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JORDAN ALGEBRAS AND EXCEPTIONAL SUBALGEBRAS
OF THE EXCEPTIONAL ALGEBRA E6

H. P. A L L E N AND J. C. FERRAR

The close relationship which exists between exceptional
central simple Lie algebras, Cayley algebras, and exceptional
central simple Jordan algebras has been known for some
time. The representational point of view which the latter
nonassociative algebras afford has led to the complete classifi-
cation of the Lie algebras G2 and F4f partial classification of the
Lie algebras A and E6, and to concrete realizations for forms
of the above algebras and the algebras E7 and Es.

In the present paper we shall establish a "coordinatiza-
tion" theorem (Theorem 2) for exceptional simple subalgebras
of the Lie algebra 8(3) of type Eβ, over an algebraically
closed field of characteristic 0, in terms of the annihilated
subspace. We use this to give a new proof of the well known
con jugacy (see Dynkins Table 25) of split subalgebras of type
G2 or A or F4, of a split algebas of type A or Ft or Ee over
a field of characteristic 0 (Theorem 3). This is then applied
to obtain new results in the classification of A and EQ which
are subsequently used in generalizing the above conjugacy
and extension of automorphism theorems to the (possibly) non-
split case.

Throughout this paper, unless specifically stated otherwise, all
fields which appear will have characteristic 0. If S is a Lie algebra
over the field k, then we say that 2 is (a form) of type Xx if 8̂  (k
the algebraic closure of k) is the Lie algebra Xt in the Killing-Cartan-
Seligman classification.

1*2* Let (£ be a Cayley algebra over the field k. Recall that ©
is an 8-dimensional vector space together with a nondegenerate bilinear
form n(a, 6), and a bilinear multiplication K x K ^ g ((α, b) κ> ab) which
are related by

n(ab, ab) = n{a, a)n(b, b) (α, b) e (£ .

(£ is a unital, central simple, alternative, notassociative algebra and
n necessarily has Witt index 0 or 4 ([14]). In the latter case (£ is
referred to as the split Cayley algebra over k. It is well known that
3)((£), the derivation algebra of a split Cayley algebra, is the split Lie
algebra Gz ([12]) and that the Lie algebra 3((£, n) of w-skew trans-
formations in (£ is the split Lie algebra A ([15]).

THEOREM 1. Let K be a Cayley algebra over a field k (char k =
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0), 3) = ©((£) and 2 = §((£, ri). Then every isomorphism a : S)—*£ is
extendable to an automorphism of £. If k is algebraically closed
then extension can be achieved by an invariant automorphism ([15]
p. 265) of S.

Proof. It is known (c.f. [15], p. 234) that the only irreducible
module for the split G2, of dimension at most eight, is seven dimensional
and is unique. This implies that 3)((£) has a unique 7-dimensional
module.

(£ is a completely reducible & = 3)α-module (char k = 0, c.f. [15],
p. 79) and the above shows that K = 3 0 2 K where 3 is a 1-dimensional
zero module and Wl is an irreducible 7-dimensional ^-module. One
easily sees that $ and Hft are the only nontrivial ίE-submodules of (£.
Since $ consists of w-skew transformations, 3 1 is a 7-dimensional $-
submodule so $x = Hft. The corresponding decomposition of (£ as ®-
module is (7 = Jfcl + (£0 where (£0 is the ( —l)-space of the canonical
involution a —> n(a, 1)1 — α == a in K.

If we identify 3) and ίΐ by a, then the uniqueness of the 7-di-
mentional S)((£)-module manifests itself by the existence of a linear
isomorphism B: (£0 —* SK such that

( 1 ) (Cod)-B = (c0B)da for all c0 G <£O, d e ® .

Define a nondegenerate bilinear form n' on 3K by ^'(m, m') — n(mB~\
m'B*1). A simple calculation shows that ^ is skew with respect to
n'. Since $ generates Endfc 9K (the representation is absolutely ir-
reducible) and is skew with respect to both nr and n \ M it follows
that the adjoints with respect to the two forms are the same and
hence that the forms are dependent (e.g. [15], p. 312, or [3]). Thus
there is a λ e fc* with nf — Xn \ Wl. For m e 9K, λn(m, m) = w'(m, m) =
n(mB~\ mJ5-1), so there is an α e S with w(α, α) = λ. BaR(aR: b —>ba)
is an orthogonal mapping of (£0 into (£ and by Witt's Theorem there
exists an 0 e O(n) with BaR = 0 | (£0 Let A = 0α;1. A is a similitude
of ((£, w) and conjugation by A is an automorphism of S. Since A \ (£0 =
J5 and (kl)A = 3> (1) shows that this automorphism extends a.

1*3• In this section we introduce the exceptional central simple
Jordan algebra, recall some well known results for further use, and
indicate the canonical realizations of the algebras G2, A , -F7* and ί76 in
terms of these algebras.

