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2 SUBSPACES OF GRASSMANN
PRODUCT SPACES

M. J. S. LIM

The subspaces of the second order Grassmann product
space consisting of products of a fixed irreducible length k
and zero are interesting not only for their own sake and their
usefulness when determining the structure of linear transfor-
mations on the product space into itself which preserve the
irreducible length k, but also because they are isomorphic to
subspaces of skew-symmetric matrices of fixed rank 2k. The
structure of these subspaces and the corresponding preservers
are known for k — 1, when the underlying field F is algebrai-
cally closed. This paper gives a complete characterization of
these subspaces when k — 2 and F is algebraically closed.
When F is not algebraically closed, these subspaces can be
different.

Let ^ be an ^-dimensional vector space over an algebraically

closed field F. Let A2 ^ denote the ( ^ j-dimensional space spanned
\ Δ J

by all Grassmann products xι/\x2,xi<zF. A vector / e A 2 ^ is said
to have irreducible length k if it can be written as a sum of k, and
not less than k, nonzero pure (decomposable) products in A2 ^ Let
£?k denote the set of all vectors of irreducible length k in A2 ^ Ί a n ( i
fe ^fk if and only if J*?(f) = k. A subspace of A2 ^ whose nonzero
members are in ^ is called an £f — k subspace.

An J*f — 2 subspace H is a (1, l)-type subspace if there exist fixed
nonzero vectors x Φ y such that each nonzero feH can be written
/ = x Λ xf + y A Vf. A basis of a (1, l)-type subspace is called a (1, 1)
basis. When dim ^ = 4, every Jίf-2 subspace has dimension one
([4], Th. 10).

It is shown here that (i) for dim %f — n 2> 5, there always exists
an Sf — 2 subspace of (1, l)-type and dimension two; (ii) the 2-dimen-
sional =5̂  — 2 subspaces are of (1, l)-type; (iii) every ^ — 2 subspace
of dimension at least four is of (1, l)-type; (iv) the £f — 2 subspaces
have dimension at most (n — 3) when n ^ 6; and this maximum dimen-
sion is attained. Also the 3-dimensional ^f — 2 subspaces are charact-
erized, and these are the most varied.

From [4], Theorem 5, each fe^k can be uniquely associated
with a 2/c-dimensional subspace [/] of ^ . The pair {flyf2} is said to
be a Pm-pair in ^f2 if [/J + [/2] has dimension m; and the set {fl9 ,fk}
in J^f2 is pairwise-Pm if each pair is a Pm-pair, for i Φ j .

THEOREM 1. Let dim ^/ = n ^ 5. Then there always exists a
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(1, lytype £f — 2 subspace of dimension two.

Proof. For n — 5, ulf , uδ independent in ^ , the subspace
Γ<χ Λ^2 + ^ Λ u4, ̂ ΛWj + ^ Λ ^3> is a (1, l)-type ^f — 2 subspace

of dimension two. For n = 69 u19 , uQ independent in ^ , the sub-
space ζu,Λu2 + u3 Au49 ^ Λ ^ + ^ Λ ^ 6 > is a (1, l)-type £? — 2 sub-
space of dimension two.

THEOREM 2. Every 2-dimensional Jzf — 2 subspace is a (1, 1)-
subspace.

The theorem follows from the following Lemmas 1 to 4.

LEMMA 1. Let fι and f2 be a P7-pair in <^2, α, b be nonzero in
F. Then £?{afγ + bf2) = 3.

Proof. Let [/J Π [/2] = <»i>. By Lemma 9 of [4], we can choose
a basis {x19 , x4} of [/J such that /x = ^ Λ ̂ 2 + ^3 Λ ^4 and a basis
{x19Xι,x6,x7} such that /2 = x,Ax5 + a) 6 Λ^ with [fλ] + [/2] = <^, ,a?7>.
Then « = «/! + δ/2 = ^Λ(αx 2 + 6α;5) + ax3Ax* + bx6Ax7 and oSf(«) = 3
by Theorem 7 of [4].

LEMMA 2. Le£ f19 f2 be a basis of a 2-dimensional Sf — 2 sub-
space. Then {/i, f2) is a Pk-pair where k is either 5 or 6.

Proof. Each of [/J and [f2] has dimension four. It is easy to
see that k cannot be 4 (Theorem 10 of [4]). By Lemma 1, we conclude
k Φ 7. If k = 8, Theorem 6 of [4] implies that ^f{f, + f2) = 4. Hence
ά is either 5 or 6.

DEFINITION. flf f2 e ^ 2 can be expressed in (1, l)-form if {f19 f2}
have representations fι — x A u{ + y A vi9 i = 1, 2 and <ίc, τ/)> is a fixed
2-dimensional subspace of ^ .

LEMMA 3. Let {fly f2) be a P5-pair and a basis for an £f — 2
subspace. Then {f19 f2} have representations

/i = y* A u, + u2 A uz ,

f% ~ Vs Λ u2 + uγ A u3 ,

wftere { ,̂ ^2, %3, yi9 y5} is some basis of [/J + [/2].

