MATRIC POLYNOMIALS WHICH ARE HIGHER COMMUTATORS

Edmond D. Dixon

Let A be an $n \times n$ matrix defined over a field F of characteristic greater than n. For each $n \times n$ matrix X we define

(1)
$$X_1 = [A, X]_0 = X$$

 $X_{h+1} = [A, X]_h = [A, X_h] = AX_h - X_h A$

for each positive integer h. Then X is defined to be k-commutative with A if and only if

$$(2)$$
 $[A, X]_k = 0$, $[A, X]_{k-1} \neq 0$.

Let P(x) be a polynomial such that $P(A) \neq 0$. Specifically, assume that

$$(3) P(A) = \sum_{i=p}^{n-1} \lambda_i A^i \neq 0$$

where p is a positive integer, each λ_i is a scalar from F, and $\lambda_p \neq 0$. In this paper we study, for each positive integer k, the matrices X such that

(4)
$$[A, X]_k = P(A).$$

We specify a polynomial P(A) in the form (3) and show how the maximal value of k for which (4) has a solution depends on the polynomial P(A). In Theorem 3 it is assumed that Ais nonderogatory. Since the only matrices which commute with A in this case are polynomials in A, we are, in effect, establishing a more precise bound for k in (2) by predetermining X_k .

In the derogatory case, a matrix which is not a polynomial in A may commute with A. However, Theorem 4 shows that if we choose a polynomial P(A) as X_k , then the maximal value of k depends on the polynomial P.

The problem of determining the maximal value of k for which (2) has a solution has been studied by Roth [8] and others. Roth's results are stated in terms of the maximal degrees of the elementary divisors of the matrix A. In particular, he showed that there exists a matrix X satisfying (2) for some A if $k \leq 2n - 1$.

Nilpotent case. Throughout the paper we assume that A is in Jordan canonical form, since $[a, X]_k = P(A)$ if and only if

$$[BAB^{-1}, BXB^{-1}]_k = BP(A)B^{-1}$$
 .

The following notation introduced by W. V. Parker is used to simplify the proofs of the theorems.

DEFINITION. Let M_s for any integer s such that $-n + 1 \leq s \leq m-1$ be the set of all $n \times m$ matrices in which all elements are zero except those for which j-i=s (*i* denotes the row and *j* denotes the column in which the element appears). If s > m - 1, M_s is defined to be the set consisting of only the zero matrix. A particular member of M_s will be denoted by D_s and will be called an s-stripe matrix. Note that if X is any $n \times m$ matrix then X can be written uniquely as $X = \sum_{s=-m+1}^{m-1} D_s$ where D_s is an element of M_s .

If A_1 and A_2 are $n \times n$ and $m \times m$ nilpotent nonderogatory matrices in Jordan canonical form and if $D_s = (d_{ij})$ is an $n \times m$ element of M_s where s is any integer such that $-n + 1 \leq s \leq m - 1$, let $f(D_s) = A_1D_s - D_sA_2$ and $f^k(D_s) = A_1f^{k-1}(D_s) - f^{k-1}(D_s)A_2$. It is easily seen that $f^k(D_s)$ is an element of M_{s+k} . Notice that the element in the ij position of $f(D_s)$, where j - i = s + 1, is $d_{i+1,j} - d_{i,j-1}$ for $i \neq 1$. The element in the nj position is $-d_{n,j-1}$ if $j \neq 1$; the element in the i1 position is $d_{i+1,1}$ if $i \neq n$; and the element in the n1 position is zero.

LEMMA 1. If A is an $n \times n$ nilpotent nonderogatory matrix in Jordan canonical form, if X is an $n \times n$ matrix, and if

$$M = [A, X] = AX - XA$$

then the trace of M is zero and the trace of every subdiagonal stripe of M is zero.

Proof. Any $n \times n$ matrix X may be written as $\sum_{s=-n+1}^{n-1} D_s$ where D_s is an element of M_s . Thus

$$[A, X] = \left[A, \sum_{s=-n+1}^{n-1} D_s\right] = \sum_{s=-n+1}^{n-1} [A, D_s]$$

If s < 0, then $[A, D_s]$ is a matrix such that the sum of the nonzero elements is zero. The matrix $[A, D_s]$ forms the (s + 1)-stripe of M. This completes the proof of the lemma.