Let E be a Cayley algebra over the field k and consider the alge-
bra K3 = &<S)kh of all 3 x 3 matrices with entries in (£. If Ύίβfc*,
i — 1, 2, 3, then the subspace $ = Ij((£3, 7) of all matrices in (E8 of
the form
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α 3 7Γ173αΛ

ocz at I a{ e k, at e (£

73~
172α1 a3 I

(and α —> α the canonical involution in (£) is equipped with the structure
of an exceptional central simple Jordan algebra by means of the com-
position x.y — (l/2)(xy + yx), xy denoting the product in (£3.

If we let {eiS} be the usual matrix units in fc3 £ (£3 then e« = β4

are orthogonal ίdempotents in Qf, i = 1, 2, 3, and / = βx 4- β2 + e3 is the
identity of &

£? is a power associative algebra and the generic minimal poly-
nomial of x G $ is

(2 ) χ-z - T(x)χ-2 + Q(x)α? - JSΓ(α?)Z = 0

where T(x) is the (linear) generic trace form, Q(x) a quadratic form,
and N(x) the (cubic) generic norm form. The trace bilinear form
T(x, y) = T(x y) is symmetric and nondegenerate and if we let N(x,
y, z) be the linearized norm form then T(x) = SN(x, /, /) ([16] III, p.
69, eq. 25), and we can introduce the Freudenthal cross product x x y
by requiring that

T(x x y,z) = 3N(x, y, z) for all z e % .

One can obtain x x y explicitly from the multiplication in $ a s

xχy = χ.y-λ T(x)y - λ T(y)x + \(T{x)T{y) - T(x-y))I
Δ Δ Δ

([11], eq. 1.4). Using this form of the cross product we see that

(Ore,) = { x e S l x x ex = 0} = /

(where $<,- == {α̂  = αβ4i + 7717ίαβiί | α e (£} £ 3ί) and hence that dim(0: e%) =
17.

The Peirce decomposition of $ relative to {ej is Σ*=i &e; + Σ*<y3fίi
and is an orthogonal decomposition with respect to the trace bilinear
form. It then follows that (0: ej1 = 9ΐ = &e2 + ke3 + ^2s is a Jordan
subalgebra of $ with identity e2 + e3. We note that for x e 9ΐ,
Γ(a;, β2 + β3) = 0 implies α 2 e k(e2 + βa)

Assume for the moment that $ is an arbitrary exceptional central
simple Jordan algebra over k (i.e., that ^ is an algebra of the pre-
ceding type). $ is called reduced if it contains a nontrivial idempotent
and one has the result of Schafer ([20], [22]) that every reduced al-
gebra has the form ΐ)((£3, 7) where the Cayley algebra is unique up to
isomorphism. Following Jacobson ([13]) we introduce the ternary
composition {xyz} = (x y)-z + (y z) x — (z-x) y in $. It is known
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that if u is an element of $ with N(u) Φ 0 (hence u is invertible) then
the composition (x, y) H-> {xuy} =Ξχ uy equips the underlying vector space
of $ with the structure of an exceptional central simple Jordan alge-
bra which is denoted by $(w) and which is called the u-isotope of 3 .
The identity of $(M) is v = vr\ 3(ί° is reduced if and only if 3 is re-
duced and if this is the case, then the coordinatizing Cayley algebras
are isomorphic ([1]). If Niu)(x) is the generic norm on $(tt), then

(3) Nw(x) - N(x)N(u) ([17]) .

Finally 3 is called split if it is reduced and if the attached Cayley
algebra is split.

Let Π ΞΞ 77(3) = {x e $ \ x Φ 0, x x x = 0} = {x e 3f | x Φ 0, N(x, x, y) = 0.
for all 2/} be the elements of rank one in 3 It is known that 77
consists exactly of all nonzero elements in $ which are either nilpotent
of order 2(xe 77, T(x) — 0) or scalar multiples of primitive idempotents
(xe Π, T(x) Φ 0). The conditions that xe3 be a primitive idempotent
are x e 77 and T(x) = 1 ([22]). Using (3) we see that (17$) = 77 ( $ w )
for every invertible element u of $. It is known that Πffi) spans $.

PROPOSITION 1. Le£ flce/7($), 3ί split. Then there is an isotope
$(t t) of $ that such x is a primitive idempotent in $( ί t ).

Proof. If N(xy y, z) = 0 for all y,zeΠ then N(a, j / , «) = 0 for
all y, z e $ and hence α? x 2/ = 0 for all y 6 $ . In particular 0 = a? x / =
(l/2)(T(x)I — x) which is absurd. Thus there exist y,zeΠ with
N(x, y, z) Φ 0. It follows that v = x + y + z is invertible and that
N(v) = 6ΛΓ(α;, #, z). In the u = v~ι isotope of 9f, α; e /7(Sί(w)) and r ( M )(^) =
SiNΓ^^x, v, v) = 6N(u)N(x, y, z) = 1, so a? is a primitive idempotent in $ ( ί°.

