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FINITE DIMENSIONAL TRANSLATION
INVARIANT SUBSPACES

MARTIN ENGERT

It is known that every finite dimensional translation in-
variant subspace of the continuous functions on the real line
consists of exponential polynomials. The purpose of this paper
is to prove an analogous result under the hypotheses that the
functions involved are measurable instead of continuous (and
two functions are considered identical if they are equal almost
everywhere) and that the functions are defined on a cr-compact
locally compact abelian group. There is an application of this
theorem to the characterization of differential operators at the
end of the paper.

Proofs of the result for continuous functions can be found in Anselone
and Korevaar [1] and Loewner [5] along with generalizations to the
case of distributions in [1] and some applications in [5] Also, a theorem
of this type has been proved by Stone [6] for continuous functions on
semi-groups.

PRELIMINARY DEFINITIONS. If G is a locally compact abelian group
then an additive or a linear function on G is a complex valued function
b such that b(x + y) — b(x) + b(y) for all x and y in G. A polynomial
on G is a function of the form p(x) = Pφ^x), , bn(x)) where P is a
polynomial in n variables and b{ (i = 1, , n) is a continuous additive
function on G. An exponential on G is a continuous multiplicative
complex valued function on G. An exponential polynomial on G is a
function of the form Ύ^ pigi where /pi is a polynomial and Qi is an
exponential.

In this paper, G will always refer to a cr-compaet locally compact
abelian group with Haar measure μ. Two measurable functions will
be considered to be equal if they are equal almost everywhere.

A multi-index p — (pu , pn) is an π-tuple of nonnegativeintegers,
and if ό = (δx, , δ J is a complex n-tuple, then bp is defined to be
b^bζ2 &;». (For more details on the notation, see Hormander [2],
particularly pages 9-10).

The symbol Tx denotes the operator of translation by x, that is,
(Txf)(y) = f(x + y).

LEMMA 1. Let b be a measurable function on G and suppose that
for almost every x in G

b(x) + b(y) — b(x + y) = 0 a.e. in y .
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Then b is equal almost everywhere to a continuous linear function b\

Proof. We can assume that b is real, for if not we can apply
the lemma to Re (6) and Im (b) separately. We shall first show that
6 is essentially bounded on every compact subset of G. It is enough
to show that b is essentially bounded on every symmetric neighbor-
hood of the identity with compact closure. Let A be such a neigh-
borhood and let B = A + A. Suppose b is not bounded on A. Then
the measure of the set A Π {x: b(x) > n) is positive for each positive
integer n. Let {xn} be a sequence of points in the set A Π {x: b(x) +
b(y) — b(x + y) = 0 a.e. in y) such that b{xn) > n. We have for any
a in A and any positive integer n

{x: b(x + a) > n and xeA} a {x: b(x) > n and xeA + A}.

So

μ{x: b(x + α) > n and x e i } ^ μ{#: b(x) > w and a? e B} .

Since 6 is measurable and B has finite measure, the right side goes
to zero as n increases, so the left side must also, that is, for any
ε > 0 there exists an n so that for any a in A, μ{x: b(x + a) > n and
x e A} < ε. But by choosing a = xn we know that δ(ίcj + b(x) = b(x + xn)
a.e. in #, so μ{x: b(x) > n — b(xn) and x e A} Ξ> jt£{aj: &(#) > 0 and a; e A}.
The right side of this inequality does not go to zero, so we have a
contradiction.

To get a continuous function, we let f(x) be a nonnegative con-
tinuous function with compact support. Then /*& is continuous and

a.e. in z. So

a.e. in ». If we call the right side of this equation V(z) we have
6(«) = V{z) a.e. and 6'(2) is continuous. Thus b'(x) + b'(y) - b'(x + y)
is continuous on G x G and is equal to zero a.e. with respect to the
product measure. This implies that V(x) + b'(y) — V(x + y) equals
zero everywhere or that 6' is linear.

