MATRIC POLYNOMIALS WHICH ARE HIGHER COMMUTATORS

Edmond D. Dixon

Let A be an $n \times n$ matrix defined over a field F of characteristic greater than n. For each $n \times n$ matrix X we define

$$
\begin{align*}
X_{1} & =[A, X]_{0}=X \tag{1}\\
X_{h+1}=[A, X]_{h} & =\left[A, X_{h}\right]=A X_{h}-X_{h} A
\end{align*}
$$

for each positive integer h. Then X is defined to be k-commutative with A if and only if

$$
\begin{equation*}
[A, X]_{k}=0, \quad[A, X]_{k-1} \neq 0 . \tag{2}
\end{equation*}
$$

Let $P(x)$ be a polynomial such that $P(A) \neq 0$. Specifically, assume that

$$
\begin{equation*}
P(A)=\sum_{i=p}^{n-1} \lambda_{i} A^{i} \neq 0 \tag{3}
\end{equation*}
$$

where p is a positive integer, each λ_{i} is a scalar from F, and $\lambda_{p} \neq 0$. In this paper we study, for each positive integer k, the matrices X such that

$$
\begin{equation*}
[A, X]_{k}=P(A) . \tag{4}
\end{equation*}
$$

We specify a polynomial $P(A)$ in the form (3) and show how the maximal value of k for which (4) has a solution depends on the polynomial $P(A)$. In Theorem 3 it is assumed that A is nonderogatory. Since the only matrices which commute with A in this case are polynomials in A, we are, in effect, establishing a more precise bound for k in (2) by predetermining X_{k}.

In the derogatory case, a matrix which is not a polynomial in A may commute with A. However, Theorem 4 shows that if we choose a polynomial $P(A)$ as X_{k}, then the maximal value of k depends on the polynomial P.

The problem of determining the maximal value of k for which (2) has a solution has been studied by Roth [8] and others. Roth's results are stated in terms of the maximal degrees of the elementary divisors of the matrix A. In particular, he showed that there exists a matrix X satisfying (2) for some A if $k \leqq 2 n-1$.

Nilpotent case. Throughout the paper we assume that A is in Jordan canonical form, since $[a, X]_{k}=P(A)$ if and only if

$$
\left[B A B^{-1}, B X B^{-1}\right]_{k}=B P(A) B^{-1}
$$

The following notation introduced by W. V. Parker is used to simplify the proofs of the theorems.

Definition. Let M_{s} for any integer s such that $-n+1 \leqq s \leqq$ $m-1$ be the set of all $n \times m$ matrices in which all elements are zero except those for which $j-i=s(i$ denotes the row and j denotes the column in which the element appears). If $s>m-1, M_{s}$ is defined to be the set consisting of only the zero matrix. A particular member of M_{s} will be denoted by D_{s} and will be called an s-stripe matrix. Note that if X is any $n \times m$ matrix then X can be written uniquely as $X=\sum_{s=-n+1}^{m-1} D_{s}$ where D_{s} is an element of M_{s}.

If A_{1} and A_{2} are $n \times n$ and $m \times m$ nilpotent nonderogatory matrices in Jordan canonical form and if $D_{s}=\left(d_{i j}\right)$ is an $n \times m$ element of M_{s} where s is any integer such that $-n+1 \leqq s \leqq m-1$, let $f\left(D_{s}\right)=A_{1} D_{s}-D_{s} A_{2}$ and $f^{k}\left(D_{s}\right)=A_{1} f^{k-1}\left(D_{s}\right)-f^{k-1}\left(D_{s}\right) A_{2}$. It is easily seen that $f^{k}\left(D_{s}\right)$ is an element of M_{s+k}. Notice that the element in the $i j$ position of $f\left(D_{s}\right)$, where $j-i=s+1$, is $d_{i+1, j}-d_{i, j-1}$ for $i \neq 1$. The element in the $n j$ position is $-d_{n, j-1}$ if $j \neq 1$; the element in the $i 1$ position is $d_{i+1,1}$ if $i \neq n$; and the element in the $n 1$ position is zero.