Let 3 be a split exceptional central simple Jordan algebra over k
and {ej a set of three supplementary orthogonal idempotents. 8($) Ξ

{L e End* $ I N(xL, x, x) = 0 for all a? e $}— the algebra of norm skew
transformations in $ — is the split Lie algebra £^([7]). ®(3f) =
{derivations of ^} - {D e 8(3) | ID - 0} = {£> e £(£) | - JD* - D], # de-
noting transpose with respect to the trace form, is the split Lie alge-
bra F* ([7]). QQIΣke,) ^{De 3)(3) or 8(3) 1 ^ = 0 ^ = 1, 2, 3} is
the split Lie algebra D4 ([7]). If 3 = §(®s> ̂ ) *^e subspace ϊj =
f̂ce^ + Σ^jklij is a simple subalgebra of 3 Indeed g = ή(fc3, Ύ)— the

symmetric 3 x 3 matrices over k relative to the involution (a^ ) —*
7-1(a?ϋ)7, where 7 = diag {Ti, 72, 73}. § is isomorhic also to the algebra
of symmetric linear transformations in a three dimensional space re-
lative to the quadratic form Σ*-i Ή Xl It is easy to see that
is the split Lie algebra G2.

L

1 The isomorphism 2̂3 described in [2], p. 251, carries Φ(S/W onto
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PROPOSITION 2. Let ^ be a split exceptional central simple Jordan
algebra over k and let GLffi) be the group of all norm equivalences
of S(N(xT) = XN(x) for all xe$, X fixed). Then GL($) acts transi-
tively on the set of invertible elements of ί$(N(x) Φ 0) and on

Proof. The last part is a consequence of Proposition 1 and a re-
sult of Jacobson's ([16] II, Th. 5). If ve$ with N(v) Φ 0 then the
algebras $ and $( ί°, (u — v~ι) are isomorphic. If T is an isomorphism
between them then T is an equivalence between their norm forms
and the conclusion follows immediately from (3) and the fact that
IT = v, the identity of $ ( M ).

1*4 Canonical embeddings* Let $ be a split exceptional central
simple Jordan algebra over k, k algebraically closed of characteristic
Φ 2, 3. Throughout this section $ will be a Lie subalgebra of £($)
which acts completely reducibly on $ . For any ^-module 3ft we let
3ft0 = 3fto($) be the submodule of 3ft annihilated by $. For convenience
we shall call 3ft nondegenerate if 3ft0 = {0}. It is easy to see that if
M is a subspace of a nondegenerate completely reducible ^-module,
then the submodule generated by M is spanned (as a vector space)
by {mL \meM, Le®} over k.

LEMMA 1. Suppose that 3>0(®) Ξ So Φ {0} and that $ contains no
10-dimensional nondegenerate ^-submodule. Then there is a ue^0

where N(u) Φ 0.

Proof. Suppose that N(x) = 0 for all x e $<>. Since Qf is a com-
pletely reducible ^-module, Q> = So Θ 3ft where 3ft is a (nondegenerate)
^-module. For z e Sft there are w{ e 3ft and L4 e β such that Σ ^ίLi =
z. Using the 4 ίnorm skewness" of L we see that

N(x, y, z) = Σ (N(£, 2/, w^i) + iV(x, yLif wt) + ^(xL^, T/, Wi)) = 0

for all x,ye $>Q. Since ΛΓ(a;, ?/, z) — 0 for all x, y, ze ^ 0 it follows that
x x 2/ = 0 for all x, y e 9f0. S(3f) = 2(%{u)) for all isotopes of $ by (3)
so we may use this together with Proposition 1 to reduce the argu-
ment to the case where $ 0 contains a primitive idempotent, say e.
Since primitive idempotents are conjugate in $ ([1]) we may assume
that $5 — §(&3, 7) where e = eγ (notation as before). (0: e) is a ^-sub-
module of $ and e x $ 0 = 0 implies that $ 0 S (0: e). By complete re-
ducibility (0: e) has a 10-dimensional complement which is nondegenerate
since ^ 0 £ (0: β). This contradicts our assumption on Qf.

LEMMA 2. Suppose that ^0(B) = ^Q^> kl, n = dim 3>0,
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admits no (n — l)-dimensional nondegenerate Sΐ-submodule. Then $ 0

contains a primitive idempotent.

Proof. Our hypotheses imply that £ £ ®(3f) It suffices to show
that $ 0 contains a nontrivial idempotent β, since then either e or
J — ee^0 will be primitive. Proceeding by contradiction we assume
that I is the only idempotent in the subalgebra Qf0.