Proo/. Let ^ 0 = [/J Π [/2] By Lemma 9 of [4], there are repre-
sentations
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A = X1ΛV1 + V2ΛV3 ,

Λ = xz Λ wι + w2 Λ w3 ,

where <^i, v2, vzy = <wx, w2, w3)> = ^ 0 . If vx, wL are dependent then
some combination of ft and /2 has irreducible length ^ 1. Hence they
are independent. Moreover ζv19 w^ n <Ĉ2> v8> and ζvlf w^ Π <w2, w3>
are both nonnull, and hence, without loss of generality, both v2 and
w2 are in ζvί9 wxy. Thus v2 = av1 + δwx and w2 = cvt + dwx. Clearly
b Φ 0, c Φ 0. Finally

^3 = PVJ. + g ^ + r^3, r Φ 0 .

Setting 2/4 = fer-^c""^ — αi;3), yδ = α?2 — d^3 + cg^, ^ = b^rcv^ u2 ~ wlf

u3 — 6̂ 3, we obtain the desired representations.

COROLLARY 1. Let {f19 f2) be a Pδ-paίr and </„ /2> α 2-dimensίonal
Jzf — 2 subspace. Then {flf f2} can be expressed in (1, l)-/orm.

LEMMA 4. Lei {/x, /2} δβ α P6-pair and <yx, /2)> α 2-dimensional
j ^ — 2 subspace. Then {f19 f2) can be expressed in (1, l)-/orm.

Proof. By Lemma 9 of [4], there are representations

f1 = x1AuJrvAw1 f2 = xι A nf + v' A w' ,

where <a?!> c [/J Π [/2] and <u, v, ^)>, <%', v', wrS) are contained in

If <(y, wy Π <(̂ ', w'y = O, some linear combination of f19 f2 has irreducible
length 3. If ζv, wy = <v', '̂)> some linear combination of f19 f2 has
irreducible length ^ 1. The result follows.

Lemma 2 implies the following lemma.

L E M M A 5. Let H be an Jΐf — 2 subspace. Let {flf •••,/&} be an
independent subset of H. Then

( i ) 3 ^ [/,] n [fj] ^2 for l ^ i < j ^k;

(ii) dim Σfc? [/J ^ dim Σ?=i [A] ^ dim Σ ? ί [Λ] + 2.

Corollary 1 implies:

LEMMA 6. Let {f19 f29 f3} be pairwise-P6 and generate a 3-dimen-
sional Sf — 2 subspace. Then {f19 f29 /3} is a (1, 1) basis for </„ /2, /3>
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1* dim ̂  = 5. It is not difficult to see that when dim ^ = 5,
the basis of any £f — 2 subspace must consist of pairwise-P5 vectors.

THEOREM 3. Let dim ^ = 5, H an £f — 2 subspace. Let {fί9

• > fk} be independent in H. Then k ^ 3.

Proof. Let {u19 , u5} be a basis of ^Λ Then each fh 1 ^ I ̂  k,
has the form /, = Σ α ^ % A %(1 ^ i < i ^ 5), α o e i*7. (*) Consider the
vector / = Σ?=i &/<, fteί7 not all zero. Now £f{z) ^ 1 if k ^ 4 for
some {/3J not all zero since the following is true. / = Σ*=i A/< —
Σ P(ii> i ) ^ Λ w<2(l ^ iι < i2 ^ 5) where p(kσω, kσ[2)) = sgn σp(k19 k2), σ

a permutation of {1, 2}, and {/cj are arbitrary integers 1 ^ k{ ^ 5.
Thus, using (*), it follows that {p(^, i2)} are linear homogeneous func-
tions of {βly •••iβk). Then the quadratic p-relations

Σ (-1)^(^1, , ir-l, ^)P(iθ, * * , jμ-l, jμ + 1, " * , 3 r) = 0
μ=0

for all sequences (ί19 , ίr_i), 0'0> > ir) of integers taken from {1, , n)
define (for n — 5, r = 2 in this case) j ^ β nontrivial equations, which
are in fact quadratic homogeneous equations in the indeterminates βlf

>-,βk in F. Moreover, of these five, exactly three are independent
(see [3], pp. 289, 312). Hence, if k ^ 4, then there exists a nontrivial
solution for the five equations (see [6], chapter 11). For these values
of A, , βk (not all zero), ^f(f) ^ 1. Hence k < 4. The following
three vectors generate an J?f — 2 subspace of dimension three:

fx = u4 A u, + u3 A u2 ,

/ 2 = ^5 Λ ^ 2 + ^3 Λ ^ i ,

The following theorem is true for all

THEOREM 4. Lβ£ d i m ^ = w. Lei {/:, •••,/*} δe α (1,1)

/or απ & — 2 subspace. Then k ^ n — 3.
Moreover, when n ^ 5, ί/^erβ always exists a (1, l)-type Jϊf — 2

subspace of dimension (n — 3).

Proof. Suppose k = n — 2. Each/ 4 can be written / i = ίί1Λi/i +
w2 Λ 2», 1 ^ ΐ ^ w — 2, where <u1?%2,y l t ,yn-2,zlf ,zw_2>S ^ . Now
{u19u29y19 ,^_2} must be independent for, if not, some linear combi-
nation of {fi} has irreducible length ^ 1. Hence ̂  = <wlf w2, ?/i, , 2/n-?>
Thus ^- = Σl1^2 α<y2/ί + /3,^i, 1 ^ i ^ ^ - 2. If βά Φ 0, write

(W-2 \

Σ ttijVij
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Hence, without loss of generality, we can assume {zj is dependent on
{yi}. Using a similar argument, {τ/J is dependent on {zj. Hence
<\Vi, •> Vn^y = <A, , 2w-2> Hence, for some {αj e F, not all zero,
we have Σ ? = i 2 ^ ^ = *>%"=?&& = V for some O ^ λ e ί 7 ; and / = Σΐ=ι2<Xifi
has irreducible length ^ 1. Hence & <£ w — 3.

