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COMPOSITION SERIES IN CHEVALLEY ALGEBRAS

JAMES F. HURLEY

This paper continues the study of how the ideal structure
of a Chevalley algebra (a Lie algebra obtained by transferring
the scalars of a finite dimensional simple Lie algebra over C
to a commutative ring R with identity in which 2 and 3 are
not zero divisors) depends on the ideal structure of R. Spe-
cifically, we find that composition series of ideals for the
Chevalley algebras exist only in case R has composition series
of ideals, and in the latter case give explicit descriptions of
the composition series in the Chevalley algebras. We also
give a necessary and sufficient condition for the composition
series in the algebra to exactly parallel those in the ring.

In two earlier papers ([3] and [4]), we have used the fundamental
procedures of Chevalley [1] to construct certain Lie algebras from the
finite dimensional complex simple algebras through replacement of the
scalars by elements of a commutative ring R with identity in which
2 and 3 are neither zero nor zero divisors. The main results of these
papers concerned the question of to what extent simplicity of the
original algebras reflects itself in the ideal structure of the new alge-
bras, which we call Chevalley algebras. In the case when the ring R
is a field of prime characteristic, what amounts to this same question
was previously considered by Dieudonne [2], Ono [7], and, as a tool
for studying automorphisms, Steinberg [8]. The major emphasis in [2]
however was upon the nature of the composition series of ideals in the
nonsimple Chevalley algebras, with explicit results being obtained for
the exceptional algebras and implicit results noted in the still earlier
work of Jacobson ([5] and [6]). In the present paper, we take up this
topic in the setting of an arbitrary commutative ground ring with
identity, with our methods once more requiring exclusion of the cases
when 2 or 3 are zero or zero divisors. We obtain results which give
the extent to which the nature of composition series of ideals in the
Chevalley algebras is determined by the nature of the composition
series of ideals in the ring R.

Let L be a simple Lie algebra of finite dimension over the complex
field, H an ^-dimensional Cartan subalgebra, Σ the (ordered) set of
nonzero roots determined by H, and Π the set of simple roots. For
r and s in Σ, we denote the Cartan integer 2(r, s)/(s, s) by e(r, s).
When referring to the length of a root r, we shall mean simply
VJrTr).

Let B = {er} (J {/&<} be a Chevalley basis of L. Let Lz be the free
additive abelian group generated by B. Since the structural constants
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of L relative to B are all integers, if we define LR to be R(g)zL
then LR can be viewed as a Lie algebra over R, where the multipli-
cation table for B is used with all integers interpreted in R. Under
the obvious identification, we may regard B as a basis of LR.

Let {h[, , K} be a complex basis of H which is dual to the
system Π = {rx, r2, , rn}. Then Hz g Hz where Hz is the additive
group generated by {hly -,hn} and Hr

z is that generated by {h[, , h'n).
In fact, hi = Σ;=i Φ% , r ^ ; a n d HR = R ®_HZ Q H'R = R<g) H'z. There
exist then basis {/&„ ---,hn} of iί*. and {Λ', -- ,Λ4} of ίΓ^ such that
hi — dfilj with c£, the ith elementary divisor of the Car tan matrix C
of L. In the sequel we also use C to represent the linear transfor-
mation on H whose matrix relative to {hly , hn} is the Cartan matrix
of L. Recalling that a simple algebra has at most two distinct root
lengths, we use s and t as generic symbols for short and long roots
respectively, and define EB, Es, and EL to be the i?-submodules of LR

generated by {er\reΣ}9 {es\s a short root} and {et\t a long root}. Hs

and HL are defined similarly.

The basic relationship between ideals in LR and ideals in R tells
us that only for a narrow class of our rings R will LR possess a com-
position series. We remark first that the existence of a composition
series of ideals in LR is equivalent to the presence of the ascending
and descending chain conditions on ideals in LR, since the lattice of
ideals of LR is, as usual, modular. The following lemma, a conse-
quence of this remark, now limits our ensuing discussion to rings having
a composition series of ideals.

LEMMA. If R is a ring with no composition series (in the sense
°f [9]), then LR has no composition series of ideals.

Proof. If R has no composition series, then there exists an in-
finite sequence of ideals Ji of R which is either strictly increasing or
strictly decreasing. It is then easily seen that the corresponding J{LR

are ideals in LR and together form an infinite sequence of the same
sort as the Ĵ  form. Thus LR has no composition series of ideals.