For xe^SQf let k[x] be the (commutative, associative) subalgebra
of 3f generated by a? and /. Since / is the only idempotent in k[x]9

Wedderburn's Principal Theorem ([8], p. 491) shows that k[x] = kl + Nx

where Nx is the radical of k[x] (k is algebraically closed). Thus $ 0

is an almost nil Jordan algebra and hence $ 0 — kl + 31 where 31 is a
nilpotent ideal in $ 0 ([19]). For xeN, (2) reduces to χ * = 0 ([17],
Th. 1) so 0 = T(x) = T(x, I) and 31 S (kl)1, the orthogonal complement
of kl relative to the trace bilinear form.

Since 31 is a subalgebra of $0, this computation also shows that
31 is a totally isotropic subspace of (kl)1. Thus ϊ ϊ 1 is a 27 - (w - 1)-
dimensional ^-module which contains $ 0 By complete reducibility it
has a (nondegenerate) (w — l)-dimensional complement. This contra-
diction establishes the result.

LEMMA 3. Suppose that $ 0 = Sfo(̂ ) contains I and a primitive
idempotent e, and let 9ΐ = (0: e)1, m = dim ($0 Π ϊl) and assume m ^ 2.
// 9ί contains no nondegenerate St-submodules of dimension m — 1,

o contains three supplementary, orthogonal idempotents.

Proof. Without loss of generality we may take $ = f)((£3, 7) where
β = βlβ By the discussion of §1.3 9ΐ = ke2 + A;e3 + S23 As in the
proof of Lemma 2 (β s ®(^)) we see that both Sft and Sft' =
9t Π (Λ(β2 + β3)

x) are β-submodules of 3f, and that if the desired con-
clusion does not hold then $ 0 ΓΊ 91 is an almost nil Jordan algebra with
nilradical 31. 31 g 3Ϊ' and is totally isotropic since it consists of nil-
potents of order two (c.f. remark in §1.3 following the introduction
of the cross product). Then 311 Π 91 is a 10 — (m — l)-dimensional
submodule of 3ΐ containing 3ΪO(^) = ̂ 0 ΓΊ 3ΐ. Since 9ΐ is completely re-
ducible ^-module, a ^-complement for 9Ϊ1 Π 3ΐ in 9Ϊ is a nondegenerate
(m — l)-dimensional ^-module in 9ΐ. Contradiction.

We now have the main result of this section.

THEOREM 2. Let k be an algebraically closed field of character-
istic 0, $ an exceptional simple Jordan algebra over k, and §t a sub-
algebra of 2 = 8(3).
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( a ) If Si is of type F4, then there is a ue3>0(ft) with N(u) Φ 0

and St = 2)(3 ( M )).

( b ) If & is of type D4, then there is a ue3>0(ft) with N(u) Φ 0

and three supplementary orthogonal idempotents {ej in SJ ^ft) with

ft = W V Σ kβt).
( c) If B is of type G2 and $0(ft) ^ {0}> <Λβw ίλere are elements

u, {e,} e 3fo(ft) a* m (b) mίfc $(fc8) s 9fo(ft) S 3 ( M ) and ft =

Proof Since every module for a semisimple Lie algebra over
an algebraically closed field of characteristic zero is completely re-
ducible, & satisfies the initial condition in the preceding lemmas. Let
3ft be a nondegenerate ^-module with d — dim Wl <̂  27. Using the
Weyl dimension formula ([15], p. 257) we obtain the following pos-
sibilities: F4, d = 26; D4, d = 8, 16 or 24; G2, d = 7,14 or 21.

( a ) By Lemma 1 and the equivalent defining relations for SD(3f)
we see that ® g ® ( $ w ) for some u. Since the latter algebra is of
type F4 we obtain our first conclusion.

(b) By Lemma 1 and the above we see that ft s 3)($(t0) for
some u. If n = dim 3ft10(ft) then w = 19,11, or 3 and there are no
nondegenerate submodules of dimension 18,10, or 2. Lemma 2 shows
that ϊ$ou) contains a primitive idempotent. In a similar way we see
that the hypotheses of Lemma 3 are satisfied and thus obtain the
second assertion since ®($ ( ί°/Σ ket) is of type Z>4.

( c) As in case (b) it follows that there exist u, {ej 6 $(M) with
$ £ ®(3(W)/Σ &β;) Using Theorem 1, the canonical realization of the
split G2 in 8(3f) of §1.3 and the fact that every automorphism of
®($(W)/Σ&β;) is realized as conjugation by an automorphism of 3K[2],
p. 253) we see that $0(K) = $(&3). This shows that ft = S>(3(ίO/fXfc3))
since the latter algebra is of type G2.

Observe that the restriction in part (c) above is essential since
8($) contains an irreducible subalgebra of type G2 ([9]).

