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MATRIC POLYNOMIALS WHICH ARE HIGHER
COMMUTATORS

EDMOND D. DIXON

Let A be an n X n matrix defined over a field F of
characteristic greater than n. For each n x n matrix X we
define

(1) X1 = [A,X]o = X

Xh+ί = [A, X]h = [A, X,] = AXh - XhA

for each positive integer h. Then X is defined to be A>com-
mutative with A if and only if

(2) [A,X]k = 0, [A, JΓU-x * 0 .

Let P(x) be a polynomial such that P{A) Φ 0. Specifically,
assume that

(3) P(A) = 2 * ^ * 0

where p is a positive integer, each h is a scalar from F, and
Λp =£ 0. In this paper we study, for each positive integer Jc,
the matrices X such that

(4) [A,X]k = P{A).

We specify a polynomial P(A) in the form (3) and show how
the maximal value of k for which (4) has a solution depends
on the polynomial P(A). In Theorem 3 it is assumed that A
is nonderogatory. Since the only matrices which commute
with A in this case are polynomials in A, we are, in effect,
establishing a more precise bound for k in (2) by predetermin-
ing Xk.

In the derogatory case, a matrix which is not a polynomial
in A may commute with A. However, Theorem 4 shows that
if we choose a polynomial P(A) as Xu, then the maximal value
of k depends on the polynomial P.

The problem of determining the maximal value of k for which (2)
has a solution has been studied by Roth [8] and others. Roth's re-
sults are stated in terms of the maximal degrees of the elementary
divisors of the matrix A. In particular, he showed that there exists
a matrix X satisfying (2) for some A if k ^ 2n — 1.

Nilpotent case* Throughout the paper we assume that A is in
Jordan canonical form, since [a, X]k = P(A) if and only if

[BAB~\ BXB-% = BP(A)B~1 .
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The following notation introduced by W. V. Parker is used to
simplify the proofs of the theorems.

DEFINITION. Let Ms for any integer s such that — n + 1 <: s <Z
m — 1 be the set of all n x m matrices in which all elements are zero
except those for which j — i = s(i denotes the row and j denotes the
column in which the element appears). If s > m — 1, Ms is defined to
be the set consisting of only the zero matrix. A particular member
of Ms will be denoted by Ds and will be called an s-stripe matrix.
Note that if X is any n x m matrix then X can be written uniquely
as X = ΣΓ=~-̂ +i Ds where Ds is an element of Ms.

If Aγ and A2 are nxn and mxm nilpotent nonderogatory matri-
ces in Jordan canonical form and if Ds - (di5) is an n x m element
of Ms where s is any integer such that — n-hl^s^m — 1, let
f(Ds) = AιDs - DSA2 and fk(Ds) = AJk-\Ds) - fk~\Ds)A2. It is easily
seen that fk(Ds) is an element of Ma+k. Notice that the element in
the ίj position of /(D s), where j — i = s + 1, is di+1>j — difύ_γ for iΦl.
The element in the nj position is — dn,j_ι if j Φ 1; the element in the
il position is di+ltί if i Φ n; and the element in the nl position is
zero.

LEMMA 1. If A is an n x n nilpotent nonderogatory matrix in
Jordan canonical form, if X is an n x n matrix, and if

M - [A, X] = AX - XA ,

then the trace of M is zero and the trace of every subdiagonal stripe
of M is zero.

Proof Any nxn matrix X may be written as Σ?~-«+i D8 where
Ds is an element of M8. Thus

[A, X] = ΓA, Σ DS~\ = Σ [A, Ds] .
L s^ — n + l J s ——n + l

If s < 0, then [A, Ds] is a matrix such that the sum of the nonzero
elements is zero. The matrix [A, Ds] forms the (s + l)-stripe of M.
This completes the proof of the lemma.

If A is an n x n nilpotent nonderogatory matrix in Jordan canoni-
cal form then for any positive integer s < n, (AT)SAS plays the part
of a "lower identity" which we denote by Ls. That is,

(5) W *
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Similarly,

( 6 ) A*(ATY

which we call an "upper identity".
Using the above, we prove the following lemma.

