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MATRIC POLYNOMIALS WHICH ARE HIGHER
COMMUTATORS

EpmonD D. DIxoN

Let A be an n X n matrix defined over a field F of
characteristic greater than n. For each 7 X n matrix X we
define

(1) X, =[4,X,=X
Xh+1 = [A, X]h = [A, Xh] =AX, — XBA

for each positive integer 2. Then X is defined to be k-com-
mutative with A if and only if

(2) [4,X],=0, [4,X]1#0.

Let P(x) be a polynomial such that P(A4) # 0. Specifically,
assume that

(3) P(A):ni).iAi;tO

where p is a positive integer, each 1; is a scalar from F, and
i, # 0. In this paper we study, for each positive integer I,
the matrices X such that

(4) [4, X]. = P(4) .

We specify a polynomial P(A) in the form (3) and show how
the maximal value of % for which (4) has a solution depends
on the polynomial P(A). In Theorem 3 it is assumed that A
is nonderogatory. Since the only matrices which commute
with A in this case are polynomials in A, we are, in effect,
establishing a more precise bound for % in (2) by predetermin-
ing X;.

In the derogatory case, a matrix which is not a polynomial
in A may commute with A. However, Theorem 4 shows that
if we choose a polynomial P(A) as X;, then the maximal value
of & depends on the polynomial P,

The problem of determining the maximal value of & for which (2)
has a solution has been studied by Roth [8] and others. Roth’s re-
sults are stated in terms of the maximal degrees of the elementary
divisors of the matrix A. In particular, he showed that there exists
a matrix X satisfying (2) for some A if k£ < 2n — 1.

Nilpotent case. Throughout the paper we assume that A is in
Jordan canonical form, since [a, X]. = P(A4) if and only if

[BAB-, BXB-], = BP(A)B~".
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The following notation introduced by W. V. Parker is used to
simplify the proofs of the theorems.

DEFINITION. Let M, for any integer s such that —n +1<s <
m — 1 be the set of all nxm matrices in which all elements are zero
except those for which j—4 = s (¢ denotes the row and j denotes the
column in which the element appears). If s > m — 1, M, is defined to
be the set consisting of only the zero matrix. A particular member
of M, will be denoted by D, and will be called an s-stripe matrix.
Note that if X is any # x m matrix then X can be written uniquely
as X = >\, D, where D, is an element of M,.

If A, and A, are nxn and m X m nilpotent nonderogatory matri-
ces in Jordan canonical form and if D, = (d;;) is an n X m element
of M, where s is any integer such that —n +1<s=<m — 1, let
fD,) = AD,— D,A, and f*D,) = A.f*'(D,) — f*(D,)A,. It is easily
seen that f*D,) is an element of M,,,. Notice that the element in
the 45 position of f(D,), where j — ¢ =s+1, is d;,,;—d,; ;_, for 1= 1.
The element in the nj position is —d,, ;_, if j # 1; the element in the
41 position is d;.,, if © # n; and the element in the nl position is
Zero.

LemMMa 1. If A is an n X n nilpotent nonderogatory matrix in
Jordan canonical form, if X is an n X n matriz, and if

M=[A4, X]=AX — XA,

then the trace of M is zero and the trace of every subdiagonal stripe
of M 1is zero.

Proof. Any nxn matrix X may be written as >\t ., D, where
D, is an element of M,. Thus

[4.x1-[4, 5 |- 5 14D].

If s <0, then [A, D,] is a matrix such that the sum of the nonzero
elements is zero. The matrix [A4, D,] forms the (s + 1)-stripe of M.
This completes the proof of the lemma.

If A is an % xn nilpotent nonderogatory matrix in Jordan canoni-
cal form then for any positive integer s < n, (A%)°A° plays the part
of a “lower identity” which we denote by L,. That is,

0 O
(5) (A)A:(O IM):LS.
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Similarly,

I, ., O
(6) Am@r=(0 O>=a

which we call an “upper identity ™.
Using the above, we prove the following lemma.

LEMMA 2. Let A be an n X n wnilpotent monderogatory matrix
in Jordan canonical form. Let L, and U, be as defined above. Then

(7) L(I—- AL, =I—- AL,
and
(8) U - AU, =U,..I—-4),

where k is any positive integer less than n — s.

Proof. If we partition I — A as follows:
M 0

a-n-(T 1)

* N

where M is s x (s + k), then

Ls(l - A)Ls+k = (O 0 )Ls+k = (O 0) = (I - A)Ls—f-k .
* N 0 N

The proof of (8) is similar.

Let V=(1,1,---,1), a 1 x #n vector, and let V, = VD,. That
is, V, is the vector in which each element represents a column sum
in D,, and since the columns in D, have at most one nonzero element,
V, simply displays these elements in the form of a row vector. To
simplify the notation we will let V,., = VD,., where D,., = [A, D.].
for some matrix D,. In other words, the added subscript, %k, implies
that V.., is the result of £ commutations. From now on, s will de-
note a nonnegative integer, 0 < s < n — 1, and subdiagonal stripes of
X will be denoted by D_,. Also, the nontrivial subvector in V, will
be denoted by w,_,, and the nontrivial subvector in V, will be denoted
by #,_,. Thus

(9) Vs = (Oy O, ) Oy dl,s+1’ dz,s+2y Tty dn-s,n) = (Osa u)ﬂ.—s) .
Similarly,
{10) V—-s = (ds+1,1y ds+2,2) ) dn,n—s? 07 ct Yy O) - (7//[)”__5, Os) .