Now let fi = uλA ui+2 + u2A ui+3 for i = 1, , (n — 3), where
(u19 , ww> = ^ . Then {/J generate an £f — 2 subspace of dimen-
sion (n — 3).

COROLLARY 2. Le£ dim ^ = 5, H an ^ — 2 subspace of (1,1)-
, ί/ dim H > 1, dim H = 2.

We pause here to introduce some notation.

DEFINITION 1. For subsets S, Γ of ^ , [S; Γ] = <>S U Γ> -
In the case where S = {xlf , xs} and T = {a?β+1, , α;Λ}, we use the
convention [£; T] = [xλ, , xs; x8+1, , % ] . Note that in this case if
y 6 [S; Γ], then y = Σ U α ^ , at e F, and αί least one of «„ , as is
nonzero.

DEFINITION 2. For subsets S, T of ^, SAT = {xAy:xeS and
7/e T}. In the case where S is the singleton {x}, we shall write S Λ T
as x AT. Similarly for T. Also, if S is the space ζxx, , a?^, then
we shall regard S as a set and write S Λ T as [^, , xk] A T. Simi-
larly for T.

The three-dimensional £f — 2 subspace when dim fS — 5. In this
context, a basis {/Ί, /2, /3} of an Sf — 2 subspace H is necessarily
pairwise P 5 . It is not a (1, 1) basis. However, either there exists a
three-dimensional subspace ^ 0 of ^ contained in each [/,], or there
exists a exists a five-dimensional subspace "W" Si ^ which contains
each [ft] (see [1], p. 14). In fact, W~ = <%S. Moreover, since dim <%s = 5,
dim [/J Π [f2] = 3, and dim [/3] = 4, then dim flLi [/*] ^ 2. Consequ-
ently this intersection has dimension two or three.

THEOREM 5. Let d i m ^ = 5. Let {f19 f2, f3} be a basis for an
Jzf — 2 subspace H such that [ft] Z) ̂ 0 , i — 1, 2, 3, where ^ is α
three-dimensional subspace of Ήf. Then ^f has a basis {u^u^u^x^x^}
such that there are representations

f = Xt A uL + u2 A u3 ,

f2 = xδAu2 + uΣAu3 ,

fz = y A u3 + ^ 2 Λ u, ,
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Proof. *%s has a basis {w19 w29 w3, y4, y5} such that ^Ό = ζwl9 w2, w3y
and there are representations f1 = yiΛw1 + w2Aw3, A = y5Aw2 + wλAw3

(see Lemma 3). Now there exists y' e [/3] such that y' £ ̂ Q and
2/'e [yiy yδ; w19 w2, w3\. Since {f19 f29 f3} is pairwise-P5, it is easy to see
V' e [y» y5, w19 w29 w3] n [y5; y*, w19 wi9 wz\. Hence / 3 has a representation

A = y' Λu + v Λw; %r0 = <(μ9 v, wy ,

(see [4], Lemma 9). Now if ueζw19 w2y, it is possible to find repre-
sentations of f19 f29 / 3 such that they form a (1, 1) basis for H. This
contradicts Corollary 2. Hence u£ζw19 w2y, but ue [w3; w19 w2]. In
fact, without loss of generality, we can take u = wz + cwι + c'w2.

Now ζw2, 6̂>, <(^!, î >, (y, wy intersect pairwise in dimension at least
one. Also u g ζy, wy. Therefore we may suppose v e [w2; u], w e [w^ u].
We set

v = aw, + a'n, w — hwx + Vu .

Then

/s = (Vf + ^^'^2 — afbwx) Λu + jw2 A w19 0 φ Ίe F .

Let

a2 = 7 ,

w2 = α~^2, wγ — orιul9 u = cm3 .

Then

/i = (y* — cwz) Λ or-1!* + u2Λu3 ,

A = (2/β — c 'w) Λ α " 1 ^ + ^ i Λ % 3 ,

/ 3 = x A oίus + u2 A ut .

We have the result on setting x4 — or\yA — cw2), x5 = or1(yδ — c'wj,
y = αα;, and noting that y e [#4; α?5, u19 u2] Π [̂ 5; ^4, u19 u2].

THEOREM 6. Let dim ^ — 5. Lβί {/„ /2, /3} 6e α basis for an
J^f — 2 subspace H such that dim ΠLi [/i] = 2. Then <%S has a basis
{u19 u29 Uz, x±, xδ} such that f19 /2, A have representations given by either
(i) or (ii) below.

( i ) A = x4Au, + u2AUz, A = %5Au2 + u,Au^ A = U/\V
y, y' e [xA1 x5; u19 u29 u3]9ue <uly u2>,

(ii) f19f2 as in (i). With u e <^,^2>, u' e ζu19u29u^9 A =
y Ay\ y, yr e [x4, x5; u19 u2, u3],0^yeF.

Proof. The proof involves a suitable choice of a basis of ^ 9 as
in the proof of Theorem 5, and the use of the following lemma.

LEMMA 7. Let fe £?2 and (μ19 u2y any two-dimensional subspace
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of [/]. Then either
( i ) there exist v, we [/] such that f = ΊUYAU2 + v/\w, O ^ γ e ί 7 ,

or (ii) there exist v\ wf e [f] such that f = uγ A v' + u2 A w'.

