ueF; since supp ^//{d ®u)^ [0, oo),
supp(S)^[0, oo). Then Λ^U — S*U is a linear continuous operator
from &+(F) into &KG). (See the previous remarks on convolution.)
We only need now to verify the equality ^£ = Λ^ for distributions
U of the form τa3 (g) u, τa the operator of translation by α, u e F{2).
But ^(τaδ (g) u) = τ^ί(β ® u) = τa(Su) = S*(τaδ ® u) = ^T(τaδ ® w),
thus our result is proved.

Return now to the map ^-£ given by (2.2). The distribution
S e ~^1{^P{E, D(A)) corresponding to ^€ will be called the propagator
of 2.1. It follows from its definition that it satisfies the equation

(2.3) S{a) -

We prove now a few simple properties of S.

LEMMA 2.3. The operators S(φ), S(ψ), A commute for any

2 The subspace of &r(F) generated by all elements of the form U®u, U
uβF can be identified with the tensor product 3ίr®F ([8], p. 50). But £&
is dense if & f(F)\ on the other hand, the subspace of &f generated by all elements
of the form τaδ,aeR is dense in &' ([10], Chapter II, §2, p. 75) so that the sub-
space of ££fr{~F) generated by all elements of the form τaδ®u,aQR,uQF is dense
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Proof. Let u e D(A). Since U = A(Su) = (Su){a) - δ <g) u, it is
clear that U e &+(D(A)); moreover

U{a) -AU= A((SuYa)) - A(A(Su)) = A(δ <g) u) = δ <g) An .

By uniqueness, U = S(Au), i.e.,

A(Su) = S(Au)

which shows that S(φ) and A commute for any φ e £&. As for com-
mutativity of S(φ), S(ψ) one only needs to observe that

V = (S(ψ)S)*(δ ® v) = S(ψ)(Su)

is a solution of V{a) — AV — δ (g) S(ψ)u and reason as before.

LEMMA 2.4. Let a = n be an integer 2^1, φ, ψe £%. Then

(2.4)
k=o

The proof is a modification of one of Lions ([7], Theoreme 5.1,
p. 149) for the case n = 1. Let (Iφ)(t) = φ{ — t) for any φβ ST. Take
now φ,ψe &r0. Let U7, TF, Vl9 , FTO be the solutions in
of the equations

(2.5) U{n) - AU =

(2.6) T7(w) - AW =

(2.7) F Γ - AF f c = (Icp){fc) (g) Ϊ/(»-I-*)(O) (0 ^ k £ n -

ue E. (Observe that U, W, V19 , Vn are obtained by convolution
of the propagator with the right-hand members of (2.5), (2.6), (2.7)
thus they are all C°° functions.)

Let now h be the Heaviside function. A simple computation shows
that

(huyn) = Σ 1 ^ * - 1 - * ' <8) u{k)(0) + fe[/(%).

Taking now into account the fact that [/ satisfies (2.5) and that
supp {If) c ( - oo, 0), (hU){n) - A(hU) = Σ Π J * ^ " 1 " * 1 ® C/("}(0). Then
by virtue of (2.7) we get, by uniqueness

« — 1

A; = 0
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Similarly,

Iφ*U= W.

Observe, finally, that since supp (Iφ) c (— °°, 0)

(Iφ*hU)(0) = (I<p*U)(0) .

Consequently

= (S*(I(φ*ψ))(0)u = (S*(I<p*Iilr))(0)u = TF(O)

= (Iφ*U)(0) = (Iφ*(hU))(0) = ZV,(0)
&0

Σ
A=0

= ΣιS
{k)(φ)Sίn-1-k)(ψ)u as claimed .

3* Some regularity results* The results in this section say,
roughly speaking, that if u belongs to a set of "smooth elements"
of E then Su will actually be a C°° function in t ^ 0 moreover, if
uγ—>0 "rapidly enough," then Sur will converge to zero in a topology
considerably stronger than that of &'{E). We also examine certain
smooth solutions of (2.1). As in the last part of the previous section
we assume a — n — integer ^ 1.

We introduce at this point a special hypothesis on S, namely

ASSUMPTION 3.1. S is a distribution of finite order locally,(3) which
will be assumed to hold throughout the rest of this section (as well
as in § 4).

Recall ([8], Proposition 24, p. 86) that, under the preceding hypo-
thesis, if Ω is any open bounded interval in R then there exists a
continuous ^(E, D(A))-valued function defined in Ω and such that

(3.1) S = f{p) in Ω

(the integer p Ξ> 0 may depend on Ω).

Let D be the subspace of E consisting of all u e E such that Su

3 Assumption 3.1 is unnecessary whenever E is a Banach space-or, more general-
ly, when £(ED(A)) is a (ZλF)-space ([8], §3). It is also unnecessary, with no special
restriction on E, when n = 1; for the solution of Uf — AU = δ 0 S(φ)u, <pe &Ό, ueE
is U=hV,V the (C°°) solution of V - AV= Iφ®u ([7], p. 152), which allows one
to establish all the following regularity results. We do not know whether Assump-
tion 3.1 can be altogether eliminated in all cases.
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coincides with a Z)(A)-valued function g{t), infinitely differentiate in
t > 0 and such that #(m)(0 + ) = lim^0+g{rn)(t) exists for all m ^ 0 (all
in the topology of D(A)). For ueD we define G(t)u — g(t). For fixed
t ^ 0 G(ί) is a linear operator in I? with domain D.

(3.

LEMMA

Proof.

2)

3.2.