Lemma 1. If A is an $n \times n$ nilpotent nonderogatory matrix in Jordan canonical form, if X is an $n \times n$ matrix, and if

$$
M=[A, X]=A X-X A
$$

then the trace of M is zero and the trace of every subdiagonal stripe of M is zero.

Proof. Any $n \times n$ matrix X may be written as $\sum_{s=-n+1}^{n-1} D_{s}$ where D_{s} is an element of M_{s}. Thus

$$
[A, X]=\left[A, \sum_{s=-n+1}^{n-1} D_{s}\right]=\sum_{s=-n+1}^{n-1}\left[A, D_{s}\right]
$$

If $s<0$, then $\left[A, D_{s}\right]$ is a matrix such that the sum of the nonzero elements is zero. The matrix $\left[A, D_{s}\right]$ forms the $(s+1)$-stripe of M. This completes the proof of the lemma.

If A is an $n \times n$ nilpotent nonderogatory matrix in Jordan canonical form then for any positive integer $s<n,\left(A^{T}\right)^{s} A^{s}$ plays the part of a "lower identity" which we denote by L_{s}. That is,

$$
\left(A^{T}\right)^{s} A^{s}=\left(\begin{array}{ll}
0 & 0 \tag{5}\\
0 & I_{n-s}
\end{array}\right)=L_{s}
$$

Similarly,

$$
A^{s}\left(A^{T}\right)^{s}=\left(\begin{array}{cc}
I_{n-s} & 0 \tag{6}\\
0 & 0
\end{array}\right)=U_{s}
$$

which we call an "upper identity".
Using the above, we prove the following lemma.
Lemma 2. Let A be an $n \times n$ nilpotent nonderogatory matrix in Jordan canonical form. Let L_{s} and U_{s} be as defined above. Then

$$
\begin{equation*}
L_{s}(I-A) L_{s+k}=(I-A) L_{s+k} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{s+k}(I-A) U_{s}=U_{s+k}(I-A) \tag{8}
\end{equation*}
$$

where k is any positive integer less than $n-s$.
Proof. If we partition $I-A$ as follows:

$$
(I-A)=\left(\begin{array}{cc}
M & 0 \\
* & N
\end{array}\right)
$$

where M is $s \times(s+k)$, then

$$
L_{s}(I-A) L_{s+k}=\left(\begin{array}{cc}
0 & 0 \\
* & N
\end{array}\right) L_{s+k}=\left(\begin{array}{cc}
0 & 0 \\
0 & N
\end{array}\right)=(I-A) L_{s+k}
$$

The proof of (8) is similar.
Let $V=(1,1, \cdots, 1)$, a $1 \times n$ vector, and let $V_{s}=V D_{s}$. That is, V_{s} is the vector in which each element represents a column sum in D_{s}, and since the columns in D_{s} have at most one nonzero element, V_{s} simply displays these elements in the form of a row vector. To simplify the notation we will let $V_{s+k}=V D_{s+k}$ where $D_{s+k}=\left[A, D_{s}\right]_{k}$ for some matrix D_{s}. In other words, the added subscript, k, implies that V_{s+k} is the result of k commutations. From now on, s will denote a nonnegative integer, $0 \leqq s \leqq n-1$, and subdiagonal stripes of X will be denoted by D_{-s}. Also, the nontrivial subvector in V_{s} will be denoted by w_{n-s}, and the nontrivial subvector in V_{s} will be denoted by \hat{w}_{n-s}. Thus

$$
\begin{equation*}
V_{s}=\left(0,0, \cdots, 0, d_{1, s+1}, d_{2, s+2}, \cdots, d_{n-s, n}\right)=\left(0_{s}, w_{n-s}\right) \tag{9}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
V_{-s}=\left(d_{s+1,1}, d_{s+2,2}, \cdots, d_{n, n-s}, 0, \cdots, 0\right)=\left(\hat{w}_{n-s}, 0_{s}\right) . \tag{10}
\end{equation*}
$$

The following lemma is a vital part of the proof of Theorem 1.

Lemma 3. If k is a positive integer and if V_{s}, A, U_{s}, and L_{s} are as defined above, then
(i) $V_{s+k}=V_{s}(I-A)^{k} L_{k}$,
(ii) $V_{-s+k}=V_{-s} U_{s}(I-A)^{k}$ if $k \leqq s$,
(iii) $\quad V_{-s+k}=V_{-s} U_{s}(I-A)^{k} L_{k-s}$ if $k>s$.