The following lemma is a vital part of the proof of Theorem 1.
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LEMMA 3. If k is a positive integer and if V,, A, U,, and L,
are as defined above, then

( i ) Vs+k = Vs(I - A)kka

(ii) V= V_,U(UI — A if k< s,

(i) V_ o = V_,U(I — AL, _, if k> s.

Proof. Case (i). If k=1, from (7) and (9)

V.l - AL, =0, w )(0 0
s - s+1 T sy Wy—s 0 N .

In this case N has dimensions (# — s)x(n — s — 1), so N has (—1)’s
on the diagonal and 1’s on the first subdiagonal. But

o, wn_o(o 0

0 N) = (Os) w'n—s)N = (Os+1y wn—s-—l)

where w,_,_, has only n—s—1 elements of the form (d;,,, i —d; .rs),
and this is V,,,. Therefore
Vi = VI — AL, .

Similarly,

Viee= Vel — ALy, = V(I — A)L,..(I — A)L,,, .
But by Lemma 2,

LI — A)L,,=I— AL, .
Thus V,., = V,(I — A)?L,.,, and by induction it follows that
11 Veer = V(I — AL, .
In particular,
(12) Voor = Vold — AL, .
Case (ii). From (10),

I . O\/M O M 0
SUS I - A = —s b . = An—sy s
VU= 4 V(o 0)( N) @ 0)(0 0)

where } has dimensions (7 — s) X (# — s + 1) and so has 1’s on the
diagonal and (—1)’s on the first superdiagonal. But

M 0

wn—s%—ly Os
@00y

) = (wn——s-f—l! Os-l)

where @, _,., has n — s + 1 elements
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Qorivnivn — osiey 0 =0,1, coeym— s+ 1),
and d,, = d,1,,_s0. = 0. This is V[4, D_,] = V_.+;. Similarly,
Vo =V, U (I — A) =V_UI—-AU,_(I- A).

But by Lemma 2, U,(I — A)U,_, = U,(I — A). Thus

V_geo = V_,UU — A),
and by induction it follows that if k& < s,
(13) Vg = V_,UU — A)F.
In particular,
(14) Vi s = V_ UM — A) .

Case (iii). When k£ > s, we divide the problem into two parts.
Using case (i) we have
(15) Veerr = Voo — AL, .
But by case (ii), V_,:. = V_,U(I — A)*. Thus

V_ssrk - V_sUs(I - A)S(I - A)k_st_s
= V_U(I — A¢L,_, .

This completes the proof of the lemma.

Using the above lemmas we prove Theorem 1, which establishes
a precise upper bound for % in the case where A is nilpotent and
[4, X], = P(A) = 0.

THEOREM 1. Let A be an mxn nilpotent monderogatory matric.
Let p be a positive integer such that p < n. Let

k’z(/If:p!p_’_]-y "',’)?/——1)

be scalars from F such that , = 0. Then there exists a matriz X
such that

(16) [4, X], = S WA =0
=D
if and only if k < 2p.
Proof. We first prove the case where \; = 0 for all 7 > p. We

may assume without loss of generality that », = 1 since [A4, X], =
A7 if and only if [4, N, X1 = N\, 4%
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If there exists a matrix X satisfying (16) where A is nilpotent,
then [A4, X], = [4, >'=t,., D], = A>. Thus we must have

0 if s#»p
17 A, Ds__x- = . .
an A Dode= 1y o

Therefore, for s = p,

VIA, -Dp—-k]k = Vs = VD, = VA?
= (Oy 0’ ""09 1, 1, ) 1) ’

which we will call (0,, £,_,). If k< p, from (11),
V(p—-lc)—Hc = Vp—k(I - A)kLp .

Using an argument similar to that used in proving lemma 2, we
0

find that (I — A)*L, can be written as (8 Nk) where N, has dimen-
sions (n — p + k)X (n — p). Since this matrix has a square submatrix
of order » — p with 1’s on the diagonal, zeros below, it has rank n — p.
Now rewriting (12) as

0, B,,) = (0, wn_,,+k>(° 0 )

0 N,
we see that solving this equation is equivalent to solving K, , =
(Wy—p+e)N,. The augmented matrix for this equation is GEV':_)’ and
since N, has rank n — p, the augmented matrix also has rank n — ».
Thus the system has a solution with (& — » + k) — (n — p) = k para-

meters.
Now if & > p we refer to equation (15) and set

(18) V(p-—l:)-‘rk = Vp—/cUk—-p(I - A)kLp .