Let

D = D

[A

S

-). Consider

- A(Su)

D(A

the

= δ

identity

<g)ίί

(which is a simple consequence of the definition of S). Differentiating
(3.2) repeatedly and making use at each step of the commutativity of
A and S (Lemma 2.3) we obtain for m ^ 1.

Simn)u = A(Sim~1)nu) + δ{m~1)n(g)u = S{m~1)nAu

U Key ™ — ^ *~^L ™ I * ^S'

Let now β be an open interval in R (say ( —α, α), 0 < α < oo), /
the function associated with S in Ω by (3.1). We have

(3.3) S{mn)u = f{p)Amu + Σ ${kn) Θ A1*"*1""^

in β. Choose a m with mn > p and integrate the differential equa-
tion (3.3). We obtain

(3.4) S{mn-p)u = fAmu -

in 42, 3^ the distribution e &' defined in § 2, (here we are using the
fact that Yo = δ, Y{

a

β) = Ya_β), Pm>p a polynomial of degree ^ p - 1
with coefficients in D(A). Since m is arbitrary, it is clear that Su
coincides with aC°° function in {teΩ t > 0}; reasoning in this way
for any Ω we see that ueD.

Conversely, assume ueD, and let g(t) — G(t)u, for t ^ 0, Uk(t) =
g{k)(t) for t ^ 0, Ϊ7*(ί) - 0 for t < 0. Call Z7 = C70. Then we have

U' = δ (g) Z7(0) + t7"i, •

- Un .

Observe now that U = Su satisfies U{%) — AU = δ®u; since ί7 is
C~ in t > 0 it satisfies Z7(%)(£) - AZ7(ί) there. Consequently δ®u =
jjw _ AJJ = ΣS^Jδ^- 1 -^ ® U{k)(0); equating coefficients we obtain
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9(0 + ) = = ^~2 )(0 + ) = 0, g{n~1)(0 + ) = u .

Observe next that for all m ^ 0 we have

0<*+»>(ί) = Ag{m)(t), t > 0 .

(This is obtained by differentiating the equality for m = 0.) Taking
m = n - l and letting ί ^ O w e obtain Au = Ag{n~ί)(0 + ) = gι2n-1)(0 + )
which belongs to D(A); then ueD(A2) and A2u = Ag{2n-1](0 + ) =
^ ^ - ^ ( O H - ) , ••• etc. An examination of the initial values of g readily
shows

COROLLARY 3.3. Let ueD. Then G{k)(0 + )u = 0 if k Φ mn - 1,
& ^ 0 G(m%-υ(0 + )u = A m - χ m ^ 1.

Our next step is to show that D = JD(A~) contains "enough"
elements. Observe first that if φ e &0 then S{φ)u e D(A°°) for any
w G £7; for, since S(%)^ - A(Su) = δζ&u and supp (φ) c (0, oo), AS(9?) =
S{n)(φ)u, thus AS(cp)t6 e £>(A) and A2S(cp)π - S<2n)(φ)u. Repeating the
preceding reasoning we see that S(φ)u e D{Am) for any m ^ 0 and

(3.5) A

LEMMA 3.4. D is dense in E.

We shall actually show a stronger result, namely that the sub-
space generated by DQ = {v e E\ v = S(φ)u, φ e £^o, ueE} is dense in
D(A). Assume this is false. Then there exists u*e.D(A*) such that
<u*, S(φ)uy = (S(φ)*u*, u> = 0 for all ueE,φe &rQ, i.e.,

(3.6) S(φ)*u* = 0

for all φe&Ό, where S(φ)*: D(A)* -+E* denotes the operator adjoint
to S(φ). Let now K be any bounded set in E and let φe&. Since

sup I < S M V , u> I = sup I <u*, S(φ)ny |

it follows from the fact that S is a =^(£ t, Z>(A))-valued distribution
and from the definition of the topology of E* that φ—>S(φ)*u* =
t%>) belongs to £2f'(E*). By applying M* to elements of JB of the
form {-l)nS(φ{n))u-S(φ)Au = (-l)nS{φ{n))u~AS{φ)n = φ{O)nfueD(A)J

we also see that U satisfies the equation

(3.7) U{n) - A*U= <5(g)u*

where A*: £7* -*D(A)* is the adjoint of A.4 Since S has its support
4 Since D(A) £ E algebraically and topologically and D(A) is dense in E, we can

identify E* with a subspace of D(A)*, and the inclusion ^*£ί)(A)* is also topologic.
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in t ^ 0, so does U; but, since the vanishing of the expression (3.6)
for all ψ e £^0 means that U is zero for t > 0 we see that supp (U)
reduces to the point 0.

Let now Ω be an interval around the origin, / a Jzf(E, D(A))-
valued function satisfying (3.1) in Ω for some p ^ 0. The function
g = /*w* takes values in E*, is continuous in Ω and satisfies

(3.8) U = g{p)

in Ω. Since U is zero both for t < 0 and t > 0, flr(ί) = P(t) for ί > 0,
g{t) = Q(ί) for £ < 0, both P and Q being polynomials of degree Sp — 1
with coefficients in JK* and such t h a t P(0) = Q(0).

Consider now the different values of p. Iΐp = 0, g=U = 0 and
there is nothing to prove. If p = 1, g is constant in Ω and again
U = 0. Finally, if p ^ 2 C7 has to be of form

m

IO ί/1 (_y / j C v/y ™k

where m = p — 2, u*, , uZ elements of E*.δ Replacing now this
expression for U in the equation (3.7) we get

m m

k = 0 A;=0

Let now q ^ 0 such that g^ ^ m < (g + l)n. By equating coef-
ficients in (3.10) we easily obtain that

u* = -Au?, u* = A*u*f , ufq_1)n = A*u*n, u*n = 0

which shows u* — 0.