Proof. Let {u19 , u4} be any basis of [/]. By Lemma 9 of [4],
/ has a representation f = uλAu + vAw, where ζu, v, wy = ζu21 u3, u4y.
If ^ Λ ^ Λ / = 0, then ζux, u2y Π ζv, wy Φ 0, and it is easy to see
u2 e ζv, wy since ux ί ζu, v, wy. If uλ A u2 Λ / Φ 0, then <χ, i62, v, tί;)> =
[/], and u = auγ + bu2 + cv + dw with 6 ^ 0 . Then / = buλ A u2 +
[̂ i Λ (cy + dw) + vΛw]. By Corollary 8 of [4] and since J*f(f) = 2,
the term in square brackets has irreducible length one.

We can in fact replace the basis {fl9 f2, /3} in Theorem 3 by the
basis {/Σ + /2, /2, /8}. Then [/x + /2] n [/2] Π [/3] has dimension two.
We obtain:

THEOREM 7. Let dim %f = 5, H an <2f — 2 subspace of dimension
three. Then H has a basis which is either of type (i) or type (ii) in
Theorem 6.

Examples of such bases are the following:

EXAMPLE 1. / ^ ^ Λ ^ Ί - ^ Λ U Z , f2 = xδAu2 + uxAu3 ,

f3 = u2A x4 + u3 A x5 .

EXAMPLE 2. Λ, /2 as in Example 1. / 3 = u2 A (uλ + %3) + £4 Λ asβ

2* dim ^ = 6*

three-dimensional Jίf — 2 subspaces. If if is an ^2^ — 2 sub-
space with a basis {/lf /2, /3} and dim ^ = 6, then dim Σ L i [/i] = 5 or 6.
The first case was discussed in § 1. We show that, in the second case,
H has a basis of pairwise-P6 vectors, and there are three possibilities
for such a basis.

Suppose dim Σ<=i [fλ = 6 Now each pair in {f19 f2, f3} is either a
P5-or a P6-pair. Thus either {fl9 f2, /3} is pairwise-P5 or at least one
pair is a P6-pair. The first case is then reduced to the second.

THEOREM 8. Let H be an S^ — 2 subspace, and let {f19 /2, /3} be
pairwise-P5, independent in H such that dim X = 1 [f{] = 6. Then
(Σί=i [/iD ^ α s α ^^ ΐ s {̂ i, %2, ̂ 3, x4, x5, XQ) such that there are represen-
tations

/x = x4 A uγ + u2 A us ,
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= %Q A u + v A u3 ,

Proof. There exists a three-dimensional subspace ^ of % con-
tained in each [ft] (see [1], p. 14). The proof is similar to that of
Theorem 5. We choose a basis {uly u2, v3, y4, y6, y6} of ΣS=i [A] *m order
to obtain representations fλ = y4Au, + u2A v3, f2 = yδΛu2 + u,A v3,
fz = Vβ Λ w, + w2 A w3, and <wx, w2, w3y = <wt, u2, ̂ 3> = ^ 0 Without
loss of generality, we can assume w2 e ζuίy u2y. Then wx e ζu19 u2y, for,
if not, <(ux, u2, wλy = %S0 and (fx + /2 + /3) has irreducible length 3 (see
[4], Th. 7). Moreover % ? < ^ ) and u<£ζu2y (see proof of Lemma 3).
Thus <(wly w2y = <yi? ^2> and wz = λ(v3 + %) for some O ^ λ e ί 7 and
^ G <X, %2>. Then Λ = ylAu, + ^2Λ(v3 + ΰ), h = 2/ίΛ 2̂ + ^iΛfe + ^),
and f3 = yQAw1 + Xw2 A (vs + %). The appropriate choice of new basis
vectors gives the required representations.

COROLLARY 3. Let H be an J^ — 2 subspace, and let {flf f2J /3}
be pairwise-Pδ, independent in H such that dim Σ?=i [f%] — 6 Then
{/i, /2, /3} is α (1, 1) basis for <Λ, /2, /3>.

Proof. Choose a suitable representation of /3.

LEMMA 8. Let {fίy /2, /3} δe α (1, 1) δαsis o/ an ^f — 2 subspace
satisfying (i) dim Σ?=i [/*] = 6» (") {/i> Λ} is α PQ-pair. Then {f19 f2}
can be extended to a (1, 1) δαsis o/ pairwise-P6 vectors of ζflf f2, /3)>.

Proof. We choose a basis {u^ u2, a?3, , £6} of Σ?=i [/ί] so that

/ ^ ^ Λ ^ + MΪΛ a?4, / ^ ^ Λ ^ + ^ Λ ^6

(Lemma 4). Also f = u>_Ay + u2Ay', and we can take

O , 2/'> c <u21 x39 , a?β>

([4], Lemma 9). Let y = u + Σ = 3 α ^ , y' = uf

{̂ , %'} G <X>. We can choose λ, μ e F such that
where

λ

/33

and +

are both nonzero. Then gs = (λ/Ί + μf2 + /3) extends {/x, f2} to a basis
of </» /2, /3> and [flr8] n <^3, ^> = 0, [g3] Π <^5, 6̂> = 0.

