ORTHOGONAL GROUPS OF POSITIVE DEFINITE MULTILINEAR FUNCTIONALS

Stephen Pierce

Let V be a finite dimensional vector space over the real numbers R and let $T: V \rightarrow V$ be a linear transformation. If $\varphi: \times_{1}^{m} V \rightarrow R$ is a real multilinear functional and

$$
\varphi\left(T x_{1}, \cdots, T x_{m}\right)=\varphi\left(x_{1}, \cdots, x_{m}\right)
$$

$x_{1}, \cdots, x_{m} \in V, T$ is called an isometry with respect to φ. We say φ is positive definite if $\varphi(x, \cdots, x)>0$ for all nonzero $x \in V$. In this paper we prove that if φ is positive definite and T is an isometry with respect to φ, then all eigenvalues of T have modulus one and all elementary divisors of T over the complex numbers are linear.

Let V be an n-dimensional vector space over the real numbers R. Let $T: V \rightarrow V$ be a linear transformation of V. The following theorem [1, Th. 3] is easy to prove:

Theorem 1. There exists a positive definite symmetric quadratic form $\varphi: V \times V \rightarrow R$ such that

$$
\begin{equation*}
\varphi(T x, T y)=\varphi(x, y), x, y \in V \tag{1}
\end{equation*}
$$

if and only if

1. all eigenvalues of T have modulus 1 ;
(2) 2. all elementary divisors of T over the complex numbers C are linear.

Moreover, if T satisfies (2), then there is a positive definite symmetric φ such that (1) holds.

Theorem 1 can also be expressed in matrix theoretic terms. If A is a real $n \times n$ positive definite symmetric matrix and X is any automorph of A;

$$
\begin{equation*}
X^{T} A X=A \tag{3}
\end{equation*}
$$

then X satisfies (2); moreover, if an $n \times n$ matrix X satisfies (2), then there is a positive definite symmetric A such that (3) holds.

Let $\varphi: \times_{1}^{m} V \rightarrow R$ be a real multilinear functional. Let H be a subgroup of the symmetric group S_{m}. If

$$
\begin{equation*}
\varphi\left(x_{\sigma(1)}, \cdots, x_{\sigma(m)}\right)=\varphi\left(x_{1}, \cdots, x_{m}\right) \tag{4}
\end{equation*}
$$

for all $\sigma \in H$ and all $x_{i} \in V, i=1, \cdots, m$, then φ is said to be symmetric with respect to H. If

$$
\begin{equation*}
\varphi\left(T x_{1}, \cdots, T x_{m}\right)=\varphi\left(x_{1}, \cdots x_{m}\right) \tag{5}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{m} \in V, T$ is called an isometry of V with respect to φ. (Note that if $m>2$, (5) has no matrix analogue). Let $\Omega_{m}(H, T)$ be the set of all φ satisfying (4) and (5). Clearly $\Omega_{m}(H, T)$ is a subspace of the vector space of all multilinear functionals symmetric with respect to H. We say φ is positive definite if

$$
\begin{equation*}
\varphi(x, \cdots, x)>0 \tag{6}
\end{equation*}
$$

for all nonzero x in V. The set of all positive definite φ in $\Omega_{m}(H, T)$ is denoted by $P_{m}(H, T)$. It is clear that $P_{m}(H, T)$ is a (possibly empty) convex cone in $\Omega_{m}(H, T)$.

The following result [1] was proved as a partial generalization of Theorem 1.

Theorem 2. Let $T: V \rightarrow V$ be linear. If $P_{m}(H, T)$ is nonempty, then
(a) m is even
(b) every eigenvalue γ of T has modulus 1
(c) elementary divisors of T corresponding to $\gamma= \pm 1$ are linear. Conversely, if m is even, all eigenvalues of T are ± 1, and all elementary divisors of T are linear, then $P_{m}(H, T)$ is nonempty.

We conjectured that if $P_{m}(H, T)$ is nonempty, then (c) can be replaced by (c ') "all elementary divisors of T over the complex field are linear." This would provide a complete generalization of Theorem 2, and thus justify (6) as a definition of a positive definite multilinear functional. The purpose of this paper is to prove this conjecture.