In the sequel, the converse of this lemma is essentially obtained
through consideration first of Lie algebras L of one root length, then
nonsymplectic L with two root lengths, and finally symplectic L. We
in fact obtain explicit characterizations of composition series in LR in
terms of a given composition series in R.

2* Statement of results* Let
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be a composition series of ideals for LR. We say that this composition
series is determined by a composition series in R if there exists a
composision series R = J o Z) Jx z> z> J m Z) J w + 1 = 0 such that for each
i, AT, = JiLR.

THEOREM 1. A necesssary and sufficient condition for every com-
position series in LR to be determined by one in R is that detC and
(£, t)/(s, s) both be invertible in R.

THEOREM 2. Let L be of type An9 n ^ 2, Dn, n even Ξ> 4, EQ1 or
E7. Then there exists a composition series {Jo, Ji, -- ,Λ>Λ+i} in R
such that

Mι = JJΞR + J A + + / A . ! + J?λΛ ,

M2 = J i L ^ ,

4 2 Λ , Mm_t - J Λ L Λ , M m - Jkhn .

If L is of type E8, then every composition series for LR is determined
by one in R.

THEOREM 3. Let L be of type DnJ n >̂ 3 odd. Then there exists
a composition series {Jo, Jlf •••, JkJ Jk+1} in R such that

+ JA + + Jjin_2 + Rhn_, + Rhn ,

M2 = JJS7* + J A + + JA-2 + J ( 1A_! + J(2)hn where one of
J ( 1 ) , J ( 2 ) is jβ αnώ the other is Jx ,

Mz = JXLR ,

Λί4 = J2ER + J 2 ^ + . . . + J A _ 2 + J^K-i + JWK where one of
J ( 3 ) , J ( 4 ) is Ji GWMZ ίΛe oίAβr is J 2 ,

Λίm = JjeK-i or Jkhn .

THEOREM 4. Lei L 6β of type Bn1 n^3. Let {hi} be the basis
of Theorem 7.3 of [3]. T%e% there exists a composition series
{Jo> Ji> y Jk> Jfc+J iw R such that

Mx = Jx^x + i ? ^ + Mx + J A + RK + Jxh4 + + J A - ! + Rhn ,

M2 = J i ^ + i ? ^ + ΛΛi + J^2_+ JΛβ̂  + J A + + JA_ r + Rhn

or JXEL + RES + ΛΛi + JA + ΛΛ3 + J A + + JA-i + eTA ,

Λf8 = JJSL + RES + Rhλ + JiAjj + C/ΊAS + J A + + JA-i + Ji^ ,

M4 - J ^ + J A + + JA-i + Rhn ,
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Mδ = JγLR ,

Mm^ = JkEs + JkK + Jkh3 + Jkhn ,

Mm = Jkhn .

THEOREM 5. Let L be of type F4 and {hi} be the basis of Theorem
7.5 of [3]. Then there exists a composition series {Jo, J^ , Jk, Jk+ί}
of ideals in R such that

+ RES + Rhγ + Rh2

M2 = JXLR ,

Mz = J2EL + JλEs + JiK + Jjι2 + J2h3

Mm_γ — JkLR ,

Mm = JkEs + JjΛi 4- J*fe2

THEOREM 6. Let L be of type G2 and let {hi} be the basis of
Theorem 7.7 of [3]. Then there is a composition series

Mt =

M2 = X R ,

Λί4 = J2LR ,

M m - 1 = JkLR ,

JkK2 .
3* Proof* The proofs of our results depend of course on the

nature of the ideals in L 5 , a characterization of which is found in
[3]. When appropriate, we shall refer to results in [3] by number
without giving the explicit statements themselves.

3.1. Proof of Theorem 1. By Theorem 3.3 of [3], every ideal
in LR has the form JLR for some ideal J in R if and only if the two
integers det C and (£, t)/(s, s) are invertible in R. If these integers
are invertible and a composition series {Mo, M19 M2, , Mmf Mm+1} is
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given in LR, then we have Mi = J{LR for some ideal J{ in R, i =
1, 2, , m. Since no ideals exist in LR between Mi and Mi+1, neither
do any exist in R between J{ and Ji+1. Hence {Jo, Jίy •••, Jm, Jm+1} is
a composition series in R which determines the given series in LR.
Conversely, if every composition series in LR consists of terms of the
form JiLR where {JJ is some composition series in R, then no ideals
can exist in LR which are not of the form JLR for some ideal J in
R. Then det C and {t, t)/(s9 s) are invertible in R.