Proof. Case (i). If $k=1$, from (7) and (9)

$$
V_{s}(I-A) L_{s+1}=\left(0_{s}, w_{n-s}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & N
\end{array}\right)
$$

In this case N has dimensions $(n-s) \times(n-s-1)$, so N has (-1)'s on the diagonal and 1's on the first subdiagonal. But

$$
\left(0_{s}, w_{n-s}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & N
\end{array}\right)=\left(0_{s}, w_{n-s}\right) N=\left(0_{s+1}, w_{n-s-1}\right)
$$

where w_{n-s-1} has only $n-s-1$ elements of the form $\left(d_{i+1, s+i+1}-d_{i, s+i}\right)$, and this is V_{s+1}. Therefore

$$
V_{s+1}=V_{s}(I-A) L_{s+1} .
$$

Similarly,

$$
V_{s+2}=V_{s+1}(I-A) L_{s+2}=V_{s}(I-A) L_{s+1}(I-A) L_{s+2} .
$$

But by Lemma 2,

$$
L_{s+1}(I-A) L_{s+2}=(I-A) L_{s+2} .
$$

Thus $V_{s+2}=V_{s}(I-A)^{2} L_{s+2}$, and by induction it follows that

$$
\begin{equation*}
V_{s+k}=V_{s}(I-A)^{k} L_{s+k} . \tag{11}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
V_{0 \div k}=V_{0}(I-A)^{k} L_{k} . \tag{12}
\end{equation*}
$$

Case (ii). From (10),

$$
V_{-s} U_{s}(I-A)=V_{-s}\left(\begin{array}{cc}
I_{n-s} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
M & 0 \\
* & N
\end{array}\right)=\left(\widehat{w}_{n-s}, 0_{s}\right)\left(\begin{array}{cc}
M & 0 \\
0 & 0
\end{array}\right)
$$

where M has dimensions $(n-s) \times(n-s+1)$ and so has 1 's on the diagonal and (-1) 's on the first superdiagonal. But

$$
\left(\hat{w}_{n-s+1}, 0_{s}\right)\left(\begin{array}{cc}
M & 0 \\
0 & 0
\end{array}\right)=\left(\hat{w}_{n-s+1}, 0_{s-1}\right)
$$

where \hat{w}_{n-s+1} has $n-s+1$ elements

$$
d_{s+i+1, i+1}-d_{s+i, i},(i=0,1, \cdots, n-s+1),
$$

and $d_{s, 0}=d_{n+1, n-s+1}=0$. This is $V\left[A, D_{-s}\right]=V_{-s+1}$. Similarly,

$$
V_{-s+2}=V_{-s+1} U_{s-1}(I-A)=V_{-s} U_{s}(I-A) U_{s-1}(I-A)
$$

But by Lemma 2, $U_{s}(I-A) U_{s-1}=U_{s}(I-A)$. Thus

$$
V_{-s+2}=V_{-s} U_{s}(I-A)^{2}
$$

and by induction it follows that if $k \leqq s$,

$$
\begin{equation*}
V_{-s+k}=V_{-s} U_{s}(I-A)^{k} \tag{13}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
V_{-s+s}=V_{-s} U_{s}(I-A)^{s} \tag{14}
\end{equation*}
$$

Case (iii). When $k>s$, we divide the problem into two parts. Using case (i) we have

$$
\begin{equation*}
V_{-s+k}=V_{-s+s}(I-A)^{k-s} L_{k-s} \tag{15}
\end{equation*}
$$

But by case (ii), $V_{-s+s}=V_{-s} U_{s}(I-A)^{s}$. Thus

$$
\begin{aligned}
V_{-s+k} & =V_{-s} U_{s}(I-A)^{s}(I-A)^{k-s} L_{k-s} \\
& =V_{-s} U_{s}(I-A)^{k} L_{k-s}
\end{aligned}
$$

This completes the proof of the lemma.
Using the above lemmas we prove Theorem 1, which establishes a precise upper bound for k in the case where A is nilpotent and $[A, X]_{k}=P(A) \neq 0$.