Theorem 3. If $P_{m}(H, T)$ is nonempty, then
(a) m is even
(b) all eigenvalues of T have modulus 1
(c') all elementary divisors of T over C are linear. Conversely, if (a), (b), and (c') hold, then $P_{m}(H, T)$ is nonempty.
2. Proof of Theorem 3. Assume that $P_{m}(H, T)$ is nonempty. Parts (a) and (b) follow from Theorem 2. We now prove two lemmas.

Lemma 1. If γ is an eigenvalue of T and $(x-\gamma)^{k}, k>1$, is a nonlinear elementary divisor of T corresponding to γ, then $\gamma^{m} \neq 1$ for any integer m.

Proof. Since T is a real transformation, it has a real elementary divisor

$$
\begin{equation*}
[(x-\gamma)(x-\bar{\gamma})]^{k} \tag{7}
\end{equation*}
$$

(By Theorem 2, γ cannot be real in this case.) Let W be the invariant subspace of T determined by (7), and let S be the restriction of T to W. Then S is an isometry of W with respect to φ, and hence S^{r} is also an isometry for any integer r. Now if $\gamma^{r}=1$, then all eigenvalues of S^{r} are 1, and hence Theorem 2 implies that all elementary divisors of S^{r} are linear. Therefore, S^{r} is the identity on W, and thus, the elementary divisors of S are linear, a contradiction.

Lemma 2. If Theorem 3 is true for the case $H=S_{m}$, then it is true for any subgroup H of S_{m}.

Proof. Let H be a subgroup of S_{m} and $\operatorname{let} \varphi \in P_{m}(H, T)$. For each $\sigma \in S_{m}$, define

$$
\begin{equation*}
\varphi_{\sigma}\left(x_{1}, \cdots, x_{m}\right)=\varphi\left(x_{\sigma(1)}, \cdots, x_{\sigma(m)}\right), \tag{8}
\end{equation*}
$$

$x_{1}, \cdots, x_{m} \in V$. In general, φ_{σ} is not symmetric with respect to H, but φ_{σ} is positive definite and T is an isometry with respect to φ_{a}. Set

$$
\begin{equation*}
\psi=\sum_{\sigma \in S_{m}} \varphi_{\sigma} \tag{9}
\end{equation*}
$$

Clearly ψ is positive definite, and T is an isometry with respect to ψ. Moreover, for any $\tau \in S_{m}$, and $x_{1}, \cdots, x_{m} \in V$,

$$
\begin{aligned}
\psi\left(x_{\tau(1)}, \cdots, x_{\tau(m)}\right) & =\sum_{\sigma \in S_{m}} \varphi_{\sigma}\left(x_{\tau(1)}, \cdots, x_{\tau(m)}\right) \\
& =\sum_{\sigma \in S_{m}} \varphi\left(x_{\tau \sigma(1)}, \cdots, x_{\tau \sigma(m)}\right) \\
& =\sum_{\mu \in \mathcal{S}_{m}} \varphi\left(x_{\mu(1)}, \cdots, x_{\mu(m)}\right) \\
& =\sum_{\mu \in \mathcal{S}_{m}} \varphi_{\mu}\left(x_{1}, \cdots, x_{m}\right) \\
& =\psi\left(x_{1}, \cdots, x_{m}\right) .
\end{aligned}
$$

Thus $\psi \in P_{m}\left(S_{m}, T\right)$, and hence the elementary divisors of T are linear. This proves Lemma 2.

We may assume henceforth that $H=S_{m}$ and abbreviate $P_{m}\left(S_{m}, T\right)$ to P_{m}. If P_{m} is nonempty, and T has a nonlinear elementary divisor over C corresponding to the eigenvalue $\gamma=a+i b(b \neq 0)$, then there exist four linearly independent vectors v_{1}, \cdots, v_{4} in V such that

$$
\begin{align*}
& T v_{1}=a v_{1}-b v_{2} \\
& T v_{2}=b v_{1}+a v_{2} \tag{10}\\
& T x_{3}=v_{2}+a v_{3}-b v_{4} \\
& T v_{4}=b v_{3}+a v_{4} .
\end{align*}
$$

Let \bar{V} be the extension of V to an n-dimensional space over C, i.e., \bar{V} consists of all vectors of the form $x+i y, x, y \in V$. By linear extension, we regard T as a linear transformation of \bar{V}, and by multilinear extension, φ becomes a complex valued multilinear functional on $\times_{1}^{m} \bar{V}$. Equation (5) still holds in \bar{V}, but ρ is no longer positive definite. Set

$$
\begin{align*}
& e_{1}=v_{1}+i v_{2}, e_{2}=v_{1}-i v_{2} \\
& e_{3}=v_{3}+i v_{4}, e_{4}=v_{3}-i v_{4} . \tag{11}
\end{align*}
$$