3.2. Proof of Theorems 2 and 3. Given the composition series
in LR, we know that Mlf being a maximal ideal, has the asserted
form for Jι a maximal ideal in R, by virtue of Theorem 6.3 of [3]
in all cases except Es. For EB however, the conclusion of Theorem 1
is available since det C = 1 and there is only one root length. In
view of Theorems 3.4 and 6.2 of [3], in order for no ideal of LR to
exist between Mι and M2, it must be that M2 has the asserted form
also, and similarly for Mz in the case Dn, n odd. Again by the above
quoted theorems, if no ideals in LR exist between M2 and Mz (Λf3 and
M4 in case Dn1 n odd), then there must exist an ideal J2 of R, with
J2 maximal among the ideals of R contained in Jι and having the
property that Mz (M4 in case Dn, n odd) has the asserted form. Re-
petition of this reasoning at each stage yields the desired composition
series in R and completes the proof.

3.3. Proof of Theorems 4, 5, and 6. We reason as in 3.2, this
time calling upon the relevant theorems in [3] for the nonsymplectic
algebras of two root lengths. The maximal ideal Mγ has the form as-
serted for some maximal ideal Jι in R by appeal to Theorems 7.4, 7.6,
and 7.8 of [3] in the respective cases Bn, F4 and G2. Since no ideals
in LR exist between Mt and M2, we use Theorems 3.5, 7.3, 7.5, and
7.7 of [3] to determine the nature of M2. We know in each case
that M2nEB = J,EL + RES and that

J,HL + RHS SM2f]HR^ C~\RHS + JJLL) .

Thus to preclude ideals between ML and M2 we need only make M2 n HR

a maximal iϋ-submodule of Mι Π HR, all in view of 3.5 of [3]. The
subsequently listed results merely prescribe that M2 then has the form
asserted in Theorems 4, 5, and 6 in the respective cases Bn, F4, and
G2. The same combination of references is effective in producing the
ideals of R needed to complete the composition series below JL and
with it the proof.

4* The symplectic algebras. If L is of type Cn9 n ^ 2, the
ideal structure of LR is far less tidy than in the other cases, so much
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so that the concrete representations of the ideals (and so of the com-
position series of ideals) in LR given above in terms of simply chosen
bases just no longer exist. Using Theorem 3.6 of [3] however, we
can at least describe a composition series in LR module the nature of
composition series of iϋ-submodules in HR. Since M1 is a maximal
ideal of LR1 we know that ML Π Es = JJES for some maximal ideal /
of R. Moreover, M, Π (EL + HR) g JJSL + C-'&HR). By maximality
then M, must be JtER + C-^J.HR). We have that C-'iJ.H^ = J.H^
and hi = El, i = 1, , n — 1, with hn — 2h'n. If Jγ contains 2, then
writing h = Σ n&% *n

 C^/JSTR), we have πw e (1/2) ̂  = .β. The same
is true if Jγ fails to contain 2, except that (l/2)Jt = J^ In the latter
case, Mι = J,LR; in the former Mι = / ^ + /i^i + + JiK^ + J2ΛΛ.
Now for any i2-module N' = J ' ^ + ^ where 2JX a Jf S Λ and
J ' i ί L + / ^ S J Ϊ S C-\JΉL + / A ) , iSΓr + J ^ will be an ideal in
LR. The first step in constructing M2 then is to find a J2 in R maximal
among the E-ideals contained in JL which also contain 2JL. Then one
constructs M2 and the next few Mi by determining which H can be
fitted into a composition series through C~\J2HL + JtHs) so as to con-
tain J2HL + Jiiϊs. Then the whole process breaks into two possibilities.
One either constructs an M with M f] Es = J2£

r

s, and repeats the
above steps with J2 in place of Ju or else finds a Jg maximal in J2 which
contains 2Jλ and looks for additional H. As can be seen, numerous
alternative paths exist for finishing the composition series in LR through
construction of one in R.
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