If A is an $n \times n$ nilpotent nonderogatory matrix in Jordan canonical form then for any positive integer s < n, $(A^T)^s A^s$ plays the part of a "lower identity" which we denote by L_s . That is,

$$(5)$$
 $(A^{T})^{s}A^{s} = \begin{pmatrix} 0 & 0 \\ 0 & I_{n-s} \end{pmatrix} = L_{s}$.

Similarly,

(6)
$$A^{s}(A^{T})^{s} = \begin{pmatrix} I_{n-s} & 0 \\ 0 & 0 \end{pmatrix} = U_{s}$$

which we call an "upper identity".

Using the above, we prove the following lemma.

LEMMA 2. Let A be an $n \times n$ nilpotent nonderogatory matrix in Jordan canonical form. Let L_s and U_s be as defined above. Then

(7)
$$L_{s}(I-A)L_{s+k} = (I-A)L_{s+k}$$

and

(8)
$$U_{s+k}(I-A)U_s = U_{s+k}(I-A)$$
,

where k is any positive integer less than n - s.

Proof. If we partition I - A as follows:

$$(I-A)=egin{pmatrix} M&0\ *&N \end{pmatrix}$$

where M is $s \times (s + k)$, then

$$L_s(I-A)L_{s+k} = egin{pmatrix} 0 & 0 \ * & N \end{pmatrix} L_{s+k} = egin{pmatrix} 0 & 0 \ 0 & N \end{pmatrix} = (I-A)L_{s+k} \; .$$

The proof of (8) is similar.

Let $V = (1, 1, \dots, 1)$, a $1 \times n$ vector, and let $V_s = VD_s$. That is, V_s is the vector in which each element represents a column sum in D_s , and since the columns in D_s have at most one nonzero element, V_s simply displays these elements in the form of a row vector. To simplify the notation we will let $V_{s+k} = VD_{s+k}$ where $D_{s+k} = [A, D_s]_k$ for some matrix D_s . In other words, the added subscript, k, implies that V_{s+k} is the result of k commutations. From now on, s will denote a nonnegative integer, $0 \leq s \leq n - 1$, and subdiagonal stripes of X will be denoted by D_{-s} . Also, the nontrivial subvector in V_s will be denoted by w_{n-s} , and the nontrivial subvector in V_s will be denoted by \hat{w}_{n-s} . Thus

$$(9) V_s = (0, 0, \dots, 0, d_{1,s+1}, d_{2,s+2}, \dots, d_{n-s,n}) = (0_s, w_{n-s})$$

Similarly,

(10)
$$V_{-s} = (d_{s+1,1}, d_{s+2,2}, \cdots, d_{n,n-s}, 0, \cdots, 0) = (\hat{w}_{n-s}, 0_s).$$

The following lemma is a vital part of the proof of Theorem 1.

LEMMA 3. If k is a positive integer and if V_s , A, U_s , and L_s are as defined above, then

Proof. Case (i). If k = 1, from (7) and (9)

In this case N has dimensions $(n - s) \times (n - s - 1)$, so N has (-1)'s on the diagonal and 1's on the first subdiagonal. But

$$(0_s, \, w_{n-s}) egin{pmatrix} 0 & 0 \ 0 & N \end{pmatrix} = (0_s, \, w_{n-s}) N = (0_{s+1}, \, w_{n-s-1})$$

where w_{n-s-1} has only n-s-1 elements of the form $(d_{i+1,s+i+1}-d_{i,s+i})$, and this is V_{s+1} . Therefore

$$V_{s+1} = V_s(I-A)L_{s+1}$$
 .

Similarly,

$$V_{s+2} = \ V_{s+1}(I-A)L_{s+2} = \ V_s(I-A)L_{s+1}(I-A)L_{s+2}$$
 .

But by Lemma 2,

$$L_{s+1}(I-A)L_{s+2}=(I-A)L_{s+2}$$
 .

Thus $V_{s+2} = V_s(I-A)^2 L_{s+2}$, and by induction it follows that

(11)
$$V_{s+k} = V_s (I-A)^k L_{s+k}$$
 .

In particular,

(12)
$$V_{0+k} = V_0 (I-A)^k L_k$$
.