From (10) and (11),

$$
\begin{gather*}
T e_{1}=\gamma e_{1}, \quad T e_{2}=\bar{\gamma} e_{2} \\
T e_{3}=\gamma e_{3}+v_{2}, T e_{4}=\bar{\gamma} e_{4}+v_{2} \tag{12}
\end{gather*}
$$

By Lemma $1, \gamma$ is not a root of unity; thus,

$$
\begin{align*}
\varphi\left(e_{1}, \cdots, e_{1}, e_{2}, \cdots e_{2}\right) & =\varphi\left(T e_{1}, \cdots, T e_{1}, T e_{2}, \cdots, T e_{2}\right) \\
& =\gamma^{k} \bar{\gamma}^{m-k} \varphi\left(e_{1}, \cdots e_{1}, e_{2}, \cdots, e_{2}\right) \tag{13}\\
& =0
\end{align*}
$$

unless $k=m-k$, where k is the number of times e_{1} occurs in (13). With $r=m / 2$, we set

$$
\varphi\left(e_{1}, \stackrel{r}{\cdots}, e_{1}, e_{2}, \stackrel{r}{\cdots}, e_{2}\right)=\nu
$$

Now $\nu \neq 0$; otherwise

$$
\begin{align*}
\varphi\left(v_{1}, \cdots, v_{1}\right) & =2^{-m} \varphi\left(e_{1}+e_{2}, \cdots, e_{1}+e_{2}\right) \tag{14}\\
& =0
\end{align*}
$$

contradicting (6). (Note that we are using the assumption that φ is symmetric with respect to S_{m}; this gives us a convenient way of sorting expressions such as those on the right side of (14).)

Let $\mu=\varphi\left(v_{1}, \cdots, v_{1}, e_{3}\right)$. Using (13) and (14), we compute,

$$
\begin{aligned}
\mu & =2^{-m+1} \varphi\left(e_{1}+e_{2}, \cdots, e_{1}+e_{2}, e_{3}\right) \\
& =2^{-m+1} \varphi\left(\gamma e_{1}+\bar{\gamma} e_{2}, \cdots, \gamma e_{1}+\bar{\gamma} e_{2}, \gamma e_{3}+v_{2}\right) \\
& =2^{-m+1} \varphi\left(\gamma e_{1}+\bar{\gamma} e_{2}, \cdots \gamma e_{1}+\bar{\gamma} e_{2}, \gamma e_{3}+\frac{e_{1}-e_{2}}{2 i}\right) \\
& =-2^{-m} i\binom{m-1}{r}(\bar{\gamma}-\gamma) \nu+\gamma 2^{-m+1} \varphi\left(\gamma e_{1}+\bar{\gamma} e_{2}, \cdots \gamma e_{1}+\bar{\gamma} e_{2}, e_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-2^{-m} i\binom{m-1}{r}(\bar{\gamma}-\gamma) \nu+\gamma 2^{-m+1} \\
& \qquad \quad \varphi\left(\gamma^{2} e_{1}+\bar{\gamma}^{2} e_{2}, \cdots, \gamma^{2} e_{1}+\bar{\gamma}^{2} e_{2}, \gamma e_{3}+\frac{e_{1}-e_{2}}{2 i}\right) \\
& =-2^{-m} i\binom{m-1}{r}\left(2 \bar{\gamma}-\gamma-\gamma^{3}\right) \nu+\gamma^{2} 2^{-m+1} \\
& \\
& \varphi\left(\gamma^{2} e_{1}+\bar{\gamma}^{2} e_{2}, \cdots, \gamma^{2} e_{1}+\bar{\gamma}^{2} e_{2}, e_{3}\right) .
\end{aligned}
$$

Continuing this procedure, we obtain for any positive integer s

$$
\begin{align*}
& \mu=-2^{-m} i\binom{m-1}{r}\left(s \bar{\gamma}-\sum_{j=0}^{s-1} \gamma^{2 j+1}\right) \nu+\gamma^{s} 2^{-m+1} \tag{15}\\
& \varphi\left(\gamma^{s} e_{1}+\bar{\gamma}^{s} e_{2}, \cdots \gamma^{s} e_{1}+\bar{\gamma}^{s} e_{2}, e_{3}\right)
\end{align*}
$$