In Lemma 8, we can in fact take
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A = u,Ax3 + u2Ax4 ,
fz = iii Λ xδ + u2 A x6 ,

/ s = w 1Λ^ + w !Λ y\ <3f, y'y c<u2, x39 . . , α;6>

and does not intersect each [/J, i ^ 3.

THEOREM 9. Let H be an ^ — 2 subspace. Let {f19 f2, /3} be
pairwise-Pδ, independent in H such that dim Σ;=i [fύ = 6 TAew
<̂ /i> /2> fs} has a (1> 1) basis of pairwise-PQ vectors.

Proof. Using the representations of fίyf2,f3 obtained in Theorem 8
and Corollary 3, we take gx = (f, + / 8 ) . Then {gl9 f2, f3} is a (1,1) basis
{#i, / J a P6-pair, and [g,] n [/2] Π [/3] = <^i, <>. The result follows by
Lemma 8.

COROLLARY 4. Lei {f19 f2, /3} 6β α (1, 1) basis for an ^f — 2 sub-
space such that Σ i = 1 [fi] = 6. Tfeβπ ίΛ,erβ βα isί α (1, 1) δαsίs of pair-
wise-P6 vectors for </x, /2, /3>.

THEOREM 10. Let H be an £f — 2 subspace, dim i ί >̂ 3. Lei
{/i» Λ> /s} &e independent in H such that (i) dim Σ?=i [/•] — 6> (")
Πΐ=i [fi\ ~ 0. Γ/̂ ew {/i, /2, /3} are pairwise-P6 and for any basis {uL, u2)
of [/i] Π [/2], (Σ<=i [fi]) has a basis {u19 u2, x3, - , x6} such that {f19f2,f3}
have representations f, = u, A x3 + ^2Λ^4, /2 = uλ A x5 + ^ 2 Λ x^ /8 =

+ x6Av2, < w l f ^ 2 > = <a;5, £6>, < ^ , v2> = <a;3, x 4>.

Proof. If {/i, /2, /3} were not pairwise-P6, we would have a con-
tradiction of (ii). Since {flf f2) is a P6-pair, the choice of representa-
tions of fuf2 is immediate (Lemma 4). Let

[/3J = \ ^ 3 , Xi, Z19 Z2/y X% G \XZ] Uly U21 \y X± G \Xi\ tin ^2i *

It is not difficult to show we can represent fz = xf

zAwι + x[Aw21 where
<(w19 w29 x'4y = ζx'4, z19 z2y, a n d t h u s {w19 w2} e [zx1 z2; x'4], a n d fγ = u, A x[ +

u2Ax[ (using Lemma 9 of [4] and proof of Lemma 4).

In a similar fashion, without altering u, or u2, we can choose

Xh G [X*>] Ίln U2\1 XQ G [X6f 1l19 Xz\) \U^ XQ/ = \Zu Z2/ >

so that f2 = ttx Λ &ί + ^ 2 Λ »ί, /s = a?ί Λ Vi + a?ί Λ ^2> where ^ ^ t;2, x'^ =
<^e, α J, a;ί>. Thus {v19 v2} e [x[9x[; xί]. From above, /3 is also xίAwx +
x[ A w2y and {w19 w2} e [̂ 5, Xe; »J] With respect to the independent set
{x'iAx'j}, the coefficient of x3Ax[ is zero in the second expression
obtained for /8, and the coefficient of #5 Λ x'Q is zero in the first. It



176 M. J. S. LIM

follows that neither term appears in /3. We have the result on placing
Xi for x'i9 i = 3, , 6.

LEMMA 9. Let H be an Sf — 2 subspace. Let {f19 /2, /3} be {in-
dependent in H satisfying

( i ) dimΣS=i[/J = 6,
(ii) {fuft} is a P6-pair,
(iii) dim ΠLi [fi] = 1.

Then there exists #3 e </i, /2, /3)> such that {/lf /2, #3} is α δαsis o/
pairwise-PQ vectors for </!,/2,/3> am? f | U [/<] = [#3] Π [/1] Π [/2]

Proof. There are representations /1 = %1Λ»8 + ^2Λ#4, /2 = uxAx*> +
^2 Λ a?β, and Σ U [/*] = <X, ^2, αs, , O Let f lU [/i] = <^>. Then
u e <χ, ̂ 2)>. Without loss of generality, we can take u = uL. By Lemma 9
of [4], fs = uλΛw + w' Λ v, <w, w\ v} c <u2, xZi , α;6>. If {f19 f2, /3}
are pairwise-P6, we have the result.

Case 1. Suppose {/„ /3} is a P6-pair and {/2, /3} is a P5-pair. Then
we can take f3 = uλAw + x4Avr (use Lemma 6 and (iii)), where

Let [/J n [/3] = <^, 2/, :*/'>. Then {y, ^} e [xδ, x6; u2]. Therefore

f^ = u,Aw + x4Av\we [xδ, x6; u2, x4], v' e [xδ, x6; u2] .

Let v' = axδ + bxQ + cu2. Choose 7 ^ 0 such that 7 + c Φ 0. Let
9's= fs + 7/i. Then {βr3, / J and {/2, r̂3} are P6-pairs.

Case 2. Suppose {/̂  /3}, {/2, /3} are both P5-pairs. This and (iii)
imply dim ([/J n [/3]) + ([/2] Π [/3]) = 5, which exceeds the dimension
of [/3]. Hence this case is not possible.