LEMMA 2. Let f be a measurable function on G. Suppose
Txf — f = 0 a.e. for each x in G. Then there is a constant K such
that f(x) — K a.e.

Proof. Define g on G x G by g(x, y) = f(x + y) - f(x). Then for
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each y,g{x,y) = 0 a.e. sog = 0 a.e. o n G x G . Define g'(x, y) = g(x,y — x).
(This is also equal to f(y) — f(x)). Since (a?, ?/) —> (α?, 2/ — x) is a one
to one measure preserving map of G x G into itself, gf is also zero
almost everywhere on G x (?. So, by Fubini's theorem, for almost all
V, ΰ'{%, v) — 0 a.e. in a?. Let y0 be such a value of y. Then #'(&, y0) =
/(ϊΛ>) - /(&) - 0 a.e. Let /(τ/0) - K.

LEMMA 3. Suppose f is a measurable function on G and Txf —
f— b(x)l a.e., where b(x)l denotes the function that is the constant
b(x). Then b is a continuous linear function on G.

Proof. We first show that b is linear. We have Tx+yf = Tx( TJ) =
Tx(f + %)1) = / + δ(«)l + δ(y)l. But Tx+yf is also equal to / +
b(x + y)l. Thus 6 is linear.

Let g be an integrable function such that the integral of g is 1
and fg is integrable. Let fn be the function defined by

ίf(x) if I / ( » ) I ^ Λ
Λ W " l 0 if | / ( * ) | > n .

Then

\g(y)(f(χ + y)~ f(v))dy - b(χ).

Define bn(x) as

\ + v)- f(v))dy.

Since fn is bounded and g is integrable, δw is continuous. By the
Lebesgue dominated convergence theorem, bn converges to b, so b is
the limit of continuous functions and thus measurable.

By Lemma 1, b is equal almost everywhere to a continuous linear
function δ\ Then for each x in G, b(x + y) = b'{x + y) a.e. in y which
in turn implies that b(x) = V(x). Thus 6 = 6' everywhere or 6 is a
continuous linear function.

LEMMA 4. J/ 6 = (δx, •••,&„) is cm n-tuple of linear functions on
G and p is a multi-index, then

9 ^ P (29 — # ) ! g ! <?<2> ( p — q)l ql

Proof. The proof of this is straightforward computation of
bp(x + y) using the binomial theorem repeatedly, so it will be omitted
here.
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LEMMA 5. Let f be a measurable function on G such that the
complex linear space spanned by {TJ — fixe G} is a finite dimensional
space V of polynomials. Then f is equal almost everywhere to a
polynomial on G.

Proof. It might be helpful to outline the proof first. We will
first construct a polynomial / ' so that {Tx{f - /') — (/ — f'):xeG}
spans a finite dimensional space of polynomials of degree less than or
equal to one. We then show that if / " is a function such that
{Txf" — f":xeG) spans a finite dimensional space of polynomials of
degree less than or equal to one then we can construct a polynomial
/ ' " so that for each x, Tx(f" - f'") - (/" - /"') is equal almost every-
where to a constant. We then use the previous lemmas to conclude
that / " — / ' " is equal almost everywhere to a polynomial.

First choose a finite set of continuous linear functions so that all
polynomials in V are built up from these linear functions. We can
then choose a set {bly •••, 6J of linear combinations of these functions
and a set of points {yly , yn} in G so that b^y^ = δid and V is con-
tained in the linear space spanned by bp for p contained in a finite set
of multi-indices:.

There are thus functions cp, defined everywhere on G, so that
Γ*/ - / = Σ cp(x)bp. We compute

τx+xf = τxτj = τx(f + Σ

= / + Σ CpW + Σ CM Σ Pi (p — r)\

with these equations holding almost everywhere on G. Since the
functions br are linearly independent, the coefficient of br is equal to

cr(x) .

This expression has to be symmetric in x and y, giving for each r the
set of equations

Z-i L

— V (

',(V)
(P

(V

pi
- r ) !