LEMMA 3.5. Let {φr} be a generalized sequence in ϋ ^ convergent
to some element φ0 e ^ 0 in the topology of &, v any element of E.
Then G(-)S(φr)v converges uniformly to G(-)S(φo)v on compacts of
t^0 together with all its derivatives.

Proof. Assume—as we may—that φ0 = 0. Let Ω be an open set
containing the origin and let / be the J>f(E, Z)(A))-valued function
associated with S in fl by (3.1). Write formula (3.4) for each uγ —
S(φτ)v (the polynomial in the right-hand side is now dependent on 7
and will be called Pl,p). It follows from (3.5) applied to uτ that Amur-+0
for all m; since S{mn~p)uγ —> 0 in Ω in the sense of distributions, if
φ e ϋ ^ and supp (φ) c Ω,

5 A vector-valued distribution with support in {0} may not necessarily be of the
form (3.9).
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(3.11)

But it is not hard to see that (3.11) implies (due to the fact that deg
Pl>p is uniformly bounded) that Pi,p—»0 uniformly on compacts of R
together with all its derivatives; using this in (3.4) we obtain the
desired result.

4* The case n ^ 3.

THEOREM 4.1. Let n be an integer ^ 3 . Assume that the Cauchy
problem for (2.1) is well set and that Assumption (3.1) is satisfied.
Then D(A) — E, A is continuous and the series

(4.1) ± **
£fo (nk)l

converges in the topology of Jtf(E) for all t > 0. The propagator S
of (2.1) is actually a ^(E)-valued function given by

oo j-nk + n—1
/Λ n\ a/j.\ Ί~ /J-\ x~i ^

*=o (nk + n — 1)1

Conversely, let the series (4.1) be convergent for all £>0. Then the
Cauchy problem for (2.1) is well set and the propagator is given by
the formula (4.2).

We shall find it necessary to use in the sequel a few facts about
analytic functions with values in a quasi-complete barreled locally
convex linear topological space F. A ^-valued function / defined in
a domain D £Ξ C is analytic in D if the quotient of increments

Λ - W + h) - /(*)}

has a limit (in the F-topology) as h-^0 for all zeD. (We shall only
consider the cases F = E, F = £f{E)). All the usual properties of
scalar-valued functions (Cauchy's formula etc.) can be extended to F-
valued functions; they can be developed in power series in the usual
way, the series being convergent for | z — z0 \ < p — dist (zQ, boundary
of D). In general, a power series Σ α Λ ( u - zo)

n with coefficients in F
converges absolutely and uniformly in | z — zQ | < p, diverges in | z — z0 \ >
p, where

p = inf {lim inf | an |~
(1/%); | | e J^\

{^ a set of semi-norms defining the topology of F). All these simple
facts can be proved essentially like in the Banach space case (see [11],
Chapter III, §2). If /(•) is an F-valued function defined in D and
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such that <%*,/> is a (usual) analytic function for all u*eF* then
/ is analytic in the sense outlined above. Likewise, if J5( ) is an Jzf(F)-
valued function such that <(u*, Buy is an ordinary analytic function
for all u* eF*,ueF then B(-) is analytic as an ^(i^-valued func-
tion. The proofs of these results also generalize from the Banach space
case. ([11], Chapter III, § 2, p. 93); in fact, they are only based in the
equicontinuity principle for ^f(F) and F* and in quasi-completeness
of these spaces.

The preceding "weak" characterizations of vector-valued analytic
functions can be used in combination with "scalar" theorems to ob-
tain generalizations to the F-valued case. We shall make use of two
of such extensions:

(a) if / has first continuous partials in D and satisfies the Cauchy-
Riemann equations with respect to two independent directions then it
is analytic

(b) if / is continuous in a domain D, analytic in D minus a
smooth curve Γ, then / is actually analytic in all of D.

We shall also make use of a slight modification of a result of L.
Schwartz (Theoreme XXIV of Chapter VI in [10], p. 198).

AUXILIARY LEMMA 4.2. Let Γ G ^ ' . Define for each φe&,
= φ(t - ξ) .

Assume that for every φ e £$Ό the function ξ —> T(φξ), ζ > 0 can be
extended to a function analytic in a fixed region containing ξ > 0.
Then T itself coincides with an analytic function in ξ > 0.

The proof is almost identical to the one for the result of Schwartz.
Let α, 6, c, d > 0, a < 6, c < d but otherwise arbitrary, &ίa,bi= {φ e &\
supp (φ) £ [α, b]} with the topology generated by the family of norms
\<p\p = maxo^pmaxα<^b |φ(k)(s) |, p = 0,1,2, &r&M the Banach space
of all functions φ m times continuously differentiate in R with sup-
port in [α, b] (norm: | |w), ^ [ c , d ] the space of all continuous functions
in [c, d]. Let r > 0, Br,p: j ^ [ α , δ ] -* <af[βfd] defined by