Let

$$
f(z)=z \varphi\left(z e_{1}+\bar{z} e_{2}, \cdots, z e_{1}+\bar{z} e_{2}, e_{3}\right),
$$

where z is a complex variable. Then f is a continuous function of z on the complex plane, and hence f is bounded on the unit circle. Moreover, since γ is not a root of unity (in particular, $\gamma \neq \pm 1$),

$$
\sum_{j=0}^{s-1} \gamma^{2 j-1}
$$

is also bounded as s becomes large. Thus, letting s approach infinity in (15) forces μ to become infinite, a contradiction. This proves Theorem 3 in one direction.

Now suppose all eigenvalues of T are 1 in absolute value and all elementary divisors of T are linear over C. Let 1 (p times), -1 (q times) and $\gamma_{j}, \bar{\gamma}_{j}=a_{j} \pm i b_{j},\left|\gamma_{j}\right|=1, j=1, \cdots, t$, be the eigenvalues of T. Then there is a basis of $V, v_{1}, \cdots, v_{p}, u_{1}, \cdots, u_{q}, x_{1}, y_{1}, \cdots x_{t}, y_{t}$ such that

$$
\begin{align*}
& T v_{j}=v_{j}, j=1, \cdots, p \\
& T u_{j}=-u_{j}, j=1, \cdots, q \\
& T x_{j}=a_{j} x_{j}-b_{j} y_{j}, j=1, \cdots, t \tag{16}\\
& T y_{j}=b_{j} x_{j}+a_{j} y_{j}, j=1, \cdots, t
\end{align*}
$$

Set

$$
\begin{aligned}
& w_{j}=x_{j}+i y_{j} \\
& \bar{w}_{j}=x_{j}-i y_{j}, j=1, \cdots, t
\end{aligned}
$$

Then $v_{1}, \cdots, v_{p}, u_{1}, \cdots, u_{q}, w_{1}, \bar{w}_{1}, \cdots, w_{t}, \bar{w}_{t}$ form a basis of \bar{V} of eigenvectors of T. Let $f_{1}, \cdots, f_{p}, g_{1}, \cdots, g_{q}, h_{1}, k_{1}, \cdots, h_{t}, k_{t}$ be the corresponding dual basis. If l_{1}, \cdots, l_{m} are linear functionals on a space V, then $l_{1} \cdots l_{m}$ is the m-linear functional on $\times_{1}^{m} V$ such that

$$
l_{1} \cdots l_{m}\left(x_{1}, \cdots, x_{m}\right)=\prod_{i=1}^{m} l_{i}\left(x_{i}\right)
$$

Define ρ as follows:

$$
\begin{equation*}
\varphi=\sum_{j=1}^{p} f_{j}^{m}+\sum_{j=1}^{q} g_{j}^{m}+\sum_{j=1}^{t}\left[\left(h_{j} k_{j}\right)^{r}+\left(\bar{h}_{j} \bar{k}_{j}\right)^{r}\right] \tag{17}
\end{equation*}
$$

where $r=m / 2$ and $\bar{f}(v)=\overline{f(v)}$. Now \bar{h}_{j} and \bar{k}_{j} are not linear on the complex space \bar{V}, but they are complex valued linear functionals on V, i.e., they are linear functionals on V but are not in the dual space of V. Thus ρ is a real multilinear functional on V. Set

$$
\psi=\sum_{\sigma \in S_{m}} \varphi_{\sigma} .
$$

We assert that $\psi \in P_{m}(H, T)$. Clearly ψ is symmetric with respect to S_{m}, and thus with respect to any subgroup H of S_{m}. It remains to show that ψ is positive definite and that T is an isometry with respect to ψ. It suffices to prove these last two properties for φ. Let

$$
x=\sum_{j=1}^{p} \alpha_{j} v_{j}+\sum_{j=1}^{q} \beta_{j} u_{j}+\sum_{j=1}^{t}\left(\delta_{j} x_{j}+\lambda_{j} y_{j}\right)
$$

be an arbitrary vector of V. Then from (17),

$$
\varphi(x, \cdots, x)=\sum_{j=1}^{p} \alpha_{j}^{m}+\sum^{q} \beta_{j}^{m}+2 \sum_{j=1}^{t}\left[\left(\frac{\delta_{j}}{2}\right)^{2}+\left(\frac{\lambda_{j}}{2}\right)^{2}\right]^{r} .
$$