Theorem 1. Let A be an $n \times n$ nilpotent nonderogatory matrix. Let p be a positive integer such that $p<n$. Let

$$
\lambda_{i}(i=p, p+1, \cdots, n-1)
$$

be scalars from F such that $\lambda_{p} \neq 0$. Then there exists a matrix X such that

$$
\begin{equation*}
[A, X]_{k}=\sum_{i=p}^{n-1} \lambda_{i} A^{i} \neq 0 \tag{16}
\end{equation*}
$$

if and only if $k \leqq 2 p$.
Proof. We first prove the case where $\lambda_{i}=0$ for all $i>p$. We may assume without loss of generality that $\lambda_{p}=1$ since $[A, X]_{k}=$ A^{p} if and only if $\left[A, \lambda_{p} X\right]_{k}=\lambda_{p} A^{p}$.

If there exists a matrix X satisfying (16) where A is nilpotent, then $[A, X]_{k}=\left[A, \sum_{s=-n+1}^{n-1} D_{s}\right]_{k}=A^{p}$. Thus we must have

$$
\left[A, D_{s-k}\right]_{k}=\left\{\begin{array}{lll}
0 & \text { if } & s \neq p \tag{17}\\
A^{p} & \text { if } & s=p
\end{array} .\right.
$$

Therefore, for $s=p$,

$$
\begin{aligned}
V\left[A, D_{p-k}\right]_{k} & =V_{(p-k)+k}=V D_{p}=V A^{p} \\
& =(0,0, \cdots, 0,1,1, \cdots, 1),
\end{aligned}
$$

which we will call $\left(0_{p}, E_{n-p}\right)$. If $k \leqq p$, from (11),

$$
V_{(p-k)+k}=V_{p-k}(I-A)^{k} L_{p} .
$$

Using an argument similar to that used in proving lemma 2, we find that $(I-A)^{k} L_{p}$ can be written as $\left(\begin{array}{cc}0 & 0 \\ 0 & N_{k}\end{array}\right)$ where N_{k} has dimensions $(n-p+k) \times(n-p)$. Since this matrix has a square submatrix of order $n-p$ with 1 's on the diagonal, zeros below, it has rank $n-p$.

Now rewriting (12) as

$$
\left(0_{p}, E_{n-p}\right)=\left(0_{p-k}, w_{n-p+k}\left(\begin{array}{cc}
0 & 0 \\
0 & N_{k}
\end{array}\right)\right.
$$

we see that solving this equation is equivalent to solving $E_{n-p}=$ $\left(w_{n-p+k}\right) N_{k}$. The augmented matrix for this equation is $\binom{N_{k}}{E_{n-p}}$, and since N_{k} has rank $n-p$, the augmented matrix also has rank $n-p$. Thus the system has a solution with $(n-p+k)-(n-p)=k$ parameters.

Now if $k>p$ we refer to equation (15) and set

$$
\begin{equation*}
V_{(p-k)+k}=V_{p-k} U_{k-p}(I-A)^{k} L_{p} . \tag{18}
\end{equation*}
$$

But the product on the right may be written as $\left(\begin{array}{cc}0 & H_{b} \\ 0 & 0\end{array}\right)$.
If $k=2 p$ then H_{k} is square of order $n-p$. Since it has minus signs in a checkerboard pattern, we may transform it into a matrix with nonnegative elements or nonpositive elements (depending on whether p is even or odd) by multiplying on the left and right by the matrix $D=$ diag. $\left(-1,1,-1, \cdots,(-1)^{n-p}\right)$. Thus the determinant of H_{k} will be unchanged and the resulting matrix has determinant

$$
(-1)^{p} \prod_{i=0}^{n-p-1} \frac{\binom{2 p+i}{p}}{\binom{p+i}{p}} \neq 0
$$

(see Muir, Vol. 3, p. 451). Hence H_{k} is nonsingular. Furthermore,
$(-1)^{p} H_{k}$ is positive definite since the principal subdeterminants are all positive by the same argument.