(4.3) < *

p = 0, 1, . Reasoning exactly like in [10], p. 198, we see that for
some r (depending on α, 6, c, d) the family & = {BrtΊn p ^ 0} is equi-
continuous. Then there exists an integer m ^ 0 and a real number
ε > 0 such that if φ e ^ [ α , 6 ] , | φ |m ^ ε
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in ^icdv Consequently, ^ is as well equicontinuous as a family of
operators from ^ r α ) δ Γ endowed with the ^m-topology-to ^ [ ( ! , d ] . Let
now φ 6 ^j>> 6 ], {φk} a sequence in ^ [ β , 6 ] converging to φ in ^i>, 6 ] . It
is plain from (4.3) that

in the sense of distributions. On the other hand, if k is large enough,

\<Pk\mS\<p\~ + l, then

(4.5) \Br,p(φk)\0^e-\\φ\m + l)

in ςf[βfί]. But (d/dζ)BrJφk) = (p + l)r£ r,p + 1(<^), thus by virtue of
Ascoli's theorem we may assume (passing, if needed, to a subsequence)
that for all p ^ 1, Br,P(φk) is convergent in ^[Ctiγ Then each distri-
bution (φ\rvYιT^v)*Iφ coincides in (c, d) with a continuous function
and by virtue of the estimates (4.5) the set of all these functions is
uniformly bounded in [c, d]. This shows, via the definition of Br>p

that T*Iφ is actually analytic in a neighborhood of [c, d] for any

Finally, let Γ w + 2 the distribution in § 2, χ a function in £& such
that χ = 1 in I ί I ̂  (6 - α)/4, χ = 0 in | ί | > ( 6 - α)/3, & = (α + b)/2.
Plainly ?>(«) - (χΓw + 2)(ί - k) belongs to ^ * 6 ] , while φ{m+2) = τkd + η, τk

the operator of translation by k, η G ^ .
We have

+2) - T*Iη = τ_kT .

Since the left side of the preceding inequality is analytic, so is T in
[c + k, d + k]; since k = (α + 6)/2 can be arbitrarily small and c, d
are unrestricted, the result follows.

Proof of Theorem 4.1. Let α> = exp (2πi/ri), Ck = {ζe C; 2kπi/n <:
arg ζ <; 2(fe + l)πi/n}, k = 0,1, , n — 1. Let 9? be a fixed element
in &Q,ueE. Define 1?-valued functions #0 (in Co), ̂ -1 (in Cw_0 as
follows:

(4.6) gx(ξ + ηω) = ω~~ι Σ ^ G

(4.7) gt(ξ + yω-'*) = ω £ ωJG'

If ζ, ξ', Ύ], rj1 ̂  0 we have, for any two integers p, q ^ 0

This and the regularity results in § 3 show that gQ(gn-i) has continu-
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ous partials of any order in C0(CΛ_i). We compute now the first par-
tials. We have

4r^ Σ
ύζ 3=0

Consequently

(4.8) ( A - ωJ^g0 = G™(η)S(φ$)u - G(y)S™(φξ)u .

Since G{n)(η)S(φξ)u = AG(η)S(φς)u = G(y)AS(φζ)u = G(η)Sw(φξ)u the
right-hand side of (4.4) vanishes. But then (4.8) reduces to the
Cauchy-Riemann equation for g0 (with respect to the directions 1, ω)
and consequently gQ is holomorphic in C°o, the interior of Co. Proceed-
ing in exactly the same way with gn_γ in Cn^ we obtain the equation

which likewise implies that gn_x is holomorphic in CTO__i. By virtue of
Corollary 3.3,

(4.9) go(ξ) = gn_m = S(φ,)u .

This shows that the function g defined as g0 in Co, 0*-i in Cn^ is con-
tinuous in Co U C^-i, and thus analytic there.

Denote now S^S(E) the space of all linear continuous operators
from E to E with the topology of simple convergence (or strong
topology; see [2], Chapter III, § 3). It follows from the Banach-
Steinhaus theorem that £fs(E) is quasi-complete ([2], Chapter III, § 3).
Moreover, any continuous linear functional in Jϊfs(E) can be written

A >]>

where u19 , um e E, uf, , u*teE ([2], Chapter IV, § 2, Proposition
11). Consider the propagator S—as we may—as an element of £2r'(£?s(E))
or, rather, as an element of ^όi^fs(E)) = S^(^o; £fs(E)). It follows
from our results on the function g defined by (4.6), (4.7) and from
the equality (4.9) that the distributions in 3?l obtained from S by
applying arbitrary elements of (J*fs(E))* coincide with functions ana-
lytic in ξ > 0 in particular, with C°° functions. Applying a result in
[8], p. 55 (the change of ^ by ^ 0 has no particular significance),
we see that S itself coincides in t > 0 with a £f(E)-va\ued function
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G( ) infinitely differentiate in the Sfs(E)-topology, that is G( )u is
a C°° function in ζ > 0 for all ueE. Clearly if ueD = Z>(A~) then
Gu coincides with the function defined in § 3. We now extend G to
the complex plane as follows; if ζ = ξωk + Ύ]ωk+1 e Ck

(4.10) G(ξωk + 7](ϋk+1)u = ω-(fc+1) Σ ^ G 1 ' 1 ^ ) ^ 1 1 " " 1 " " ' ' ^ ^ >

0 ^ ft ^ w — 1. It follows from the equicontinuity principle (§ 2) that
the family {G(t); tee}, e any compact subset of (0, co) is equicontinu-
ous in Jϊf(E)({G(t)u; tee} is bounded in E for any ueE). This, and
the fact that G is strongly C°° in ζ > 0 shows that G( ) as defined
by (4.10) has any number of continuous partials in Ck, the interior of
Ck for any ft = 0, , n — 1. An argument similar to the one for
the function g shows that Gu satisfies in each Ck the Cauchy-Riemann
equations, and is thus analytic; a fortiori, G itself, as a ^f(E)-valn-
ed function is analytic in Cl U U CJ_i.