COROLLARY. Let k be an algebraically closed field of character-
istic 0. Every subalgebra of type DA of an algebra of type E6 is
contained in a subalgebra of type F4. A subalgebra of type G2 of an
algebra of type Eβ is in a subalgebra of type D4 if and only if it is
in a subalgebra of type F4.

1 5 Conjugacy theorems* Let K be a Cayley algebra over k
(char k = 0), $ = J}((£8, 7), {e<} the diagonal idempotents and § = §(fc8,
7) the subalgebra Σ ket 0 Σί<; kliS. Consider the following sequence

S 8(3f) .
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If k is algebraically closed then every automorphism of an algebra
in the above chain extends to an (invariant) automorphism of any al-
gebra of the sequence which contains it. If k is not algebraically
closed then the above extendability still holds for the two sequences
obtained by deleting either 35(8/Σ &e<) or 35(8) (even if 8 is not split).
One need only see this at each of the above inclusions. The first fol-
lows from (the translation of) Theorem 1, the second by [2] and the
third by [21].

If Si is a subalgebra of type G2 of a Lie algebra S of type Eβ

then we will call Λ o-reducible (in 8) if S0(SB) Φ 0 (relative to the re-
presentation ad^ I $)• If 8 = 8(8) and if SB is a o-reducible G2 subalgebra
of 8, then it is easy to see that 8o(^) Φ {0}. Indeed, one need only
show this when k is algebraically closed. In this case, WeyPs de-
mension formula shows that 8 is either ^-irreducible or 8o($) ^ {0}
If 8 is ^-irreducible, then 80(SB) S {centralizer SB in End 8} = k (Shurs
lemma). This implies that 80(SB) = {0}. Thus $ o-reducible in 8 im-
plies 8o($) Φ {0).

THEOREM 3. Let Sti9 i — 1,2 be split subalgebras of type Xt of
the split Lie algebra 8 of type Yn over a field k of characteristic
0. Then ^ and B2 are conjugate in Autfc 8 for the following choices
of (X*, Yn):

( a ) (DifF4) ( d ) (G2,D4)
( b ) (A, Et) (e ) (o-reducible G2, E%) .
( c ) (F4,E6)

Moreover, if k is algebraically closed, then we have also
( f ) (£r2, Ft), and in all cases the conjugacy can be obtained

within (Autfc 8)0, the group of invariant automorphisms of 8.

Proof, (b) Since 8 is a split algebra of type EQ we may take
8 = 8(8), 8 a split exceptional central simple Jordan algebra over k.
By Theorem 2, 8o(^i)^ = (3>ϊ)o(Λir) is a diagonal algebra in a suitable
isotope of 8* This implies that there is an invertible element w< in
8o(&<) such that the subspace 8o(Λ«) is a cubic separable associative
algebra in the ^-isotope of 8 Since SB< = 35(8(1l<)/8o(&i)) is split, it
follows that 8o t t i )(^) is a diagonal algebra ([2], Th. 5). Since an iso-
tope of a split algebra is split, there exists an isomorphism T: 8(%l)—*8("2)

which carries 8o($i) onto 80(^2). As in the proof of Proposition 2, T
is a norm equivalence of 8 and conjugation by T induces an auto-
morphism of 8 which carries ^ onto SB2-

(a) and (c) follow from obvious modifications of the above argument,
(d) was established in Theorem 1.

(e) Again let 8 = 8(8) as in (b). An argument analogous to that
above shows that there are u{ such that 8oWi)($i) is a A -form of
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Using the classification of forms of this algebra, we see that Sίo*'^*)
is reduced and hence that $ 0(^) 3 Σkef\ a 3-dimensional diagonal
algebra in $(ίt*\ This implies that Λ< c QQ^/Ike)). Using (b) and
Theorem 1 together with the initial remarks in this section we see
that $! and B2 are conjugate in Aut fc$. (f) is similar to (e).

The last assertion follows from the determination of (AutA 8)0

given in [21].

COROLLARY 1. Let k be a field of characteristic 0, $ a split sub-
algebra of type G2 or D4 or F4 of a split algebra of type D4 or F4 or
E6 and let a be an isomorphism of $ into 8. Assume that if 8 is
F4 then k is algebraically closed and that if & is G2 and 8 is EQ

then B and $ α are o-reducible. Then a extends to Autk2.

Proof. Apply the theorem to & and &a and use the remarks at
the beginning of the section.

COROLLARY 2. Let k be a field of characteristic 0 and let
S i C ^ c ^ c S and S c ^ c ^ c S be two sequences of split algebras
of types G2, D4, F4 and EQ.

(a) If k is algebraically closed, then there is an invariant
automorphism a of 8 with $? = $• for i = 1, 2, 3.

(b) Without restriction on k there is an automorphism a of 8
with Λ? = $• for i = 1, 2.