LEMMA 2. Let A be an n x n nilpotent nonderogatory matrix
in Jordan canonical form. Let Ls and Us be as defined above. Then

( 7 ) LAI - A)Ls+k = (I- A)Ls+k

and

( 8 ) Us+k(I-A)Us= Us+k(I-A) ,

where k is any positive integer less than n — s.

Proof. If we partition I — A as follows:

- (M °\( " [ * N)
where M is s x (s + k), then

LAI-Λ^^, ; ) ^ , = (°

The proof of (8) is similar.
Let V = (1, 1, •••, 1), a 1 x n vector, and let Vs = VDS. That

is, Vs is the vector in which each element represents a column sum
in D s , and since the columns in Ds have at most one nonzero element,
Vs simply displays these elements in the form of a row vector. To
simplify the notation we will let Vs+k = VDs+k where Ds+k = [A, Ds]k

for some matrix Ds. In other words, the added subscript, k, implies
that Vs+k is the result of k commutations. From now on, s will de-
note a nonnegative integer, 0 ̂  s <̂  n — 1, and subdiagonal stripes of
X will be denoted by D_s. Also, the nontrivial subvector in Vs will
be denoted by wn_s1 and the nontrivial subvector in Vs will be denoted
by wn-s- Thus

{ 9 ) Vs = (0, 0, , 0, dlfβ+1, d2>s+2, . . . , dn_sJ - (0β, w M ) .

Similarly,

(10) F_ s = (d.+ l ϊ l, ds+2>2, , 4,%_ s, 0, , 0) = ( ώ _ s , 0.).

The following lemma is a vital part of the proof of Theorem 1.
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LEMMA 3. If k is a positive integer and if V89 A, U8, and L9

are as defined above, then
( i ) Vs+k = V.(I - A)kLk,
(ii) F_ s + f c = VL. US(I - A)k if k ̂  s,
(iii) V-+k = VL,E7,(J - A)kLk_s if k>s.

Proof. Case (i). If fc = 1, from (7) and (9)

(0 0
- A)La+1 = (0., wu_.)

In this case N has dimensions (n — s)x(n — s — 1), so N has ( — l) ' s
on the diagonal and Γs on the first subdiagonal. But

(0s, wn_M j = (0β, wn_s)N - (O.+1, wn_s^)

where wn_s^ has only n-s — 1 elements of the form (di+1)S+i+1 — di>s+i)r

and this is V8+1. Therefore

V.+ι = V.(I - A)LS+1 .

Similarly,

Vs+2 = Vs+ι(I - A)Ls+2 = V.(I - A)L8+1(I - A)Ls+2.

But by Lemma 2,

Lβ+1(I - A)Ls+2 = (I - A)Ls+2 .

Thus Vs+2 = V8(I - A)2Ls+2, and by induction it follows that

(11) V8+k = VS(I - A)"L8+k .

In particular,

(12) F0 + f c - VQ(I - A)kLk .

Case (ii). From (10),

where M has dimensions (n - s) x (n - s + 1) and so has Γs on the
diagonal and ( - l ) ' s on the first superdiagonal. But

(M 0
(wn__s+11 0β)l

where ώ n _ s + 1 has w - s + 1 elements
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ds+i+1,i+ι - ds+i,i> (i = 0, 1, , n - s + 1) ,

and ds>0 = dn+Un_s+1 = 0. This is V[A, D_s] = F_s+i Similarly,

F_ s + 2 = V-.+JJUI ~ A) = F_SE/S(/ - A) [/,_,(/ - A) .

But by Lemma 2, C7S(/ - A)US^ = US(I - A). Thus

F_ s + 2 = F_ S C7 S (I-A) 2 ,

and by induction it follows that if k <̂  s,

(13) V_s+k= V-aU.(I-A)k.

In particular,

(14) V_s+S= V-.U.(I-A) .