We now examine more carefully the equality (4.10) when ueD.

Let {φn} be a "smoothing kernel" in 2$, i.e., let φn ^ 0, \φndt = 1,

supp(<pj—>0 as n->oo. If I, Ύ] > 0 we have, in view of Lemma 2.3,
S({φn)ζ)S{(φm)r)u = S((φn)η)S((φn)ξ)u; letting m, n —• co w e obtain

(4.11) G(£)G(9) - Gty)G(£) .

Differentiating the relation (4.11) and making use of the new equali-
ties thus obtained in (4.10), we easily see (by applying the fact that
G(ζ)u, ueD is smooth in ζ i> 0) that G(ζ)u, ζeCkis actually continuous
even if ξ or η are zero; thus G(ζ)u is continuous in Ck, except per-
haps at the origin. On the other hand, it is not difficult to see by
using Corollary 3.3 that the different definitions of G match at the
divisory rays ζωk, ξ >̂ 0, ft = 0, , n — 1. Consequently G( )u is con-
tinuous in all of C-except perhaps at the origin; being holomorphic
in Co U U Cn-u it is actually holomorphic in all of C-again, with
the possible exception of the origin.

We apply now the same " regularization" method used to obtain
(4.11) to the equation (2.4). We obtain

(4.12) G(s + t) = Σ G ( i )(s)G ( w-W )0O

for s, t > 0. Applying both sides of this equality to a ueD and using
analiticity of Gu, we can extend (4.12) to all complex z, ζ e C\{0} as
long as z, ζ do not both belong to a divisory ray; in particular

(4.13) G(z + ζ)u =
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if z, ζ G Uϊ=o CZ. But for these values of z, ζ the operators in the
right-hand side of (4.13) are continuous, and then (4.13) can be extend-
ed to all ueE. Observe finally that (4.13) allows us to express Gu
near a divisory ray (or near the origin) in a linear and continuous
way by means of its values away from them, thus Gu is actually
holomorphic in C for any ueF; a fortiori, G is a ^f(E)-γ&lued entire
function.

We compute now the coefficients in the Maclaurin series of G.
According to Corollary 3.3 G{2n~1](0)u = An for ueD; since A is closed
and D dense, D(A) = E and A = G[2n~ι)φ) is continuous. The fact
that G{k)(0) = 0 if k Φ mn - 1, G{mn'1](0) = Am~ι for m ^ 1, can be
proved by using Corollary 3.3 and the denseness of D. Then

Σ ^ A .
k=o (nk + n — 1)1

The convergence of the series for Mn(tA) is clear, as Mn(tA) =
G{n-ί](tlln). The final step of the proof of the direct part of Theorem
4.1 (that is, to show that S = hG) will be left to the next Remark
4.4 and consists in showing directly that (hG){n) — A(hG) = 5 0 1 ; by
uniqueness, it follows that (hG)u—Su for all ueE and then JιG=S.

REMARK 4.3. The proof of Theorem 4.1 depends crucially on the
fact that the nth roots of unity span C, thought of as a real vector
space or, more precisely, on the possibility of writing any ζ e C in
the form ζ = ξωk + ηωk+1 for some integer k, ζ, rj 2> 0, ω = exp (2πi/n).
This is obviously true only if n ^ 3; for if n = 1, ω = 1; if n = 2,
α> = - 1 .

REMARK 4.4. We end the proof of Theorem 4.1 by establishing
the following slightly more general form of its converse part.

LEMMA 4.5. Let a > 0 (not necessarily an integer). Assume
Ae^f(E) and that

Ma(tA)u = Σ ΐ ^ V
1)

converges for all t>0 in E for each ueE. Then the Cauchy problem
for

(4.14) U{a) - AU= T

is well set; the propagator of (4.14) is a C°°, ̂ f(E)-valued function
in t ^ 0 given by

Ma(t) is the Mittag-Leffler function of classical analysis.
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°o -f-ak+a—1

(4.15) S(t) = h(t) Σ -=Λ r- A" ,

series (4.15) being convergent in J*f(E) for all t.

Proof. Since the series defining Ma(tA)u converges for all t, the
same is true of the series defining Ma{ζA)u, ζeC. By virtue of the
Banach-Steinhaus theorem ([2], Chapter III, § 3 Ma(ζA) is a £f{E)-
valued function since Ma(ζA)u is analytic for each ue E, the same
is true of Ma(ζA) as a function with values in £f(E). This is easily
seen to imply convergence of the series in (4.15) in the topology of
j5f(E) for all t, uniformly on compact subsets of R (and thus in
&'(£f(E))). Recall now that, for β > 0 the distribution Yβ e &'
used in § 2 to define fractional derivatives coincides with the function
(h(t)ty-ι/Γ(β). Then

S (α) _ y
/ C O \

V V / O \ Λk\

Consequently S satisfies the equation (2.3) and this implies that U =
S*T satisfies the equation (2.1) for any Te£^i(E). It only remains,
then, the question of uniqueness, which we can verify in the form
(6'), §2. Let u( ) be a E-valued C°° function, null for t^O and such
that

(4.16) u{a)(t) = Au(t)

for t ^ α, a > 0. Take the convolution product of both sides of (4.16)
with the (function) Ya; we obtain u(t) = A(Ya*u)(t) for t ^ a. Iterat-
ing this equality m times w get u(t) — Am(Yma*u)(t) for t ^ a, or

(4.17) w(ί) = [\t -
Γ(ma) JoΓ(ma)

for t ^ a. Observe now that {u(s), 0 ^ s ^ ί} is a bounded set in E
for every t > 0, then as a consequence of the definition of the topology
of ^f(E) and of the fact that the series for Ma(tA) has infinite ra-
dius of convergence in ^f(E), if | | e g7

lim
Γ(ma)