Since m is even and $\alpha_{j}, \beta_{j}, \delta_{j}, \lambda_{j}$ are all real, ρ is positive definite. Now let $z_{k}, k=1, \cdots, m$, be arbitrary vectors in V, with

$$
\begin{equation*}
z_{k}=\sum_{j=1}^{p} a_{k j} v_{j}+\sum_{j=1}^{q} b_{k j} u_{j}+\sum_{j=1}^{t}\left(c_{k j} x_{j}+d_{k j} y_{j}\right) \tag{18}
\end{equation*}
$$

Then

$$
\begin{align*}
\varphi\left(z_{1}, \cdots, z_{m}\right)= & \sum_{j=1}^{p} \prod_{k=1}^{m} a_{k j}+\sum_{j=1}^{q} \prod_{k=1}^{m} b_{k j} \\
& +\sum_{j=1}^{t} \prod_{k=1}^{r}\left(\frac{c_{2 k-1, j}}{2}+\frac{d_{2 k-1, j}}{2 i}\right)\left(\frac{c_{2 k, j}}{2}-\frac{d_{2 k, j}}{2 i}\right) \tag{19}\\
& +\sum_{j=1}^{t} \prod_{k=1}^{r}\left(\frac{c_{2 k-1, j}}{2}-\frac{d_{2 k-1, j}}{2 i}\right)\left(\frac{c_{2 k, j}}{2}+\frac{d_{2 k, j}}{2 i}\right) .
\end{align*}
$$

From (16)

$$
\begin{align*}
T z_{k}= & \sum_{j=1}^{p} \alpha_{k j} v_{j}+\sum_{j=1}^{q}\left(-b_{k j}\right) u_{j} \tag{20}\\
& +\sum_{j=1}^{t}\left(a_{j} c_{k j}+b_{j} d_{k j}\right) x_{j}+\left(a_{j} d_{k j}-b_{j} c_{k j}\right) y_{j}
\end{align*}
$$

$k=1, \cdots, m$. Let

$$
\begin{aligned}
e_{k j} & =a_{j} c_{k j}+b_{j} d_{k j} \\
f_{k j} & =a_{j} d_{k j}-b_{j} c_{k j}
\end{aligned}
$$

Then from (19) and (20)

$$
\begin{align*}
\varphi\left(T z_{1}, \cdots, T z_{m}\right)= & \sum_{j=1}^{p} \prod_{k=1}^{m} a_{k j}+\sum_{j=1}^{q} \prod_{k=1}^{m}\left(-b_{k j}\right) \\
& +\sum_{j=1}^{t} \prod_{k=1}^{m}\left(\frac{e_{2 k-1, j}}{2}+\frac{f_{2 k-1, j}}{2 i}\right)\left(\frac{e_{2 k, j}}{2}-\frac{f_{2 k, j}}{2 i}\right) \tag{21}\\
& +\sum_{j=1}^{t} \prod_{k=1}^{m}\left(\frac{e_{2 k-1, j}}{2}-\frac{f_{2 k-1, j}}{2}\right)\left(\frac{e_{2 k, j}}{2}+\frac{f_{2 k, j}}{2 i}\right)
\end{align*}
$$

It is easily verified that

$$
\begin{align*}
& \frac{e_{k j}}{2}+\frac{f_{k j}}{2 i}=\bar{\gamma}_{j}\left(\frac{c_{k j}}{2}+\frac{d_{k j}}{2 i}\right) \\
& \frac{e_{k j}}{2}-\frac{f_{k j}}{2 i}=\gamma_{j}\left(\frac{c_{k j}}{2}-\frac{d_{k j}}{2 i}\right) \tag{22}
\end{align*}
$$

Using (22) in (21) and the fact that $\left|\gamma_{j}\right|=1$, we obtain

$$
\varphi\left(T z_{1}, \cdots, T z_{m}\right)=\varphi\left(z_{1}, \cdots, z_{m}\right) .
$$

This completes the proof of Theorem 3.

References

1. M. Marcus and S. Pierce, Positive definite multilinear functionals, Pacific J. Math. (to appear)
2. S. Perlis, Theory of matrices, Addison-Wesley, 1958.

Received July 8, 1960. This work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D. C., 1968-70.

National Bureau of Standards
Washington, D. C.