Thus if $k=2 p$ we may rewrite the equation (18) as

$$
\left(0_{p}, E_{n-p}\right)=\left(\hat{w}_{n-p}, 0_{p}\right)\left(\begin{array}{cc}
0 & H_{k} \\
0 & 0
\end{array}\right)
$$

But solving this system is equivalent to solving

$$
\begin{equation*}
E_{n-p}=\hat{w}_{n-p} H_{k}, \tag{19}
\end{equation*}
$$

and since H_{k} is nonsingular, this system has a unique solution. A solution for $k=2 p$ implies the existence of matrices X satisfying $[A, X]_{k}=A^{p}$ for all $k<2 p$.

Next we show that there is no solution for $k=2 p+1$, and thus for any $k>2 p$, by the following argument. Since H_{k} is nonsingular, equation (19) is equivalent to $E_{n-p} H_{k}^{-1}=\hat{w}_{n-p}$. Multiplying both sides of this equation by the $(n-p) \times 1$ column vector E_{n-p}^{T} gives

$$
\begin{equation*}
E_{n-p} H_{k}^{-1} E_{n-p}^{T}=\hat{w}_{n-p} E_{n-p}^{T}=\sum_{i=1}^{n-p} d_{p+i, i} \tag{20}
\end{equation*}
$$

This is the sum of the nonzero elements in D_{-p}. By Lemma 1, if $[A, X]=D_{-p}$, then $\sum_{i=1}^{n-p} d_{p+i, i}=0$. But since $(-1)^{p} H_{k}$ is positive definite, $(-1)^{p} H_{k}^{-1}$ is also. Thus the product on the left in (20) is not zero and there does not exist a solution for $k>2 p$.

This completes the proof in the case where $[A, X]_{k}=\lambda A^{p}$. In the case where $[A, X]_{k}=\lambda_{p} A^{p}+\lambda_{p+1} A^{p+1}+\cdots+\lambda_{n-1} A^{n-1}$, we see that X may be written as $\sum_{i=p}^{n-1} X_{1 i}$ where $\left[A, X_{1 i}\right]_{k}=\lambda_{i} A^{i}$.

If A is derogatory then the Jordan canonical form for A is diag. $\left(A_{1}, A_{2}, \cdots, A_{s}\right)$ where $s>1$. Theorem 1 can also be extended to the derogatory case. The method of proof is similar to that used in Theorem 1.

Theorem 2. Let A be an $n \times n$ nilpotent matrix. Let p be a positive integer such that $p<n_{i}$ where n_{i} is the dimension of the largest block in the Jordan canonical form for A. Let $\lambda_{i}(i=p$, $p+1, \cdots, n-1)$ be scalars from F such that $\lambda_{p} \neq 0$. Then there exists a matrix X such that

$$
\begin{equation*}
[A, X]_{k}=\sum_{i=p}^{n_{i}-1} \lambda_{i} A^{i} \neq 0 \tag{23}
\end{equation*}
$$

if and only if $k \leqq 2 p$.
Some remarks about the integer p are in order here. If the Jordan canonical form for A is diag. ($A_{1}, A_{2}, \cdots, A_{s}$) we may assume without
loss of generality that the dimension n_{i} of A_{i} is greater than or equal to the dimension n_{i+1} of A_{i+1} for $i=1,2, \cdots, s-1$. Since $A^{p}=$ diag. ($A_{1}^{p}, A_{2}^{p}, \cdots, A_{s}^{p}$), p must be less than n_{1} if A^{p} is to be different from zero. However, A_{i}^{p} may be zero for some $i>1$.

Notice that since the Jordan canonical form for a nilpotent matrix is the same as the rational canonical form for that matrix, the constructions for the matrices X in Theorems 1 and 2 may be done with rational operations.

The general case. Here it is not assumed that A is nilpotent. We assume that A is in Jordan canonical form. Again we choose a polynomial $P(A)$ which we desire to write as a higher commutator of A. Theorems 3 and 4 establish the maximal value for k in equation (4).