Case (iii). When k > s, we divide the problem into two parts.
Using case (i) we have

(15) F_ s + , = F_ s + S(/ - A)k~sLk_s .

But by case (ii), F_ s + S = F _ s ί 7 s ( I - A)s. Thus

F_ s + , = F_SC/S(/ - A)S(I - A)k-Lk_a

= V_SUS(I - AfLk_s .

This completes the proof of the lemma.

Using the above lemmas we prove Theorem 1, which establishes
a precise upper bound for k in the case where A is nilpotent and
[A, X]k = P(A) Φ 0.

THEOREM 1. Let A be an nxn nilpotent nonderogatory matrix.
Let p be a positive integer such that p < n. Let

Xi(i = p, p + 1, , n - 1)

be scalars from F such that Xp Φ 0. Then there exists a matrix X

such that

(16) [A,X]k = Σ M ^ 0
i = P

if and only if k ^ 2p.

Proof. We first prove the case where λ* = 0 for all i > p. We
may assume without loss of generality that λp = 1 since [A, X]k =
Ap if and only if [A, XPX]k = XVA

P.
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If there exists a matrix X satisfying (16) where A is nilpotent,
then [A, X]k = [A, Σ?r i % + 1 Ds]k = Ap. Thus we must have

(0 if s Φ p
<") [A, Ds_k]k = ^ .

(A29 if s = p
Therefore, for s = p,

VIA, Dp_k]k = TV*>+* = VDP = VA*

= (0,0, . . . , 0 , 1 , 1 , - . . , 1 ) ,

which we will call (0p, En_p). If k £ p, from (11),

Vp-k(I - A)kLp.

Using an argument similar to that used in proving lemma 2, we

find that ( I — A)kLp can be written as (Q ^ j where Nk has dimen-

sions (n — p + k)x(n — p). Since this matrix has a square submatrix

of order n — p with Γs on the diagonal, zeros below, it has rank n — p.
Now rewriting (12) as

0 0

we see that solving this equation is equivalent to solving En_p =

(wn_p+k)Nk. The augmented matrix for this equation is (-/ ), and

since JV"fc has rank n — p, the augmented matrix also has rank n — p.
Thus the system has a solution with (% — p + k) — (n — p) = k para-
meters.

Now if k > p we refer to equation (15) and set

(18) V<p_k)+k - VP-kUk_p(I - A)kLp .

/0
But the product on the right may be written as (~

If k = 2p then Hk is square of order n — p. Since it has minus
signs in a checkerboard pattern, we may transform it into a matrix
with nonnegative elements or nonpositive elements (depending on whe-
ther p is even or odd) by multiplying on the left and right by the
matrix D = diag. ( — 1,1, — 1, •••, (-l)n~p). Thus the determinant of
Hk will be unchanged and the resulting matrix has determinant

(2p +
n — p—l I 0 1

(-1)" Π \ V ' Φ 0
i p + l\

P

(see Muir, Vol. 3, p. 451). Hence Hk is nonsingular. Furthermore,
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( — l)pHk is positive definite since the principal subdeterminants are all
positive by the same argument.

Thus if k = 2p we may rewrite the equation (18) as

o o*
But solving this system is equivalent to solving
(19) En_p = wn_pHk ,

and since Hk is nonsingular, this system has a unique solution. A
solution for k = 2p implies the existence of matrices X satisfying
[A, X]k = Ap for all k < 2p.

Next we show that there is no solution for k = 2p + 1, and thus
for any k > 2p, by the following argument. Since Hk is nonsingular,
equation (19) is equivalent to En_pΉk

ι — wn_p. Multiplying both sides
of this equation by the (n — p) x 1 column vector E^p gives

(20) En_pHk

ιEτ

n_p = wn_pE^p = ΣΪdP+iti .
i = ί

This is the sum of the nonzero elements in ZLP. By Lemma 1, if
[A, X] = D_p, then Σ?=ip dp+ifi = 0. But since (-l)pHk is positive de-
finite, (--l^iϊjΓ1 is also. Thus the product on the left in (20) is not
zero and there does not exist a solution for k > 2p.