LEMMA 10. Iffe£?2 andfe ^ Λ f e , xs, x4] + [#4; x2]Λ[^3; x2] where
[/] = <«i» •> 4̂>, ^ e ^ / e a?i Λ [x2] + [x4; a?i, ̂ 2] Λ [xs; x19 x2].

Proof. Apply Lemma 7 to <(x19 x2y and notice that the coefficient
of x4 A xz is nonzero in /.

THEOREM 11. Let H be an ^f — 2 subspace, dim H ^ 3. Let
{fiy ft* Λ} be pairwise-PQ and independent in H satisfying

( i ) d i m Σ U [ / J = 6,
(ii) dim Γ1U [/J = 1.

Then for <^> = ΠS=i [fi] &nd any vector u2 such that (uλ, u2y = [/J Π [/2],
there exists a basis {uly u2, x3y , x6} such that fγ = uγ A x3 + u2 A xit

f2 = u, A %δ + u2 A x6, fz = ^1Λ 2/ + Xi A x6, where y e <u2, xs, , α;6>,
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y £ <χ, x3, xδy, y $ [fi], i = 1,2. Furthermore, there exists g3 such
that </x, / 2, #3> = </i, Λ, Λ> αwd #3 = ux Λ u2 + v A w, ve [x4; u19 u2],

w e [x6; ul9 u2] and gz = v' A wf + jx4 A x6y 0 Φ Ύ e F, v' e [u^ x4, x6], wf e

\U2*, X4, XQ\

Proof. The proof involves choosing a suitable basis of Σ L i [fi]
and the use of Lemma 6 and 7. To obtain the form of #3, we use
Lemma 10.

LEMMA 11. Let H be an & — 2 subspace. Let {f19 f2, fs} be in-
dependent in H such that

( i ) d imΣU[/d = 6>

( ϋ ) {/i,/2} is a P6-pair,
(iii) dim DU [A] = 2;

then {/i, f2} can be extended to a basis of pairwise-P6 vectors for

Proof. By a suitable choice of basis vectors for ]Γj=1 [/J, and the
application of Lemma 7, we have two possible cases. One case implies
{/i» Λ> Λ} is a (1, 1) basis and the result follows by Lemma 8. This
case is when either {f19 /3} or {/2, /3} is a P6-pair. Thus, the other
possible case is when both {f19 /3} and {/2, /3} are P5-pairs. Then /L —
WiΛa?8 + ^2Λ^4, /2 = %iΛ^5 + u2AxQ with ΣS=i [/ί] = <X> ^2, »3> > β̂>
By Lemma 7, / 3 is either ^ Λ v + ^ Λ w or ^ Λ ί ί ί + v'Λ wf. The
first case implies {/x, /2, /3} is α(l, 1) basis and Lemma 8 applies. In
the second case, we can take vf e [/J, wf e [/2]; i.e., v'e [xB, x4; u19 u2],
wf e [x5, x6; ulf u2]. In fact, we can take v' e [x3; x4, ulf u2], and vr —
x3 + auγ + bu2 + cα;4. Now wf — dxδ + a'uγ + 6'u2 + c'£C4. We then show
c' — cd = 0, by considering the determinant of (α^ ), where α4 i is defined
as follows. Let z = A + f2 + /3- We can express

^ = ^i Λ w2 + w3 Λ w4 -h w5 Λ w6 .

For i = 1, 2, α^ is the coefficient of u{ in wά. For i = 3, , 6, aiS is
the coefficient of a?< in tt;^ This determinant is ± (c' — cd). If it is
nonzero, £f($) = 3. Hence it must equal zero. Then a suitable choice
of basis vectors of Σ?=i [/;] will allow us to assume that c = 0 in v'
and c' = 0 in w'. Then ^3 = (/3 — /x + /2) will extend {/̂  / J to a pair
wise-P6 basis for </„ /2, /3>.

We have sufficient reason now to assert the following theorem.

THEOREM 12. Let {f19 f2, f3} generate a three-dimensional ^f — 2
subspace H, and dim Σί=i [/ΐ] = 6. ΓAe^ f ί Λαs α δαsίs of pairwise-
P6 vectors {gly g2, g3) which either form a (1, 1) basis of H or have in-
tersection Πi=i [θi] with dimension 0 or 1. Moreover, if {fly f2} is a
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ir, then this pair can be extended to a basis of pairwise-P6 vectors
of H.

EXAMPLES. H is generated by {f, f2, /3} where
( i ) /L = MiAflJs + M2Λ»4»Λ = ^ΛaJβ + W2Λ %β,

fz = u,A (u2 + a?8 + χδ) + ̂ Λx6;
(ϋ) A, Λ as in (i), f3 = u,Ax, + u2A %δ;
(ϊϋ) /1, /2 as in (i), /3 = x3 A xδ + £4 Λ αβ

maximal £f — 2 subspaces, dim ^ = 6. We shall now obtain
this main theorem:

THEOREM 13. Le£ if δe αw Sf — 2 subspace and dim ̂  = 6.
Tfcβn dim if ^ 3.

We prove this theorem by a series of lemmas, which show
dim H > 3, in fact, dim H Φ 4. We take two three-dimensional =Sf — 2
subspaces <(/x, /2, /3)> and ζf, /2, /4> and show their sum is not an Jίf — 2
subspace. Theorem 12 allows us to take {flf /2, /3} and {/lf /2, /4} to
be pairwise-P6, and there are 6 cases to consider since dim Π;=i [/•] =
0, 1, 2 and a similar intersection property holds for the second set.

