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ORTHOGONAL GROUPS OF POSITIVE DEFINITE
MULTILINEAR FUNCTIONALS

STEPHEN PIERCE

Let V be a finite dimensional vector space over the real
numbers R and let T: V—> V be a linear transformation. If
φ: xΓ V—>R is a real multilinear functional and

, Txm) = φ(xl9 , xm),

Xi, ' ,xm£V, T is called an isometry with respect to φ. We
say φ is positive definite if φ(x, •••,#) > 0 for all nonzero
xeV. In this paper we prove that if φ is positive definite and
T is an isometry with respect to φ, then all eigenvalues of T
have modulus one and all elementary divisors of T over the
complex numbers are linear.

Let V be an ^-dimensional vector space over the real numbers R.
Let T: V —• V be a linear transformation of V. The following theorem
[1, Th. 3] is easy to prove:

THEOREM 1. There exists a positive definite symmetric quadratic
form φ: V x V—»R such that

(1) φ(Tx, Ty) = φ(x, y), x, y e V

if and only if

1. all eigenvalues of T have modulus 1;

( 2 ) 2. all elementary divisors of T over the complex num-

bers C are linear.

Moreover, if T satisfies (2), then there is a positive definite symmetric
φ such that (1) holds.

Theorem 1 can also be expressed in matrix theoretic terms. If
A is a real n x n positive definite symmetric matrix and X is any
automorph of A;

( 3 ) XTAX = A ,

then X satisfies (2); moreover, if an n x n matrix X satisfies (2), then
there is a positive definite symmetric A such that (3) holds.

Let φ\ x?V—>R be a real multilinear functional. Let H be a
subgroup of the symmetric group Sm. If
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for all σeH and all x{ e V, i = 1, , m, then φ is said to be sym-
metric with respect to H. If

( 5 ) φ(Tx19 , Txm) = <p(x19 -xm)

for all x19 , xm e V, T is called an isometry of V with respect to φ.
(Note that if m > 2, (5) has no matrix analogue). Let Ωm(H, T) be
the set of all φ satisfying (4) and (5). Clearly Ωm(H, T) is a subspace
of the vector space of all multilinear functionals symmetric with re-
spect to H. We say φ is positive definite if

(6) φ(x, . . . , £ ) > 0

for all nonzero x in V. The set of all positive definite φ in Ωm(H, T)
is denoted by Pm(H, T). It is clear that Pm(H, T) is a (possibly empty)
convex cone in Ωm(H, T).

The following result [1] was proved as a partial generalization of
Theorem 1.

THEOREM 2. Let T: V—* V be linear. If Pm(H, T) is nonempty,
then

(a) m is even
(b) every eigenvalue 7 of T has modulus 1
(c) elementary divisors of T corresponding to Ί — ± 1 are linear.

Conversely, if m is even, all eigenvalues of T are ± 1 , and all ele-
mentary divisors of T are linear, then Pm(H, T) is nonempty.

We conjectured that if Pm(H, T) is nonempty,then (c) can be re-
placed by (c') "all elementary divisors of T over the complex field are
linear." This would provide a complete generalization of Theorem 2,
and thus justify (6) as a definition of a positive definite multilinear
functional. The purpose of this paper is to prove this conjecture.

THEOREM 3. If Pm(H, T) is nonempty, then
(a) m is even
(b) all eigenvalues of T have modulus 1
(c') all elementary divisors of T over C are linear.

Conversely, if (a), (b), and (c') hold, then Pm(H, T) is nonempty.

2. Proof of Theorem 3* Assume that Pm(H, T) is nonempty.
Parts (a) and (b) follow from Theorem 2. We now prove two lemmas.

LEMMA 1. If y is an eigenvalue of T and (x — j)k, k > 1, is a
nonlinear elementary divisor of T corresponding to 7, then 7m Φ 1
for any integer m.
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Proof. Since T is a real transformation, it has a real elementary
divisor

( 7 ) [(x - y){x - ϊ)]k .

(By Theorem 2, 7 cannot be real in this case.) Let Wbe the invariant
subspace of T determined by (7), and let S be the restriction of T to
W. Then S is an isometry of W with respect to φ, and hence Sr is
also an isometry for any integer r. Now if ir = 1, then all eigenvalues
of Sr are 1, and hence Theorem 2 implies that all elementary divisors
of Sr are linear. Therefore, Sr is the identity on W, and thus, the
elementary divisors of S are linear, a contradiction.

LEMMA 2. // Theorem 3 is true for the case H — SmJ then it is
true for any subgroup H of Sm.

Proof. Let H be a subgroup of Sm and let φ e Pm{H, T). For
each σeSm, define

( 8 ) <Pσ(%i, • • • , # » ) = <P(%oU)> •> ff*<«>) >

#i> •••> ̂ »€ F. In general, φσ is not symmetric with respect to H,
but <£>σ is positive definite and T is an isometry with respect to φo.
Set

(9) f=Σ?..

Clearly α/r is positive definite, and T is an isometry with respect to
ψ. Moreover, for any τ e 5 m , and x19 , xm e V,

= Σ

Thus π/r G Pm(Sm, T), and hence the elementary divisors of T are linear.
This proves Lemma 2.

We may assume henceforth that H = Sm and abbreviate Pm(Sm, T)
to Pm. If P m is nonempty, and T has a nonlinear elementary divisor
over C corresponding to the eigenvalue y = a + ib (b Φ 0), then there
exist four linearly independent vectors #i, , v4 in F such that
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Tv^ = av1 — bv2

Tv2 = bv1 + av2

Tx3 = v2 + av3 —

Let V be the extension of V to an ^-dimensional space over C, i.e.,
V consists of all vectors of the form x + iy, x, y e V. By linear ex-
tension, we regard T as a linear transformation of V, and by multi-
linear extension, φ becomes a complex valued multilinear functional
on x?V. Equation (5) still holds in V, but φ is no longer positive
definite. Set

βi = ΐ>i + iv2, e2 = v, - iv2

es = v3 + iv4, e4 = v3 — iv4 .