= 0

uniformly for 0 fj s ^ ί. Applying this estimate in the integral (4.17)
we get u(t) = 0 for all t < α. This result, after a clearly permissible
translation is equivalent to (6') of § 2.
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REMARK 4.6. In the case E is a Banach space, J. Chazarain ([12]
and personal communication) has characterized the operators A for
which the Cauchy problem for (4.14) is well set for any a, 0<α<oo
not necessarily an integer in terms of the location of σ(A), the spec-
trum of A and the growth of R(X; A) = (λ/ — A)~\ In particular, if
a > 2 the Cauchy problem for (4.14) is well set if and only if A is
everywhere defined and bounded. This result, as well as the one in
the next section suggest that Theorem 4.1 is probably true for all
α>2, i.e., that every time the Cauchy problem for (4.14) is well set
for a > 2 we have D(A) = E, A is continuous and the series for
Ma(tA) is convergent for all t > 0. However, the method used here,
that is to exploit the simple functional equation (2.4) to extend S to
the complex plane breaks down when a is not an integer. Finally,
note that Theorem 4.1 generalizes Theorem 3.1 of [3] but apparently
only in the case the Cauchy problem for u{n) = An is, in the termi-
nology of [3] uniformly well posed in t ^ 0 (see [12] for a proof). For
if the Cauchy problem for uin) = An is only well posed in t > 0 the
propagator &w_i which plays the role of S in [3] may a priori grow
arbitrarily fast as t -+ 0 and then does not define a distribution in any
obvious way. It is not difficult, however, to include also this case in
our results. In fact let S be a distribution in ^(£f(E, D(A)) satisfy-
ing Equation (2.4); if the regularity results of § 2 are postulated (they
can be easily seen to hold in the situation of [3]) then the proof of
Theorem 4.1 can be carried out just in the same way and its conclu-
sion holds. As for Equation (2.4), it is an immediate consequence of
Equation (2.8) of [3].

5* Exponential increase of S. We relax in this section the
requirement that a be an integer, but we are then forced to impose
restrictions on the growth of S at oo,

A few simple properties of vector-valued Laplace transforms will
be used in the sequel. Denote, as usual, by Sf the space of all in-
finitely differentiable, complex-valued functions φ that decrease at
I co I faster than any power of 1/| 11 together with all their derivatives,
endowed with its usual Schwartz topology ([10], Chapter VII, p. 234).
The space £"(F) (of "tempered", F-valued distributions) is £?(&>; F).
Given ωeR, 0<α>< co we write Γω = (ω, oo); the space (£^'(Γω))(F)
consists of all distributions Te&'{F) such that eλTe&"(F) for all
XeΓω,eλ the C°° function defined by eλ(t) = er11. Any distribution
Te(£"(Γω))(F) has a Laplace transform

2T = (SΓ)(λ), λ = ξ + iη,

a F-valued function holomorphic in Reλ > ω ([8], p. 74). If, in ad-
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dition, T= 0 for t < 0 then for all a>ω, u* eF* there exists a poly-
nomial p such that

(5.1) l<(8Γ)(λ) f u*>|^p( |λ |)

for Re λ 2̂  a (this is an easy consequence of the " scalar-valued"
theorem; see [10], Chapter VIII, p. 310, and [6]) where the polynomial
may depend on u*. Conversely, if L is a F-valued function holomor-
phic in Reλ > ω and such that estimates of the form (5.1) hold for
it, then L = 2T where T is a (unique) distribution in (£f'(Γω))(F),
T = 0 for t < 0 (see again [8], p. 74, and [10], p. 310). If T = f, f
an ordinary F-valued function (say, continuous, zero for t < 0 and
such that {eλ(t)f(t); t ^ 0} is bounded in F for any XeΓω) then 2T
coincides with its ordinary Laplace transform, that is

(2T)(X) = \~e-»f(t)dt .
Jo

Finally, let Te(£"(Γω))(F), Ve^\Γω) (and assume, for the sake
of simplicity, that both V, T are zero for t < 0). Then the Laplace
transform of the convolution V*Te(S"(Γω))(F) is

([9], Proposition 43, p. 186). We shall only use this result for V =
Yβ = (Pf. tβ~ι)IΓ(β)) Yβ e Sf" for all β and its Laplace transform equals
8(F^)(λ) = X~β; by virtue of the preceding observation,

2(Tin))(X) = 2(Y^*T)(X) = Xa2(T)(X) .

We shall find it useful to introduce at this point a new space of
distributions. We call (£/f'(Γω))(F) the set of all distributions in
(&"(Γω))(F) such that, for any λ e Γω

(5.2) eλT= / ( w )

for some m ^ 0, where / is a continuous function defined in R, with
values in F and such that

(5.3) {(1 + |ί |)-'/(ί);ίeΛ}

is a bounded set in F for some p ^ 0. (Note that any Te &\F) that
satisfies the preceding condition belongs to (S^\Γω))(F)). A charac-
terization of some elements in (<9*/(Γω))(F) is given by the following

AUXILIARY LEMMA 5.1. Let Te(^'(Γω))(F). Then
and has support in t ^ 0 if and only if for each a > ω there exists
a polynomial p ^ 0 such that the set
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(5.4) {(1 + p(\ λ D^ίSΓXλ); Re λ ^ a}

is bounded in F.