- r ) !

rl

rl

Σ c(y) P\ b"r(x) = Σ c(x) plr(x) = Σ c,(x), \. .b(x) Σ c,(x) b(y) .
(p — r) ! rl p>r (p — r)l rl

Now change notation, on the right hand side let q = p — r. We get

( i ) Σ cP(y), p\. bp-r(%) = Σ ct+r(x){q + y ) ! b"(y).
p>r (p — r)l rl Q>O ql rl



FINITE DIMENSIONAL TRANSLATION INVARIANT SUBSPACES 337

The sum on the right is a finite sum, say over q = g19 , qm. Choose
Xu * •» %m s o that the matrix [6fi] = [&**(%)] is invertible. (This is possible
because the monomials bq are linearly independent). This is equivalent
to saying that there exist numbers Bq>3 with the property

0 if p Φ q .

By letting y = xlf , xm successively in equation (1) above we get for
each r a set of m equations which we can solve for [(q 4- r)l/ql rl]cq+r(x),
finding it equal to

Σ Bq,k Σ cp(xk)- ^——-bp~r(x) .
k p>r (q — T)\ Tl

Thus, if q > 0

= VΣ 2-1 &q,kCp\
(? + r) ! (?> - r ) !

Define &(p, g) to be the quantity within the brackets. Note that
k(p, q) is defined only if p > 0 and q > 0. If we take the special case
r = 0 we get, for <? > 0

( 3) et(x) = Σ [kip, q)](P Ί f b'(x)
p>o pi q\

which says that cq is a linear combination of monomials bp and that
k(p, q) is the coefficient of the monomial [(p + q)l/plql]bp in the function
cq.

We want to show that k(p, q) depends only on p + q. We shall
first show this in the case where | p + q\ ^ 3. Then we shall consider
the case where (p + q | = 2. Since both p and q in the above equation
are always > 0, the case | p + q \ = 1 does not arise.

Suppose we have q — qr + r and p — pf — r. Then we want to
show that jfc(p, ζf) = k(p', q'). But using equation (2) twice

cg(χ) = Σ ^ t ^ '

= cq,+r(x)

= Σ g)l , y _ y ΐ ,.
(̂  + r) !(p ' — r) !

- Σ [*(p', q')]iPtf b*(x) .
v>r plql
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So k(p, q) == k{p', q') since they both can be described as the coefficient
of [(p + q)l/plql]bp in eq.

From this we can conclude that k(p19 qx) = k(p2, q2) whenever we
can find a third pair of nonzero multiindices (p3, qz) so that px + qt =
p2 + q2 — p3 + g3 and we can compare g3 to both gx and g2 in the way
we have just done. By simple arguments it can be shown that if
the multi-index s has | s | 2̂  3 and pt + qx — p2 + q2 = s and if none of
the multi-indices p1? #>2> ̂ i» 2̂ is equal to zero, then k(p19 qj — k(p21 q2).

Thus, for I s I ̂  3 we can define k(s) — k(p, q) for any p and g
with p + g — s.

Let / ' - Σ . « fe(s)δ8. Then

Tmf' - Γ = Σ *(β) Σ / ' b
— q)\q\

By comparing this equation (3) we can see that there are numbers
k'(p, q) so that

TΛf - /') - ( / - / ' ) = Σ V(p, Q)(PJ~qf bp(x)b« + eo(x)l ,

where the sum is taken over the multi-indices p and q with | p + q | ^ 2
and p > 0. The right side of this equation contains only linear
functions and constants, that is, we can define functions d0, d19 * ,dn

so that

Tx(f - / ') - (/ - /') = dQ(x)l + Σ <

Let / " = / - / ' for short.