Theorem 3. Let A be an $n \times n$ nonderogatory matrix in Jordan canonial form $\alpha I+N$ where N is the nilpotent matrix with 1's on the first superdiagonal and zeros elsewhere. Let $P(A)$ be a polynomial in A such that $P(A) \neq 0$. Let t be the multiplicity of α as a root of $P(x)$. Then there exists an $n \times n$ matrix X such that

$$
\begin{equation*}
[A, X]_{k}=P(A) \tag{24}
\end{equation*}
$$

if and only if $k \leqq 2 t$.
Proof. If $A=(\alpha I+N)$ then

$$
[A, X]_{k}=[(\alpha I+N), X]_{k}=[\alpha I, X]_{k}+[N, X]_{k}=[N, X]_{k}
$$

Thus condition (24) becomes $[N, X]_{k}=P(\alpha I+N)=\sum_{i=1}^{n-1} \lambda_{i} N^{i}$ where $\lambda_{i}=p^{(i)}(\alpha) / i$. . Now by Theorem 1, (24) has a solution if and only if $k \leqq 2 t$.

Theorem 4. Let $A=\operatorname{diag} .\left(A_{1}, A_{2}, \cdots, A_{s}\right)$ where $A_{i}=\left(\alpha_{i} I+N_{i}\right)$ $(i=1,2, \cdots, s)$ where each N_{i} is as in Theorem 3. Let P be a polynomial such that $P(A) \neq 0$. Let $A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{t}}$ be the blocks of A such that $P\left(A_{i_{j}}\right) \neq 0$. Let $m_{i_{j}}$ be the multiplicity of $\left(x-\alpha_{i_{j}}\right)$ in $P(x)$. Let $m=\min .\left\{m_{i_{j}}\right\}$. Then there exists an $n \times n$ matrix X such that

$$
\begin{equation*}
[A, X]_{k}=P(A) \tag{25}
\end{equation*}
$$

if and only if $k \leqq 2 m$.
Proof. If $A=\operatorname{diag} .\left(A_{1}, A_{2}, \cdots, A_{s}\right)$ then

$$
P(A)=\operatorname{diag} .\left(P\left(A_{1}\right), P\left(A_{2}\right), \cdots, P\left(A_{s}\right)\right)
$$

If $P\left(A_{t}\right)=0$ for some A_{t}, then there exists a matrix $X_{t} \neq 0$ such that
$\left[A_{t}, X_{t}\right]_{k}=P\left(A_{t}\right)=0$ for any positive integer k. Thus we need only consider those A_{i} for which $P\left(A_{i}\right) \neq 0$. Assume that $P\left(A_{i}\right) \neq 0$ for all $i=1,2, \cdots, s$. Then if we let

$$
X=\operatorname{diag} .\left(X_{1}, X_{2}, \cdots, X_{s}\right)
$$

where $\left[A_{i}, X_{i}\right]_{k}=P\left(A_{i}\right)$, the matrix X will satisfy (25). Assume without loss of generality that the degree of $\left(x-\alpha_{1}\right)$ in $P(x)$ is $m=$ $\min .\left\{m_{i}\right\}$. Then $\left[A_{1}, X_{1}\right]=P\left(A_{1}\right)$ if and only if $k \leqq 2 m$. Thus $[A, X]_{k}=$ $P(A)$ if and only if $k \leqq 2 m$.

Bibliography

1. M.A. Drazin, J.W. Dungey, and K.W. Gruenberg, Some theorems on commutative matrices, J. London Math. Soc. 26 (1951) 221-228.
2. N. Jacobson, Lie Algebras, Interscience Publishers, New York, 1962.
3. N. H. McCoy, On quasi-commutative matrices, Trans. Amer. Math. Soc. 36 (1934), 327-340.
4. N. T. Muir, Theory of determinants, Dover, New York, 1920.
5. W. V. Parker, Matrices and polynomials, Math. Monthly 61 (1954), 182-183.
6. —, The matrix equation $A X=X B$, Duke Math. J. 17 (1950), 43-51.
7. W. V. Parker and J. C. Eaves, Matrices, Ronald Press, New York, 1960.
8. W.E. Roth, On K-commutative matrices, Trans. Amer. Math. Soc. 39 (1936), 483-495.
9. O. Taussky, and H. Wielandt, Linear relations between higher additive commutators, Proc. Amer. Math. Soc. 13 (1962), 732-735.

Received December 6, 1968.
Tennessee Technological University