The following results are true for any dimension n of ^ unless
otherwise specified.

LEMMA 12. Let H be an ^ — 2 subspace. Let {ft, f2, f3} be in-
dependent pairwise-P6 in H satisfying

( i ) dim Σ U [/,] - 6,
(ϋ) ΠS=i[Λ]=O.

If f^^f2i independent of {f19f2,fB}, satisfying
(a) d imΣU[/ ί ] = 6
(b) {/1,/2,/J is pairwise-P6

(c) dim n*=i,2,4 [/*] = 1,
then </i, , /4)> is πoί α^ Jif — 2 subspace.

Proof. By Lemma 10, Σ?=i [/i] has a basis {wlf w2, x3, , ίc6} such
that f = u, Ax3 + u2 A X*, f2 = wx Λ a;5 + u2 Λ £6, /3 = α;5 Λ z + xβ A z',
ζz, zry = <aj3, α;4)>. Let (u) = Π1}2A [/J. Then u e <wx, ^2> We can take
ux — u.

By Theorem 11, there exists g3 e </x, /2, /4> such that ^3 = v'Aw' +
T.τ4 Λ a?β, 0 Φ 7 e JP7 and </ly /2, ̂ 3> = </lf /2, /4>. Since {v', w', x6, a;β, «, 2'}
is independent and {x4 + azf, z) is independent for some aeF, then
3 = g3 — af3 has irreducible length 3 for some a. Hence </x, , /4)>
is not a n i ^ - 2 subspace.

Since the proofs of the lemmas involving the other cases are similar
to the proof of Lemma 8 in the sense that in each case, we exhibit
a vector of irreducible length 3 or less than 2 except in the 0-0 case,
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which we can reduce to one of the other cases, we shall simply state
the final lemma.

LEMMA 13. Let H be an £f - 2 subspace. Let {f19 /2, /„} be in-
dependent in H such that dim Σ*=i [fλ — 6 If A £ ̂ 21 independent
{A, /2, /8} such that dim | = 1 [/J = 6, ίfam </„ , /4> is woί cm ^ - 2

We have to check one more case before we obtain Theorem 13.

LEMMA 14. Let H be an £f — 2 subspace. Let {fί9 f2, fz) be in-
dependent in H, dim Σ U [/*] = 5. // /4 e j ^ 2 , /4 £ </ l f /2, /3>, and
dim Σ<=i [/ί] = 6> ί̂ βw </ l f ,/4> is woί αw ^ - 2 subspace.

Proof. We note dim X1>2,4 [/;] = 6 and apply Lemma 13.

We have now:

LEMMA 15. Let H be an £? — 2 subspace. Let {f19 , fk} be in-
dependent in H, dim Σ?=i [/<] — 6 ΓΛβw A; ̂  3. For k = 3, <(/i,/2,/3]>
Aαs α δαsis 0/ pairwise-P6 vectors.

Theorem 13 follows from Lemma 15

3* dim <%f = 7.

TΛβ ίΛrββ dimensional Jέf — 2 subspaces.

THEOREM 14. Let H be an ^ — 2 subspace of dimension ^ 3.
Let {/i, /2, /3} 6β independent in H such that dim Σ<=i [/J = 7. T/^β^
{/i> Λ? /s} contains a PQ-pair, say {f19 /2}, which can be extended to a
pairwise-Pβ basis {f19 f2, g3} of ^/x, /2, /3̂ >. Moreover, either this basis
is a (1,1) δαsΐs or dim ([/J Π [/2] Π [̂ 3]) = 1; α^d α?i7/ δαsis {uίy u2} of
ί/i] Γl [/2] ^^^ &β extended to a basis {u19 u2, x3, , x7} of [f] + [/2] + [̂ 3]
s^c/^ ίΛαί A = u,Ax3 + u2A x4, /2 = ^1 Λ x5 + u2 A xQ; and gz =
^1 Ax7 + u2Av, ve ζu2, a?3, , α;6)>, v g <(^2, a?4, α?6>, and v £ [/J αwώ

•v g [/2] m ίΛβ first case) g3 — uίAx7 + x4A xQ in the second case.

Proof. A consideration of the various intersections and sums of
[f.]y i = 1, 2, 3 shows dim Πi=i [A] is either 1 or 2, and that there are
a t least two P6-pairs in {flf f2, /3}. In the first case this independent
set is in fact pairwise-P6. The second case implies {f19 f29 /3} is a (1, 1)
basis for </ l f /2, /3>. If this basis is not pairwise-P6 but {f19 f2} and
{ΛJ/S} are P6-pairs, and {f19 /3} a P5-pair, we can choose a basis
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{uly u2, x?, , x7} to give /i = UiΛXs + u2Λx4, f2 = ^iΛ^5 + u2Ax6, / 3 =
^ΛXj + u2Λv,ve <u2, x3, , #6>. Then we can take g3 = f2 + /3. To
obtain the desired representations of {f, /2, /3} in the first case, we
use an argument similar to the ones used earlier to obtain basis repre-
sentations.

The maximal JZf — 2 subspaces, dim ^ = 7. We obtain the follow-
ing theorem.

THEOREM 15. Let H be an ^ — 2 subspace, dim ^ = 7. Then
dim H ^ 4. PFΛew dim £Γ = 4, if ftαs α (1,1) δαsΐs, ί/iree o/ wfcose
members are pairwise-P6.