Using the same trick as before:

= Tx(f

= /" +
+ Σ dk

\- do(yμ

»(α)l +

(»)δ* +

• + Σ dk(y)bk)
do(y)l + Σ dk(y)bk

Σ δ*(B)d*(lί)l

This has to be symmetric in x and y, so we get

Pich y = ylf "*,yn in succession, where these are the numbers chosen
at the beginning of the proof so that bk(yi) = δki. We get

dk(x) - Σ djiy^bjix)
i

and thus, by letting a? = yif dk(yi) = -̂(1/*). Let / ' " = (1/2) Σ*,fc
Then
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TJ'" = /'" + i- Σ dk(yt)bt(x)bk

i + 4" Σ
Δ * Δ

= / '" + Σ dk(x)bk +
k

where d' = (1/2) ΣίβΛvύhbi. Thus

Γ,(/" - /'") - (/" ~ /'") = (do(x) - d'(

By Lemma 3 d0 — dr is a continuous linear function. Then

T,(/" ~ / " ' ~ (d0 - d')) - (/" - / ' " - (d0 - d')) - 0

a.e., and thus by Lemma 2 / " — / ' " — (d0 — df) is a constant almost
everywhere. Since f" = f + a polynomial, we conclude that / is
equal to a polynomial almost everywhere.

LEMMA 6. Let p be a measurable function on G such that for
all x and y, p(x + y) = p(%)p(y) Then p is continuous.

Proof. Since In \ p(x) \ is a measurable linear function, p is locally
bounded, by Lemma 1. Let E be an open set with compact closure.
Then

I p(x ~ V)p(y)dy = p(x)μ(E) ,

μ(E)[p(x + ε) - p(x)] = \ [p(x + ε - y) - p(x - y)]p(y)dy ,

JE

μ(E) \p(x + ε) - p(x)\ ̂  sup \p(y)\ \ \p(-t + ε) - p(-t)\dt .
yeE JE+x

SO

and

Since p is locally bounded, the right side goes to zero as ε goes to
zero. Thus p is continuous.

LEMMA 7. If f is a measurable function on G and if for all
x in G, Txf — p(x)f a.e., then p is an exponential.

Proof. We first show that p is measurable. If % is a positive
integer, define the function gn by

I fix) if \f(x)\£n
gΛX)-\0 if I/<s)|> n.
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Let h be an integrable function such that fh is integrable and

Then

\{TJ)h =

Define

2>»(a) =

The function pn is continuous because gn is bounded and h is integrable.
For each x, pn{x) converges to p(x) by the Lebesgue dominated con-
vergence theorem. Since p is the limit of continuous functions, p is
measurable. The function p is multiplicative since Tx+y = p(x + y) and
also Tx+yf= TxTyf= Txp(y)f= p(y)Tβf= p(y)p(x)f. By Lemma 6, p
is continuous.

THEOREM 1. Let V be a translation invariant finite dimensional
complex linear space of measurable functions on a locally compact
abelian group G. Then every function in V is an exponential
polynomial.

Proof. Since the family of translation operators is a commuting
family of mappings from V into itself, we can write F a s a direct
sum V1 + + Vk where each subspace VJ is invariant and indecom-
posable under this family of mappings. Also a basis for V can be
found so that on Vj the translation operators have matrices which
are lower triangular with alΓdiagonal elements equal, i.e., of the form

-pά{x) 0

( * )

(See Jacobson [3], p. 134). By Lemma 7, pό is an exponential function,
since, there is a basis element fd such that Txf3 = Pj(x)f To simplify
notation, we shall assume that V itself is invariant and indecomposable
so that we may omit the subscripts. Let V = {p^fi f^V). An easy
computation shows that multiplication by an exponential takes trans-
lation invariant spaces into translation invariant spaces, so that V- is
also invariant and indecomposable. Then in a suitable basis the matrix
of translation has the form *. We can determine the diagonal elements
by looking at a one dimensional subspace. Since the translates of p~ιf
span a one dimensional subspace if and only if the translates of / do
also, we have
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[Tyip-yWx) = p~\x + y)(Tyf)(x)

= p-\χ)p~1{y)p{y)f{χ) = {p^f){χ).