Proof. Observe first that the function / in (5.2) can be assumed
to be zero for t < 0. For if h is the Heaviside function,

eλT = heλT = hf{m) = (hfYm) - Σ V } ® /'"-^(O) .
i=-i

Consequently g = hf - Σfii1 Γm_, / ( m-W )(0) (which is zero in t < 0)
has the same m-th derivative as /. If g is not continuous, replace

m by m + 1, g by \ #(s)ds.
Jo

We now use (5.2) for λ = α', α) < α' < α, and the relation

(8Γ)(λ) = (8(ββ,Γ))(λ - a') . Since

(«(eα,T))(λ) = (8(/(m)))(λ) = λw(S/)(λ) and, on the other hand

I (8/)(λ) I ̂  - — ^ , R e λ ^ ε

for any continuous semi-norm | | in F and any ε > 0 (the constant
K may depend on | |, ε) the result follows. Conversely, assume that
(5.4) is bounded for all a > ωy p the polynomial corresponding to α,
m = degree of p, ω < af < α. Define

for ί G R. It is not difficult to see that g is a continuous function,
zero for t ^ 0, that the set {β~α/ί/(£); ^ e i2} is bounded in F and that

(5.5) (8/)(λ) = λ-<™+2)(ST)(λ)

in R e λ > α ' . Equality (5.5) and uniqueness of Laplace transforms
plainly imply

Observe, finally, that

w+2/m + 2

βαΓ = ea(e_a(eaf)Ym+2) = Σ .
^=°\ 3

which ends the proof.

THEOREM 5.2. Let a > 2. Assume the Cauchy problem for the
equation
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(5.6) U(a) - AU= T

is well set and that the propagator S belongs to the space

, D(A))

for some ω, 0 tί ω < oo, Then A is continuous, D(A) — E, R(X; A) =
(XI — Ay1 exists for | X | large enough and the function R( A) is
analytic at oa. Conversely, the preceding conditions imply that the
Cauchy problem for (5.6) is well set and that S e {£f}'{Γ ω))(Jέp {E)) for
some ω < oo.

Proof. Taking Laplace transforms of both sides of the equation
(2.3) (that is, F_Λ*S — AS = S (g) /) satisfied by the propagator we
obtain

(5.7) (\"I - A)(2S)(X) = I

for R e λ > ω , where (SS)(λ) is a J2f(2£, J3(A))-valued holomorphic func-
tion. By virtue of Lemma 2.3 if u e D(A) we also have the equality

Y_a*(Su) - S(Au) = δ (g) u

thus

(5.8) (2S)(X)(XaI - A)u = u

as well. But equalities (5.7), (5.8) plainly imply that R(Xa; A) exists
and equals (8S)(λ) for Re X > ω. Since {μ G C; μ = λα, Re λ > ω) con-
tains a neighborhood of co if a>2 (more precisely, the region | λ | >
r = (ω2 + τ2)a'\ T = ωtg(π/a)), R(X; A) exists for | λ | large. We develop
now i2( ;A) in Laurent series around c^

(5.9) R(X; A) = Σ λ-' JDy + A + Σ λ ' ^ i
y--i j=i

where Z)y, if, are elements of S^(E, D(A)). Using the relation

(XI -

in (5.9) and equating coefficients in the series so obtained we get the
system of equations

Ds+ι = ADS, o £= 1

( 5 . 1 0 ) ^

K3 = AKi+ι, j ^ l .

Applying now Lemma 5.1 we see that R(X; A) = (SS)(λ1/α) increases
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at c>o less than a polynomial, and then Km = 0 for some m >̂ 1; using
equations (5.10), we get Km_γ = = Kγ = 0, Do = 0, D, = I and con-
sequently A — D2; this shows that A is continuous and that R(>; A)
is analytic at co as claimed.

Assume now that A is continuous and that R(X; A) exists in a
neighborhood of ©o and is analytic there. Since the development of
R( A) at ©o is

; A) = Σ λ-(''+1)A'', I λ I > r
3 -- «

we see that if | | is a continuous semi-norm in ,9^{E), ε > 0

(5.11) \Aj\

for some K< ©o. But then the conditions of Lemma 4.5 are satisfi-
ed and consequently the Cauchy problem for (5.6) is well set. We
now estimate the propagator S. By virtue of (5.11) and of the for-
mula (4.15),

It follows from results in [5], Chapters IV, V, and VI on asymptotic
estimates at ^ of Maclaurin series that

Σ-
Γ(ak -f a) a

as t —> co 9 thus

S(t) I ^ K' exp ((r + ε)1/rt;

for ί ^ 0. This shows that S e (^/(Γ(M_2^(E)) for ω = rλln and there-

fore ends the proof.

A number of comments are in order. If F is a Banach space and
Te(&"(Γω))(F), then Te(£S/(Γω))(F); the reason being that, since
F* is a Banach and then a Baire space, a category argument allows us
to pass from the "pointwise" estimates (5.1) for ST to the "uniform"
estimate in Lemma 5.1. Thus we can change (S^/(Γω))(^(Ef D(A))
by (^'(Γω))(^(E, D(A)) in the statement of Theorem 5.2. In the
general case these two spaces may be different, and we do not know
whether the change is possible, i.e., whether or not S has to be as-
sumed to have "finite order" globally.

Consider the conditions (1̂ ) A is continuous and the series defin-
ing Ma(tA) converges for all t. (2) R(X; A) exists for large | λ | and
is analytic at ^ f If E is a Banach space, (la) for any a, 0 < a < oo
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and (2) are equivalent to the fact that A is bounded. In the general
case we can only say that lα => 1̂  if a <̂  β, 2 ==> lα, 0 < a < oo. The
reverse implications are in general false, as we shall now see.