Case (ii). From (10),

$$V_{-s}U_s(I-A) = V_{-s}inom{I_{n-s}}{0} inom{M}{*} inom{0}{*} = (\widehat{w}_{n-s}, \ 0_s)inom{M}{0} inom{0}{0}$$

where M has dimensions $(n - s) \times (n - s + 1)$ and so has 1's on the diagonal and (-1)'s on the first superdiagonal. But

$$(\hat{w}_{n-s+1}, 0_s)igg(egin{array}{cc} M & 0 \ 0 & 0 \ \end{pmatrix} = (\hat{w}_{n-s+1}, 0_{s-1})$$

where \hat{w}_{n-s+1} has n-s+1 elements

$$d_{s+i+1,i+1} - d_{s+i,i}$$
, $(i=0,\,1,\,\cdots,\,n-s+1)$,

and $d_{s,0} = d_{n+1,n-s+1} = 0$. This is $V[A, D_{-s}] = V_{-s+1}$. Similarly,

$$V_{-s+2} = V_{-s+1} U_{s-1} (I-A) = V_{-s} U_s (I-A) U_{s-1} (I-A)$$
 .

But by Lemma 2, $U_s(I-A)U_{s-1} = U_s(I-A)$. Thus

$$V_{-s+2}=\,V_{-s}U_s(I-A)^2$$
 ,

and by induction it follows that if $k \leq s$,

(13)
$$V_{-s+k} = V_{-s}U_s(I-A)^k$$
.

In particular,

(14)
$$V_{-s+s} = V_{-s}U_s(I-A)^s$$

Case (iii). When k > s, we divide the problem into two parts. Using case (i) we have

(15)
$$V_{-s+k} = V_{-s+s}(I-A)^{k-s}L_{k-s}.$$

But by case (ii), $V_{-s+s} = V_{-s}U_s(I-A)^s$. Thus

$$egin{array}{lll} V_{-s+k} &=& V_{-s}U_s(I-A)^s(I-A)^{k-s}L_{k-s} \ &=& V_{-s}U_s(I-A)^kL_{k-s} \;. \end{array}$$

This completes the proof of the lemma.

Using the above lemmas we prove Theorem 1, which establishes a precise upper bound for k in the case where A is nilpotent and $[A, X]_k = P(A) \neq 0.$

THEOREM 1. Let A be an $n \times n$ nilpotent nonderogatory matrix. Let p be a positive integer such that p < n. Let

$$\lambda_i (i=p,\,p+1,\,\cdots,\,n-1)$$

be scalars from F such that $\lambda_p \neq 0$. Then there exists a matrix X such that

(16)
$$[A, X]_k = \sum_{i=p}^{n-1} \lambda_i A^i \neq 0$$

if and only if $k \leq 2p$.

Proof. We first prove the case where $\lambda_i = 0$ for all i > p. We may assume without loss of generality that $\lambda_p = 1$ since $[A, X]_k = A^p$ if and only if $[A, \lambda_p X]_k = \lambda_p A^p$.

If there exists a matrix X satisfying (16) where A is nilpotent, then $[A, X]_k = [A, \sum_{s=-n+1}^{n-1} D_s]_k = A^p$. Thus we must have

(17)
$$[A, D_{s-k}]_k = \begin{cases} 0 & \text{if } s \neq p \\ A^p & \text{if } s = p \end{cases}.$$

Therefore, for s = p,

$$egin{array}{lll} V[A,\,D_{p-k}]_k \,=\, V_{(p-k)+k} \,=\, VD_p \,=\, VA^p \ &=\, (0,\,0,\,\cdots,\,0,\,1,\,1,\,\cdots,\,1) \;, \end{array}$$

which we will call $(0_p, E_{n-p})$. If $k \leq p$, from (11),

$$V_{(p-k)+k} = V_{p-k}(I-A)^k L_p$$
 .

Using an argument similar to that used in proving lemma 2, we find that $(I - A)^k L_p$ can be written as $\begin{pmatrix} 0 & 0 \\ 0 & N_k \end{pmatrix}$ where N_k has dimensions $(n - p + k) \times (n - p)$. Since this matrix has a square submatrix of order n - p with 1's on the diagonal, zeros below, it has rank n - p.

Now rewriting (12) as

$$(0_p,\,E_{n-p})\,=\,(0_{p-k},\,w_{n-p+k})inom{0}{0}\,\,{0}{N_k}$$

we see that solving this equation is equivalent to solving $E_{n-p} = (w_{n-p+k})N_k$. The augmented matrix for this equation is $\binom{N_k}{E_{n-p}}$, and since N_k has rank n-p, the augmented matrix also has rank n-p. Thus the system has a solution with (n-p+k) - (n-p) = k parameters.