This implies that in a suitable basis, the matrix of translation by any
x on V is zero above the diagonal and identically equal to one on the
diagonal. Applying Lemma 5 to the basis elements of V in succes-
sion, first to the element f such that the translates of f span a one
dimensional space, then to the element /2 such that translates of f2

and f span a two dimensional space, and so on, we see that V con-
sists of polynomials, and that V consists of polynomials multiplied by
the exponential p.

LEMMA 8. Suppose p is an unbounded exponential function on
Rn. Then (a) there is no nonzero function f on Rn with the pro-
perties: (1) / has compact support, (2) / is integrable, (3) pf is in-
tegrable,

(b) there is no nonzero function f with the properties (1) / has
compact support, (2) f is square integrable, (3) pf is square integrable.

Proof, (a) Suppose there is a nonzero function / with the three
properties. Then we can assume /(0) Φ 0 without loss of generality.
Since the hypotheses are satisfied for p if and only if they are satisfied
for \p\, we need only consider the case that p is real. If so, p(x) =
exp (a, x) where a is a real w-tuple. Define, for t real,

g(t) = f(ta) = — I exp it(y, a)f(y)dy .

If z is complex, — 1 ^ Im(z) <Ξ 0, define

1 Γ

g{z) - — j exp iz(y, a)f(y)dy .

If - 1 rg Im(z) g 0, then \expiz(y,a)f(y)\ ^ \exp(y,a)f(y)\ + \f(y)\ so
the integral defining g(z) converges absolutely. If — 1 < Im (z) < 0,
we can differentiate with respect to z and see that g(z) is analytic in
this region. Thus g{t) (t real) are the boundary values of an analytic
function, so by the reflection principle, g cannot vanish in an interval
without vanishing identically. Since g(0) = /(0) Φ 0, and g has com-
pact support, we have a contradiction.

(b) Suppose there is a nonzero function / with these properties.
Then apply part (a) with / replaced by / * / and p replaced by p2. We
conclude that / * / = 0 which implies that / 2 = 0 or / = 0, which is a
contradiction.

LEMMA 9. Let D be a closeable densely defined operator from
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U(Rn) to itself that commutes with translations. Then there is a
measurable function b on Rn so that for any f in the domain of D,
Df = F~ιbF where F denotes the fourier transform and b denotes the
operator of multiplication by the function b.

Proof. It is known that a closeable densely defined operator from
If(Rn) to itself that commutes with multiplication by bounded ex-
ponentials is multiplication by a measurable function. (See Kunze [4],
p. 5). Apply this result to F^DF.

For the purpose of the following theorem, a differential difference
operator with constant coefficients is an operator of the form F~ιbF
where F denotes the fourier transform and b denotes multiplication by
an exponential polynomial 6 with only bounded exponentials appearing.

THEOREM 2. Let D be a closed densely defined operator from
U{Rn) into itself. Then D is a differential difference operator with
constant coefficients if and only if the following conditions are
satisfied: (1) D commutes with translations, (2) there is a nonzero
function f with compact support such that f(x)eί{h>x) is in the domain
of D for all h in Rn, (3) the set of functions {e-i{h>x)Dei{h>x)f(x): h e Rn)
spans a finite dimensional complex linear space of functions.

Proof. It is trivial that condition (1) is necessary. Condition (2)
is necessary since we can take / to be any infinitely differentiate
function with compact support; and a direct calculation shows that
condition (3) is necessary.

Lemma 9 and condition (1) imply that D is of the form F~ιbF.
Condition (3) implies that {(Txb)f: x e Rn) spans a finite dimensional space
Since / is analytic, it is different from zero almost everywhere, so we
can divide by it and conclude that {Txb: x e Rn) spans a finite dimen-
sional space T(b) of measurable functions and thus, by Theorem 1, b
is an exponential polynomial. Also, if g is in T(b), then gf is square
integrable by condition (2). We have to show that 6 contains only
bounded exponentials. By the proof of Theorem 1, every exponential
p that appears in b is also in the space Γ(δ), and thus pf is square
integrable. But if p is unbounded, then Lemma 8 gives a contradiction.
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