The proof is contained in Lemmas 16, 17, and 18 which follow.

LEMMA 16. Let {f19 f2, /3} be a (1, 1) basis for the Sf — 2 subspace
</i» Λ, /3>. sucfc ίfcαί dim Σ<=i [/J = 7. 1/ /4 e c^2, independent of
{/i> Λ* /s} sucΛ that

( i ) dim Σ U [Λ] = 7,
(ii) </t, . ,/4> is απ .Sr̂  — 2 subspace, then </i, * ,/4> Λαs α

(1, 1) frαsis, ίferβe o/ ^Λose members are pairwise-P6.

Proof. By Theorem 14, {/„ /2, /3} can be assumed to be pairwise-
P6 with the representations given. Then it is easy to see that some
pair in {/1? /2,/ s}, say { / J J , is such that dim Σί=i,2,4 [/J = 7, and
{/i» Λr/J can be assumed pairwise-P6. The two cases given in Theorem
14, apply to {f, f2, /4}. One case gives the desired result immediately.
We can eliminate the other case by showing the presence of a vector
in ^ 3 in </x, , /4>; in fact we can take the vector f + f2 + /3 + α/4

for some suitable 0 Φ ae F.

LEMMA 17. Let H be an £f — 2 subspace. Let {f19 f2, fz) be in-
dependent in H, dim Σ L i [A] = 7. If /4 e j ^ 2 , /4 e </17 /2, /3> ŝ c/̂  ί/̂ αί

( i ) dim Σί=i [Λ] = 7,
(ii) <(/1? , /4)> is απ . ^ — 2 subspace,

then <(/*!, , /4)> fcαs α (1, 1) basis, three of whose members are pair-
wise-PG.

Proof. In view of Theorem 14 and Lemma 16, it is sufficient to
eliminate the case dim Π?=i [f] = l We use a similar procedure as
in the proof of Lemma 16, and the representations of {/J in Theorem 14.
We have two cases: (a) Γl;=i,2,4 [/*] = < O , (b) Π;=i,2,4 [/J = <^2> In
(a), <(/i, •• ,/4> contains a vector of irreducible length one. In (b),
</i> , Λ)> contains a vector or irreducible length at least three.
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In addition to these two lemmas, we note that if H is an ^ — 2
subspace, {f19 f29 /3} independent in H and (i) dim Σf=i [/*] — 6> then
{/J can be taken to be pairwise-P6 (Lemma 15) and if f4 £ </ί, f29 /3>,
dim Σ!=i [/<] = 7, then dim Σ*=i,2,4 [/J = 7; (ii) Σ U [/J = 5, and if
A £ </» /« Λ>, dim ΣUi [/*] = 7, then dim Σ U [/J - 7. Hence both
these cases reduce to the case considered in Lemma 17.

LEMMA 18. Let H be an £? — 2 subspace, and {f19 - - -, f^} be in-
dependent in H, dim Σί=i [/*] = 7. If fδ e £f29 f5 ί <Λ, , /4>, and
dim Σf=i [/ί] — 7, ί/^w </i, ,/5> is ?ιoί α^ £f — 2 subspace.

Proof. Apply Lemma 17 to {f19 , / J and {/2, , /4} taking
{/i,/2,/3} pairwise-P6. Then </x, •• ,/5> has a (1, 1) basis, contradict-
ing Theorem 4.

4* The main results*

LEMMA 19. If H is an ^f — 2 subspace and {fly f2J f3} is inde-
pendent in H, dim Σ?=i [/•] = 8, then {f19 f2, f3} is a (1, 1), pairwise-
P6 basis of <jf\, /2, /s>, αncZ we cαπ represent

f = u,Ax3 + u2Λ%4 ,

f2 = Ul A x5 + u2 Λ x6 J

/ 3 = %iΛ«7 + ^^2Λa?8

3

Σ [/<] = Oi , ̂ 2, ̂ 3, , χBy

•if Λ e ̂ , Λ ί </n Λ, /3>, α?̂ d </L, , /4> is cm ^ - 2 subspace,
then {f19 , / J is α (1, 1) basis for </„ - , /4>.

Proof. The first part is not difficult to see. Using Lemma 5 we
obtain dim [/4] Π <X, u2y ̂  1. This intersection will have dimension 2,
and /4 forms a P6-pair with one of {f19 f29 /3} since dim [/4] = 4.

Lemma 19 is extremely important as the second part states that
presence of a 3-subset {f19 f2, /3} of any basis of an Sf — 2 subspace
H such that dim Σ?=i [/*] — 8 will guarantee that the basis will be a
(1, 1) basis. We know that if dim J^ ^ 8, then in any basis of H,
we can find a 3-subset {glf g2, #3} such that dim Σ?=i [ΰλ = 6, 7 or 8.
It is by now a more or less routine, and somewhat tedious, procedure
to show the existence of a 3-subset {f19 f29 /3} in such a basis of H for
dim *%S = 8, and then by induction for dim ^ ^ 9. We shall simply
state the main result and remark here that Theorem 4 provides the
value of the maximal dimension of a (1, 1) basis.

THEOREM 16. Let dim ^ = %:>6. If H is an ^f — 2 subspace,
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then dim H ^ n — 3. // dim H >̂ 4, £feew i ϊ Aαs a (1, 1) δαsίs,
is hence a (1, l)-type subspace.
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