2Φ1 Our main tool in applying the previous results to the clas-
sification of algebras of type D4 and E6 will be Galois descent for
(nonassociative) algebras (see [15] Chap. X for details). If 21 is an
algebra over L, then an algebra 31 over k S L is called a &-form of
3ί if %L Ξ= 3t 0 f c L ~ 2t. If L is a finite dimensional Galois extension
of k and rj is a homomorphism of G = gal (L/fc) into Autfc 3t(s —> η(s))
such that 77(s) is s-linear, then it is well known that W[G) =
{x G 311 α*(β) = x for all s 6 G} is a &-form of 3t and that every &-form
arises this way (up to isomorphism), η is called the precocycle of G
(in Autfc §1) associated to (corresponding to, arising from, etc.) W{G\

If (£ is the split Cayley algebra over L, $ = ^(g3, 7), ί) = ή(A?8, 7)
then one has the following exact sequences (and their linear counter-
parts):

( 5 )

( 6 )

( 7 )

{1}

[24]

[ 2 ]

>L*

{1} >Aυ

{1} >

x L* x L*

> {1}

Aut,3-ί-+Aut,®(3) {̂1}

ΓL.Q/ΣLe,) — Autfc ®(^/^Lβ,) > {1}
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( 8 ) [21] {1} > L* > ΓLkQ) -i-» Aut,

where in each case Cζ denotes conjugation by C (in the indicated
algebra), ΓLkQ) is the &-semilinear analogue of GLffi), ΓLkQ/ΣLei)
is the subgroup of ΓLk($) which leaves XLβ< stable, and AntL Q; fy
is the subgroup of AutL $ which fixes § point wise. In (8), the range
of ζ is a subgroup of index 2 and a convenient representative for the
other coset is Θ:X-*-X\ # as before. For C^ΓLkQ\Σhe^ it is
known that e^eLe^o, p(C) e Ss, the symmetric group on three letters.
One obtains (5) from the facts that every automorphism of 3)((£) is
realized as conjugation by an automorphism of (£ and that Autfe (£ s
Autfc (3; Jj) under the correspondence defined in [2] (p. 251).

If 8 is of type A (resp. JE76) and is split by L, then we take
%L = ®($/^M) (resp. £($)), $ as above, and consider the precocycle
97 associated with 8. 8 determines a homomorphism p:G = ga\(L/k)—*S3

(resp. S2) which is defined by p(s) = p(C(s» where τj(s) = C(s)ζ (resp.
p(s) = 0 when η(s) e Im f and 1 otherwise). The integer | p(G) \ is
called the Όk (resp. ί7β) type of L and is indicated by a Roman numeral
subscript, e.g., DUII. If IT is the kernel of p and F is the fixed
field of H, then S^ is of type Du (resp. E6I). Within a given algebraic
closure of k, F is characterized as the minimal such extension and we
call F the canonical Du (resp. E6I) field extension of S ([2], [10]).

S is called a " Jordan A " if there is an exceptional central simple
Jordan algebra ^ over fc, and a cubic separable associative subalgebra
ϊ g $, such that S = ®(3f/ϊ) Until recently, such algebras furnished
the only known examples of exceptional D/s ([4])

A precocycle of G in Aut*£(^) of the form s -> A(s)ξ o ΘM, where
^4: β —• L̂(s) is a precocycle of G in Aut* Qf and j? is a homomorphism
of G onto {0,1} (the integers mod 2), defines a (twisted) form of 8(3)
of type #6,,. If fc(i/λΓ) is the fixed subfield of L corresponding to
the kernel of p, then one often denotes this form by 2($A{G))X. Finally
if S is a fe-form of 2Q) we let S* denote the A -subaϊgebra of EndL Qf
generated by S. If 8 is of type E6I, then 8* is a λ -form of EndL Q)
of exponent 1 or 3.

The next section is devoted to a proof of

THEOREM 4. Let k be a field of characteristic zero.
I. ( a ) A k-form 8 of type E6 contains a form of type FA if

and only if 8 = 2Q) or 8 = S(^)^ for some exceptional central simple
Jordan algebra Qf over k (and quadratic extension fe(τ/λ)).

(b) If 2 is a k-form of type EβI, and 2 contains a subalgebra
of type Dt or a o-reducible subalgebra of type G2 then index (8*) = 1
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or 3 (index here is the usual index for central simple associative
algebras).

( c) If 2 is a k-form of type EβI and contains a subalgebra of
type D4l or DUI, then 2 = 8(3f)> $ reduced.

II. If 2 is a k-form of type D4 then 2 is a Jordan D4 if either
( a ) 2 contains a subalgebra of type G2 or
( b ) 2 is contained in an algebra of type F4 or EβI.

We note that I(a) was originally obtained by R. B. Brown by dif-
ferent methods ([6]) and also that if there are no exceptional Jordan
division algebras, over Jc then the conclusion in I(b) can be sharpened
to say that 2 is obtainable by a Tits construction ([23]) (see [10] for
details).