Let E be the space of all functions x —•> u(x) defined and continuous
in x ^ 0 and such that

\u\n = sup \u(x)enx\ < co ,

n = 0, 1, . If we assign to E the topology generated by the family
ĝ  = {| . \Q9 ...} of semi-norms E becomes a Frechet space. If 0</3< oo
and we define

;) = xβu(x)

then ^ is a continuous operator in 2£. In order to compute Ma(tAβ)
we use the following asymptotic estimate for the Mittag-Leffler func-
tion Ma,

(5.12) M(ta) = — β'(l + o(l))
a

(see again [5], Chapter VI). Let now t be fixed, α ^ β,j < k. The
operator Σ*=i (tAβ)

p/Γ(ap + 1) coincides with the operator of multiplica-
tion by

ry.Λ*) = Σ (txβ)p/Γ(ap + 1) .
P.:.j

Then if ueE,n^0

I rJ>Λw |n ^ (max | rjfk(x) \ e~2x) \ u \n+2 .

Now, by virtue of (5.12)

I rjtk(x)e~2x I £ Ma{txβ)e~2x ^ K exp (x'5/" - 2α)

for α; ̂  0, K independent of j , k. Since, on the other hand,
\imj)k_ίCOrj>k(x) = 0 uniformly on compacts of x ^ 0, it is clear that the
series for Ma(tAβ) converges for all t to the operator of multiplication
by Ma(txβ). But if we assume that a < β and the series for Ma(tAβ)
is convergent, then the limit has also to be the operator of multiplica-
tion by Ma(txβ); but, by virtue of (5.12), this operator is not continuous
in E (the operator of multiplication by exp (x7), 7 > 1 is not continu-
ous in E). Consequently Aβ satisfies la for a^β but not for a<β.

It is not difficult to construct an operator satisfying la for any
a > 0 but not 2; in fact, let

(Au)(x) = log (1 + x)u(x) .
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By small modifications of the reasoning above it can be shown that
Ma(tA) converges for all a > 0, t e R. But σ(A) coincides with the
positive real axis, then 2 is violated. Applying the results of Sections
4 and 5 we see that the Cauchy problem for

Wa) - AβU= T

is well set for a ;> β (the propagators increase at co faster than any
exponential), is not well set if 2 < a < β, at least if a is an integer.
In contrast, the Cauchy problem for

U{a) - AU= T

is well set for any a > 0 but again none of the propagators is of
exponential growth at oo.

6- The case 0 < a ^ 2.

THEOREM 6.1. The Cauchy problem for the equation

(6.1) Ula) - AU= T

is well set and the propagator S belongs to the space

, D(A))

if and only if R(Xa; A) exists for Re λ > ω and for each α > ω there
exists a polynomial p 2: 0 such that

(6.2) {(1 + p(\ λ \))~ιR(Xa; A); Re λ > a}

is equicontinuous in ^'\E, D(A)) (or in j^

Proof. The necessity of the conditions can be proved as in Theo-
rem (5.2) by showing that 2S = R(Xa; A) and then using Lemma 5.1.
As for the sufficiency, it follows from equicontinuity of (6.2), from
the considerations opening § 5 and again from Lemma 5.1 that

B(\a; A) = 2S

where S is a distribution in (S^/(Γω))(^(E, D(A)) with support in
t ^ 0. Let now Z = S{a) - AS. Since 2Z = /, we see that Z = δ (g) /,
which shows that S satisfies (2.3); then S*T satisfies (6.1) for any
Te&'(E). It only remains then the question of uniqueness of solu-
tions of (6.1), that is to verify (b) (or b') of §2. Let then u(-) be a
C°°, Z)(A)-valued function, u(t) = 0 for t <£ a and such that

u{a)(t) - Au(t) = 0
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for t ^ 6, a ^b (we may plainly assume that 6 = 0). Let now φ e £&,
φ(t) = 1 in [α, b]. Then

(6.3) (φu>Ya)(t) - A(φu)(t) = g(t)

where g(t) is still zero for t ^ 0 ((φu)(a)(t) = u(a)(t) for ί ^ 0) but it
also vanishes for large t. We take Laplace transforms of both sides
of (6.3) and obtain, after multiplying by R(Xa, A)

(6.4) (S(9*0)(λ) = #(λα; A)(%)(λ) .

We use now the (easily verifiable) fast that the set {(8flr)(λ); Reλ >̂ 0}
is bounded in E, the relation (6.4) and equicontinuity of the set (6.2)
to deduce that if Re λ > a the set

{(1 + p(\ X \))-ι(&(φu))(X); Re λ ^ a}

is bounded in E (p the same polynomial in (6.2)). Applying Lemma
5.1 we see that φu (hence u) is zero for t ^ 0. This ends the proof
of Theorem 6.1.

Theorem 6.1 reduces for a = 1, £ a Banach space to a result of
Lions (see [7], Theoremes 6.1, 5.1 and Corollaire 4.1) that gives neces-
sary and sufficient conditions for the Cauchy problem for U' — AU—T
to be well set in terms of the theory of distribution semi-groups of
exponential increase at °o.

The author is grateful to Professor J. L. Lions for bringing these
problems to his attention and for most valuable suggestions, as well
as to the referee for spotting several errors in the first version of
the paper.

Results in this article have been announced (under the title "Sur
quelques equations differentielles pour les distributions vectorielles) in
C. Rendus Acad. Sci. Paris 268 (1969), 707-709.
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