Now if k > p we refer to equation (15) and set

(18)
$$V_{(p-k)+k} = V_{p-k} U_{k-p} (I-A)^k L_p .$$

But the product on the right may be written as $\begin{pmatrix} 0 & H_k \\ 0 & 0 \end{pmatrix}$.

If k = 2p then H_k is square of order n - p. Since it has minus signs in a checkerboard pattern, we may transform it into a matrix with nonnegative elements or nonpositive elements (depending on whether p is even or odd) by multiplying on the left and right by the matrix $D = \text{diag.} (-1, 1, -1, \dots, (-1)^{n-p})$. Thus the determinant of H_k will be unchanged and the resulting matrix has determinant

$$(-1)^p \prod_{i=0}^{n-p-1} rac{\left(rac{2p\,+\,i}{p}
ight)}{\left(rac{p\,+\,i}{p}
ight)}
eq 0$$

(see Muir, Vol. 3, p. 451). Hence H_k is nonsingular. Furthermore,

 $(-1)^{p}H_{k}$ is positive definite since the principal subdeterminants are all positive by the same argument.

Thus if k = 2p we may rewrite the equation (18) as

$$(0_p,\, E_{n-p})\,=\,({\hat w}_{n-p},\, 0_p) egin{pmatrix} 0 & H_k \ 0 & 0 \end{pmatrix}\,.$$

But solving this system is equivalent to solving

(19)
$$E_{n-p} = \hat{w}_{n-p} H_k$$
,

and since H_k is nonsingular, this system has a unique solution. A solution for k = 2p implies the existence of matrices X satisfying $[A, X]_k = A^p$ for all k < 2p.

Next we show that there is no solution for k = 2p + 1, and thus for any k > 2p, by the following argument. Since H_k is nonsingular, equation (19) is equivalent to $E_{n-p}H_k^{-1} = \hat{w}_{n-p}$. Multiplying both sides of this equation by the $(n-p) \times 1$ column vector E_{n-p}^T gives

(20)
$$E_{n-p}H_k^{-1}E_{n-p}^T = \hat{w}_{n-p}E_{n-p}^T = \sum_{i=1}^{n-p} d_{p+i,i}.$$

This is the sum of the nonzero elements in D_{-p} . By Lemma 1, if $[A, X] = D_{-p}$, then $\sum_{i=1}^{n-p} d_{p+i,i} = 0$. But since $(-1)^p H_k$ is positive definite, $(-1)^p H_k^{-1}$ is also. Thus the product on the left in (20) is not zero and there does not exist a solution for k > 2p.

This completes the proof in the case where $[A, X]_k = \lambda A^p$. In the case where $[A, X]_k = \lambda_p A^p + \lambda_{p+1} A^{p+1} + \cdots + \lambda_{n-1} A^{n-1}$, we see that X may be written as $\sum_{i=p}^{n-1} X_{1i}$ where $[A, X_{1i}]_k = \lambda_i A^i$.

If A is derogatory then the Jordan canonical form for A is diag. (A_1, A_2, \dots, A_s) where s > 1. Theorem 1 can also be extended to the derogatory case. The method of proof is similar to that used in Theorem 1.

THEOREM 2. Let A be an $n \times n$ nilpotent matrix. Let p be a positive integer such that $p < n_i$ where n_i is the dimension of the largest block in the Jordan canonical form for A. Let λ_i $(i = p, p + 1, \dots, n - 1)$ be scalars from F such that $\lambda_p \neq 0$. Then there exists a matrix X such that

(23)
$$[A, X]_k = \sum_{i=p}^{n_i-1} \lambda_i A^i \neq 0$$

if and only if $k \leq 2p$.

Some remarks about the integer p are in order here. If the Jordan canonical form for A is diag. (A_1, A_2, \dots, A_s) we may assume without

loss of generality that the dimension n_i of A_i is greater than or equal to the dimension n_{i+1} of A_{i+1} for $i = 1, 2, \dots, s-1$. Since $A^p = \text{diag.}$ $(A_1^p, A_2^p, \dots, A_s^p)$, p must be less than n_1 if A^p is to be different from zero. However, A_i^p may be zero for some i > 1.