2*2* Throughout this section 2 will be a form of type E6 (resp.
D4) over Jc (char ί; = 0 ) , f i g S a subalgebra of type D4 or (o-reducible)
G2 (resp. G2) and L a finite dimensional Galois extension of k with
both 2L and BL split. We take 2L = 8(8) (resp. ©(^/XLeJ where
$ = §((£8, 7) ((£ the split Cayley algebra over L) and by Corollary 1
to Theorem 3 we may assume that BL is canonically embedded (as
indicated in (4)). By (8) (resp. (7)) the precocycle of G = gal (L/k) in
Antk2L corresponding to 2 is given by ^(s) = C(s)ξoΘp{s) (resp. η(s) =
C(s)ξ) for C(s) e ΓLk(S) (resp. ΓLk(^/ΣLβi)) as indicated in the preced-
ing section. Since Θ fixes ®($), C(s)ζ leaves &L invariant and thus
3o($J is C(s)-stable for all s.

I(a). If 2 is of type E6, $ of type F4, then this implies that
IC(s) = Ψ(8)I, ¥(s) e L* and hence by [16] A(s) = Cis)Ψ(s)-1 is an s-
semiautomorphism of $ with A(s)f o6*><s> = η(s). A:s-+A(s) is easily
seen to be a precocycle of G in Aut*$ and 2 is either £(S4 ( G )) or
2(3A{G))λ for suitable λ (where SB = ®(^ 4 ( G ))). The converse follows im-
mediately from the realizations 2QΛ(G)) = i2 0 ^QMG))f 2QΛ{G))λ =
l / λ δ + ®(3f4ίG)) as &-subalgebras of S(3f) where i2 is the fc-space of
right multiplications by elements of trace zero in $>MG).

I(b). If 2 is of type E6I then η(s) = C(s)ί where C(s)C(h) =
C(sh)δ8>h, δs>heL*. S* is clearly the centralizer of the crossed product
algebra X = (L, G, δ) - ΣLC(s) in End* $ . The centralizer of 361 ̂ 0 ( ^ L )

in Endfc^o^,^) is a Λ-form of End L $ 0 ($ L ) which has the same index
as 8*. If S£ is of type D4 or (o-reducible) G2, then consideration of
the dimension of $ 0 ( $ L ) and the relationship between index and ex-
ponent yields I(b).

I(c). As in the preceding case, η(s) = C(s)ξ where (ΣLei)C(s) =
ΣLβi. Since 3ΐ is a special form of D4 (i.e., of type D4l or D 4 / /, see
[18]), there is a j such that Le, is C(s)-stable. This implies that we
may assume C(s)C{h) = C(sh) for all s,heG. As in [2], (Th. 6) there
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is a u-isotope (ueΣLe^ of $ in which C(s) e Autk$
{u). Since

2Q{U)) we see that 8 = 2(Qiu))C{G)) where C is the precocyle s -> C(s)
of G in AutA;3;{10. ( $ ( W ) ) W ) is reduced since it contains a scalar multi-
ple of e5.

Consider now the case where 8 is of type D4. It is known ([2],
Th. I) that 8 is a Jordan D4 if and only if 2F is a Jordan D4I (where
F is the canonical Du field extension of 8), so we turn our attention
to algebras of this type (since our hypotheses go up).

Π(b). Since the idempotent spaces Le^ are C(s)~stable, C(s) defines
three s-linear transformations Ck(s) in C via ai5C{s) = (aCk{s))iS (ai3- e $^,
i i = 23, 31, 12, i, i, & unequal). By the results of ([18], [2]) Ck(s)Ck(h) =
Ck(sh)δk(sy h) where the dk are factor sets of order 2 whose product
is split. 8 is a Jordan Du if and only if each δk is itself split. If
8 is contained in an algebra of type E6[, then as above we see that
C(s)C(h) = C(sh)δ(s, h) and hence that δk = δ, k = 1, 2, 3. The above
remarks imply that δ is split and hence that 8 is a Jordan Z)4. Since
every F4 is contained in an EQI this establishes Π(b).

Π(a). If S is of type G2 contained in 8, then as in the proof of
I(a) we see that IiS is C(s)-stable and hence that each δk is split.

2.3• In this section we drop the assumption that the algebras
in question are split to obtain more general results related to those
in §1.5.

THEOREM 5. Let $ be an exceptional central simple Jordan al-
gebra over k (char k = 0) and suppose S($) contains a o-reducible sub-
algebra $ΐ of type 6r2. Then $ is reduced and every isomorphism
a: $ΐ —+8 = δ($) such that $ΐa is o-reducible extends to an automorphism
of 8 of the form X — C~ιXC, C e GLQ).