From (10) and (11),

Te1 = ye19 Te2 = je2

Te3 = je3 + v2, Te4 = ϊe4 + v2 .

By Lemma 1, Ύ is not a root of unity; thus,

φ(e19 ., elf e2, . . e2) = φ(Te19 , Γβ l f Γβ2, , Te2)

(13) - 7 * 7 * - V ( β » • • • * ! , * „ . . . , β2)

— 0 ,

unless k = m — k, where k is the number of times e1 occurs in (13).
With r = m/2, we set

r r

φifiu •••, βx, e2, •••, e2) = v .

N o w v =£ 0; o t h e r w i s e

φ(v19 , vO = 2~m9>(β1 + β2, , e, + e2)
( 1 4 ) = o ,
contradicting (6). (Note that we are using the assumption that φ is
symmetric with respect to Sm; this gives us a convenient way of
sorting expressions such as those on the right side of (14).)

Let μ = φ(vlf •••yVi, e3). Using (13) and (14), we compute,

μ = 2-m+ιφ(eί + e2, , e, + e2, e3)

= 2-m+1φ(7e1 + Ύβ2, , ye, + je2, ye3 + v2)

- Ί)v + 72-m +V(7βi + 7β2, > yeι
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φ(ffeι
ψe21 , 7% + 7e2, yes + ^

2^

- 7 - 7 > + 722-m+1

^ ( 7 2 ^ + Ύ2e2, , 72βi + 72β2, ez) .

Continuing this procedure, we obtain for any positive integer s

(15) μ = - 2 -

Let

, + ^β2, , zeι + ze2, β8) ,

where 3 is a complex variable. Then / is a continuous function of z
on the complex plane, and hence / is bounded on the unit circle.
Moreover, since 7 is not a root of unity (in particular, 7 Φ ±1),

is also bounded as s becomes large. Thus, letting s approach infinity
in (15) forces μ to become infinite, a contradiction. This proves
Theorem 3 in one direction.

Now suppose all eigenvalues of T are 1 in absolute value and all
elementary divisors of T are linear over C. Let 1 (p times), — 1 (q
times) and yd, yά = ad ± ibs, \y3 \ = 1, j = 1, , ί, be the eigenvalues
of T. Then there is a basis of V, vlf , vP, ulf , uq, xly y19 •••«?*, yβ

such that

Tvj = Vj,j = 1, . . . , p

r % = - % , i = l, . - . , ?

Γίc^ = α, % - 6,-i/y, i = 1, , t

Ty5 = δ ^ + α ^ , i = 1, , t .

Set

Wj = x , + ΐi/^

Wy = Xj - i ^ , i = 1, •••, t .

Then Vu , vp, t6lf , uq, wt, wlf , wt, wt form a basis of V of
eigenvectors of T. Let ft, , /p, ^ , , gq, hlf k19 , ht, kt be the
corresponding dual basis. If Zx, , lm are linear functionals on a space
F, then l^-'lm is the m-linear functional on x Γ F such that
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k ••• ϊm(a?i, •••, α») = Π ϊi(»ί)
i=i

Define <p as follows:

(17) ? = ΣΛ" + Σ tf + Σ P A ) f + (ΛΛ
i i i i

where r = m/2 and /(v) = f(v). Now ^ and Aλ, are not linear on the
complex space F, but they are complex valued linear functionals on V,
i.e., they are linear functionals on V but are not in the dual space
of V. Thus φ is a real multilinear functional on V. Set

Ψ = Σ ^

We assert that ψ e Pm(H, T). Clearly ψ* is symmetric with respect
to Sm9 and thus with respect to any subgroup H of Sm. It remains
to show that ψ is positive definite and that T is an isometry with
respect to ψ. It suffices to prove these last two properties for φ.
Let

x = Σ ^ i^ + Σ βjUi + Σ (Ŝ a y + \Vj)
j=l j=l J = l

be an arbitrary vector of F. Then from (17),

**, , x) = Σ «T + Σ ̂ - + 2Σ [ ( | ) 2 + ( | ) 7Σ T Σ ^ Σ

Since m is even and ajy βjy δjy X3- are all real, φ is positive definite.
Now let zk, k = 1, , m, be arbitrary vectors in V, with

Σ(18) zk = Σ α^ i y + Σ δAi^i + Σ
i i

Then

(19)

From

(20)

(16)

Tzk

V

i = i

5 = 1

+ Σ5 = 1

ckj +

Σ {-hi)Uj
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k = 1, , m. Let

ekj = a3 ckj + bjdkj

fkj = asdkί — bjCkj .

Then from (19) and (20)

φ(Tzlf •• ,K f f l )

(21)
k-l,j I J2k-Uj \l e2k,j _ J2k,j \

V TT fe2k-l,j _ f2k-Uΰ\( e2k,j i J2k,j \

It is easily verified that

f̂cj I fkj _ ?̂ /Cfcj i dk

2 2i h\ 2 2%
(22)

^fej /fej _ rγ I Gkj &kj j

2 2i 5\ 2 2i /

Using (22) in (21) and the fact that | τ , | = 1, we obtain

φ(Tz19 , Tzm) = φ(zlf , Zm) .

This completes the proof of Theorem 3.
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