But the product on the right may be written as (8 EOI’”>

If ¥ =2p then H, is square of order n — p. Since it has minus
signs in a checkerboard pattern, we may transform it into a matrix
with nonnegative elements or nonpositive elements (depending on whe-
ther p is even or odd) by multiplying on the left and right by the
matrix D = diag. (—1,1, —1, .-+, (=1)**). Thus the determinant of
H, will be unchanged and the resulting matrix has determinant

(Zp + @)
(—1 T 2 L0

=0 (p + ’L)
p

(see Muir, Vol. 3, p. 451). Hence H, is nonsingular. Furthermore,
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(—1)*H, is positive definite since the principal subdeterminants are all
positive by the same argument.
Thus if & = 2p we may rewrite the equation (18) as

0 Hk>

(Opy En—p) = (wn—py Op)<0 0

But solving this system is equivalent to solving
(19) En-—p = wn—ka ’

and since H, is nonsingular, this system has a unique solution. A
solution for k& = 2p implies the existence of matrices X satisfying
[A4, X], = A® for all k < 2p.

Next we show that there is no solution for & = 2p 4+ 1, and thus
for any k > 2p, by the following argument. Since H, is nonsingular,
equation (19) is equivalent to E, ,H;* = ¥,_,. Multiplying both sides
of this equation by the (m — p) x 1 column vector E7_, gives

(20) E, ,H7'E' , = W, ,ET_, = :j dyiss -

This is the sum of the nonzero elements in D_,. By Lemma 1, if
[A4, X] = D_,, then >»=7d,.;; = 0. But since (—1)"H, is positive de-
finite, (—1)?H;" is also. Thus the product on the left in (20) is not
zero and there does not exist a solution for & > 2p.

This completes the proof in the case where [A, X ], = AA”. In the
case where [4, X], = N A% + N, AP+ oo + N, A", we see that
X may be written as >\/=} X,; where [4, X;], = MA4°%N

If A is derogatory then the Jordan canonical form for A is diag.
(4, 4,, --+, A,) where s > 1. Theorem 1 can also be extended to the
derogatory case. The method of proof is similar to that used in
Theorem 1.

THEOREM 2. Let A be an n X % nilpotent matriz. Let p be a
positive integer such that p < n; where n; is the dimension of the
largest block im the Jordan canonical form jfor A. Let N, (1 = p,
p+ 1, .-, n — 1) be scalars from F such that N, # 0. Then there
exists a matriz X such that

ng—1

(23) [4, X]. = 3 AT 0
of and only if k < 2p.

Some remarks about the integer p are in order here. If the Jordan
canonical form for A is diag. (4, A4,, ---, 4,) we may assume without
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loss of generality that the dimension n; of A; is greater than or equal
to the dimension n;., of A;,, for i =1,2, ..., s — 1. Since A* = diag.
(Ar, A2, ---, A?), p must be less than n, if A7 is to be different from
zero. However, A? may be zero for some 7 > 1.

Notice that since the Jordan canonical form for a nilpotent matrix
is the same as the rational canonical form for that matrix, the cons-
tructions for the matrices X in Theorems 1 and 2 may be done with
rational operations.

The general case. Here it is not assumed that A is nilpotent.
We assume that A is in Jordan canonical form. Again we choose a
polynomial P(4) which we desire to write as a higher commutator of
A. Theorems 3 and 4 establish the maximal value for % in equation (4).

THEOREM 3. Let A be an nXn nonderogatory matrix in Jordan
canonial form ol + N where N is the nilpotent matrixz with 1’s on
the first superdiagonal and zeros elsewhere. Let P(A) be a polynomial
wn A such that P(A) = 0. Let t be the multiplicity of o as a root
of P(x). Then there exists an nxn matricz X such that

(24) [4, X]. = P(4)
if and only if k < 2t.

Proof. If A= (al + N) then
[Ay X]k = [(CYI—]— N)7 X]k = [CYI, X]k + [Nr X]k = [N’ X]k .

Thus condition (24) becomes [N, X], = P(al + N) = 312! \;N* where
N = p(a)/il. Now by Theorem 1, (24) has a solution if and only if
k < 2¢.

THEOREM 4. Let A = diag. (4,, 4,, ---, A,) where A, = (o,,] + N;)
(i=1,2, -+, 8) where each N; is as in Theorem 3. Let P be a poly-
nomial such that P(A) + 0. Let A;, A, ---, A;, be the blocks of A
such that P(4;) = 0. Let m;; be the multiplicity of (v—a;)) in P(x).
Let m = min. {m;}. Then there exists an nXxn matric X such that

(25) [4, X]. = P(4)
if and only if k < 2m.
Proof. If A = diag. (4, A, ---, A,) then
P(A) = diag. (P(A), P(4y), +--, P(4))) .
If P(A,) = 0 for some A,, then there exists a matrix X, # 0 such that
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[4,, X.]. = P(A,) = 0 for any positive integer k. Thus we need only
consider those A; for which P(A;) # 0. Assume that P(A4;) # 0 for all
1=1,2,-.+,s. Then if we let

X = diag. (Xl, ng tty Xs)

where [4;, X;], = P(4;), the matrix X will satisfy (25). Assume with-
out loss of generality that the degree of (x — «) in P() is m =
min. {m;}. Then [4,, X|] = P(A,) if and only if £ <2m. Thus [4, X], =
P(A) if and only if k < 2m.
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