This completes the proof in the case where [A, X]k = XAP. In the
case where [A, X]k = XPA

P + XP+1A
P+1 + + λΛ_1A

w"1, we see that
X may be written as Σ!=P XU where [A, XH]k = λ̂ A*.

If A is derogatory then the Jordan canonical form for A is diag.
(AL, A2, , Aa) where s > 1. Theorem 1 can also be extended to the
derogatory case. The method of proof is similar to that used in
Theorem 1.

THEOREM 2. Let A be an n x n nilpotent matrix. Let p be a
positive integer such that p < w{ where n{ is the dimension of the
largest block in the Jordan canonical form for A. Let λ, (i = p,
p + 1, , n — 1) be scalars from F such that Xp Φ 0. Then there
exists a matrix X such that

(23) [A, X]k = Σ 1 λ i A
i ^ 0

if and only if k ^ 2p.

Some remarks about the integer p are in order here. If the Jordan
canonical form for A is diag. (A19 A2, , As) we may assume without
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loss of generality that the dimension % of A{ is greater than or equal
to the dimension ni+1 of Aί+1 for i = 1, 2, , s — 1. Since Ap = diag.
(Af, A?, •••, Aj), #> must be less than n^ if Ap is to be different from
zero. However, A? may be zero for some i > 1.

Notice that since the Jordan canonical form for a nilpotent matrix
is the same as the rational canonical form for that matrix, the cons-
tructions for the matrices X in Theorems 1 and 2 may be done with
rational operations.

The general case* Here it is not assumed that A is nilpotent.
We assume that A is in Jordan canonical form. Again we choose a
polynomial P(A) which we desire to write as a higher commutator of
A. Theorems 3 and 4 establish the maximal value for k in equation (4).

THEOREM 3. Let A be an nxn nonderogatory matrix in Jordan
canonial form al + N where N is the nilpotent matrix with Vs on
the first super diagonal and zeros elsewhere. Let P(A) be a polynomial
in A such that P(A) Φ 0. Let t be the multiplicity of a as a root
of P(x). Then there exists an nxn matrix X such that

(24) [A, X]k = P(A)

if and only if k ̂  2t.

Proof. If A = (al + JSΓ) then

[A, X]k = [(al + N), X]k = [al, X]k + [N, X]k = [N, X]k .

Thus condition (24) becomes [N, X]k = P(al + N) = Σ?==ί λ ; ^ where
X. = p{ί)(a)/il. Now by Theorem 1, (24) has a solution if and only if
k < 2t.

THEOREM 4. Let A = diag. (A19 A2, , As) where A{ = (aj +
(i — 1, 2, , s) where each N{ is as in Theorem 3. Let P be a poly-
nomial such that P{A) Φ 0. Let Ah, Ah, , Ah be the blocks of A
such that P(Ai.) Φ 0. Let m^ be the multiplicity of (x — a^) in P(x).
Let m = min. {m .̂}. Then there exists an nxn matrix X such that

(25) [A, X]k = P(A)

if and only if k <, 2m.

Proof. If A = diag. (A1? A2, , As) then

P(A) = diag. (PiAJ, P(A2), , P(AS)) .

If P(At) = 0 for some At, then there exists a matrix Xt Φ 0 such that
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[At, Xt]k = P(At) = 0 for any positive integer k. Thus we need only
consider those Ai for which P(Ai) Φ 0. Assume that P(^) Φ 0 for all
i = 1, 2, , s. Then if we let

X = άmg. (X19 Xi9 . . . , X S )

where [Aiy Xi)k = P(Ai), the matrix X will satisfy (25). Assume with-
out loss of generality that the degree of (x — aλ) in P(x) is m —
min. {mi}. Then [Aί9 X,] = P(Aλ) if and only if k ^ 2m. Thus [̂ 4, X]k =
P(A) if and only if k ^ 2m.
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