Proof. By the proof of Theorem 3(e), 30(K) = ή(&3, Y) (in a suita-
ble isotope) and hence $ is reduced, say $ — A((Σ3, 7). Since ®(^/^(fc3, 7))
is a reducible G2 in S(^) if suffices to consider only this case. The
extendibility in (4) shows that every automorphism of ®(3>/iK&3, 7)) —
β extends to an automorphism of £($) of the desired type. To con-
clude the proof we need only show that if Sΐ' is a ° -reducible G2-sub-
algebra of S(3f) then there is an a ' e A u t S ( ^ ) (Xt-+X"' = C-'XC,
CeGLQ)) with ffi'«' = ®(^/£)(fc3, 7)).

By our initial remarks, 3?0(^') = ^(^3^ δ) in some u-isotope of ΐ$.
Since §(&3, δ) is reduced, it contains a diagonal algebra Σkfu and thus
Si' aΏQw/Σkfi). By the 3-point transitivity of GL(^) on //($) (see
[16], Prop. 13 and [1]), there is a C'eGLQ) with fiC eke, ({ej the
diagonal idempotents in $5 = I)(K3, 7)). Conjugation by C is an auto-
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morphism of S($) and by our choice of C", Cr~ιWC c ^QIΣke^. By
Theorem 1 and the extendibility indicated in (4), there is a C" eGL(J)
with S)(3f/λ(*8, 7)) = C'-W-WC'C".

COROLLARY 1. Let k, 5Ϊ, and 8 be as above. Then any auto-
morphism of ίE extends to an automorphism of 8.

COROLLARY 2. Let k, 5£ and 8 be as above. Then 8 is split if
and only if & is.

Proof. Qf is necessarily reduced by Theorem 5, and the proof of
that theorem together with Theorem 1 imply $ — S)((£) where Qf =
§(&3, 7). The above conclusion follows from the fact that $ (hence 8)
is split if and only if (£ (hence $) is split.

We note that if $ is a Jordan division algebra, ϊ a cubic subfield
of $ then S)(3f) and S)(3f/Ϊ) provide examples of algebras of type F4

and D4 which do not contain a subalgebra of type G2.

THEOREM 6. Let k be a field of characteristic 0, 8 an algebra of
type Yn and $t a subalgebra of 8 of type Xx. Then 8 is split if and
only if Λ is split for the following choices of {Xu Yn):

( a ) (G2yD4I) ( d ) (D4I,E6I)
( b ) (G2,F4) ( e ) (F4,E6T).
( c ) (D4I1F4)

Proof. It is clear that a subalgebra of 8($), of type D4I or F4,
is split if and only if S($) is split. Thus (d) and (e) follow directly
from Theorem 4/(c) and Theorem 4/(a) respectively, (c) from (d) and
(e), (b) from (e) and Corollary 2 to Theorem 5 while (a) follows from
(d) and Theorem 4Π(a).

The restrictions imposed on the E6 and D4 forms in the above
theorem are necessary (the Steinberg algebras of types D4II, D4III1 D4VI,
and EQIJ: provide counterexamples).

THEOREM 7. Let k, 8 and $ΐ be as in Theorem 6 and let a be an
automorphism of B. Then a extends to an automorphism of 8 for
the following pairs (Xu Yn):

( a ) (G2,A) ( c ) (D4,E6I)
( b ) (G2,F4) ( d ) (F4,E6).
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Proof. In (a) and (b) we may assume SgS)(3)g8(S) for some
reduced $ (Theorem 411 (a) and Lemma 1). A close examination of
the proof of Theorem 5 shows that in this case a is the restriction
of X-+C-ιXC to £ where CeGLQ) fixes 3fo(Λ) pointwise (see (5))
hence C e Aut, ^ . This establishes (b). Since $0(S) S 3fo(Λ) (a) follows
from [2], p. 258. (c) is obtained by a slight modification of the proof
of Theorem 7 in [2]. In (d), the proof of Theorem 4I(a) shows that
S = β φ τ / T i ? (λ = 1 for E6I) where

St = ®(9f) and 22 = {Ra | α e Qf, T(a) = 0} .

If αeAutS)(3ί) is realized as Z>-> A-'DA, Ae Aut^([21]) then
D + V~xRa -*Da + VxRaA extends a.

One can sharpen the proofs of (a), (c), and (d) and show that
isomorphism between subalgebras Stt extends to an automorphism of S.
Thus in these cases conjugacy sub-classes and isomorphism sub-classes
are the same. In (b) this is not the case, as there is exactly one
isomorphism class —determined by (£ where 8 = ®(§((£3, 7))— but the
conjugacy classes are represented by the isomorphism classes of an-
nihilated subalgebras fj(k89 δ) £ $. Thus there is a one-to-one corre-
spondence between the conjugacy classes of G2 subalgebras of £)($)
and the equivalence classes of quadratic forms Σ5=i7ί-X"ί s u c ^ that
$ = I}(@:8, 7), 7 = diag {7i, 72, 73}.
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