Notice that since the Jordan canonical form for a nilpotent matrix is the same as the rational canonical form for that matrix, the constructions for the matrices X in Theorems 1 and 2 may be done with rational operations.

The general case. Here it is not assumed that A is nilpotent. We assume that A is in Jordan canonical form. Again we choose a polynomial P(A) which we desire to write as a higher commutator of A. Theorems 3 and 4 establish the maximal value for k in equation (4).

THEOREM 3. Let A be an $n \times n$ nonderogatory matrix in Jordan canonial form $\alpha I + N$ where N is the nilpotent matrix with 1's on the first superdiagonal and zeros elsewhere. Let P(A) be a polynomial in A such that $P(A) \neq 0$. Let t be the multiplicity of α as a root of P(x). Then there exists an $n \times n$ matrix X such that

$$[A, X]_k = P(A)$$

if and only if $k \leq 2t$.

Proof. If $A = (\alpha I + N)$ then

 $[A, X]_k = [(\alpha I + N), X]_k = [\alpha I, X]_k + [N, X]_k = [N, X]_k$

Thus condition (24) becomes $[N, X]_k = P(\alpha I + N) = \sum_{i=1}^{n-1} \lambda_i N^i$ where $\lambda_i = p^{(i)}(\alpha)/i!$. Now by Theorem 1, (24) has a solution if and only if $k \leq 2t$.

THEOREM 4. Let $A = \text{diag.} (A_1, A_2, \dots, A_s)$ where $A_i = (\alpha_i I + N_i)$ $(i = 1, 2, \dots, s)$ where each N_i is as in Theorem 3. Let P be a polynomial such that $P(A) \neq 0$. Let $A_{i_1}, A_{i_2}, \dots, A_{i_t}$ be the blocks of A such that $P(A_{i_j}) \neq 0$. Let m_{i_j} be the multiplicity of $(x - \alpha_{i_j})$ in P(x). Let $m = \min. \{m_{i_j}\}$. Then there exists an $n \times n$ matrix X such that

$$[A, X]_k = P(A)$$

if and only if $k \leq 2m$.

Proof. If
$$A = \text{diag.} (A_1, A_2, \dots, A_s)$$
 then
 $P(A) = \text{diag.} (P(A_1), P(A_2), \dots, P(A_s))$.

If $P(A_t) = 0$ for some A_t , then there exists a matrix $X_t \neq 0$ such that

 $[A_i, X_t]_k = P(A_t) = 0$ for any positive integer k. Thus we need only consider those A_i for which $P(A_i) \neq 0$. Assume that $P(A_i) \neq 0$ for all $i = 1, 2, \dots, s$. Then if we let

$$X = \text{diag.} (X_1, X_2, \cdots, X_s)$$

where $[A_i, X_i]_k = P(A_i)$, the matrix X will satisfy (25). Assume without loss of generality that the degree of $(x - \alpha_i)$ in P(x) is m =min. $\{m_i\}$. Then $[A_1, X_1] = P(A_1)$ if and only if $k \leq 2m$. Thus $[A, X]_k =$ P(A) if and only if $k \leq 2m$.

BIBLIOGRAPHY

1. M.A. Drazin, J.W. Dungey, and K.W. Gruenberg, Some theorems on commutative matrices, J. London Math. Soc. 26 (1951) 221-228.

2. N. Jacobson, Lie Algebras, Interscience Publishers, New York, 1962.

3. N. H. McCoy, On quasi-commutative matrices, Trans. Amer. Math. Soc. 36 (1934), 327-340.

4. N. T. Muir, Theory of determinants, Dover, New York, 1920.

5. W. V. Parker, Matrices and polynomials, Math. Monthly 61 (1954), 182-183.

6. _____, The matrix equation AX = XB, Duke Math. J. 17 (1950), 43-51.

7. W. V. Parker and J. C. Eaves, Matrices, Ronald Press, New York, 1960.

8. W.E. Roth, On K-commutative matrices, Trans. Amer. Math. Soc. 39 (1936), 483-495.

9. O. Taussky, and H. Wielandt, *Linear relations between higher additive commutators*, Proc. Amer. Math. Soc. **13** (1962), 732-735.

Received December 6, 1968.

TENNESSEE TECHNOLOGICAL UNIVERSITY