ON $|C, 1|$ SUMMABILITY FACTORS OF FOURIER SERIES AT A GIVEN POINT

Fu Cheng Hsiang

Let $f(x)$ be a function integrable in the sense of Lebesgue over the interval $(-\pi, \pi)$ and periodic with period 2π. Let its Fourier series be

$$
\begin{aligned}
f(x) & \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\
& \equiv \sum_{n=0}^{\infty} A_{n}(x) .
\end{aligned}
$$

Whittaker proved that the series

$$
\sum_{n=1}^{\infty} A_{n}(x) / n^{a} \quad(\alpha>0)
$$

is summable $|A|$ almost everywhere. Prasad improved this result by showing that the series

$$
\sum_{n=n_{0}}^{\infty} A_{n}(x) /\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon} \quad\left(\log ^{k} n_{0}>0\right)
$$

is summable $|A|$ almost everywhere.
In this note, the author is interested particularly in the $|C, 1|$ summability factors of the Fourier series at a given point x_{0}.

Write

$$
\begin{aligned}
& \varphi(t)=f\left(x_{0}+t\right)+f\left(x_{0}-t\right)-2 f\left(x_{0}\right) \\
& \Phi(t)=\int_{0}^{t}|\varphi(u)| d u
\end{aligned}
$$

The author establishes the following theorems.
THEOREM 1. If

$$
\Phi(t)=O(t) \quad(t \rightarrow+0)
$$

then the series

$$
\sum_{n=1}^{\infty} A_{n}\left(x_{0}\right) / n^{\alpha}
$$

is summable $|C, 1|$ for every $\alpha>0$.
THEOREM 2. If

$$
\Phi(t)=O\left\{\frac{t}{\prod_{\mu=1}^{k} \log ^{\mu} \frac{\mathbf{1}}{t}}\right\}
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=n_{0}}^{\infty} \frac{A_{n}\left(x_{0}\right)}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}
$$

is summable $|C, 1|$ for every $\varepsilon>0$.

A series $\sum a_{n}$ is said to be absolutely summable (A) or summable $|A|$, if the function

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is of bounded variation in the interval $\langle 0,1\rangle$. Let σ_{n}^{α} denote the nth Cesàro mean of order α of the series $\sum a_{n}$, i.e.,

$$
\sigma_{n}^{\alpha}=\frac{1}{(\alpha)_{n}} \sum_{k=0}^{n}(\alpha)_{k} a_{n-k},(\alpha)_{k}=\Gamma(k+\alpha+1) / \Gamma(k+1) \Gamma(\alpha+1) .
$$

If the series

$$
\sum\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|
$$

converges, then we say that the series $\sum a_{n}$ is absolutely summable (C, α) or summable $|C, \alpha|$. It is known that [2] if a series is summable $|C|$, it is also summable $|A|$, but not conversely.
2. Suppose that $f(x)$ is a function integrable in the sense of Lebesgue and periodic with period 2π. Let its Fourier series be

$$
\begin{aligned}
f(x) & \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\
& \equiv \sum A_{n}(x) .
\end{aligned}
$$

Whittaker [4] proved that the series

$$
\sum_{n=1}^{\infty} A_{n}(x) / n^{\alpha}
$$

is summable $|A|$ almost everywhere. Prasad [4] improved this result by showing that the series

$$
\sum_{n=n_{0}}^{\infty} A_{n}(x) /\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}\left(\log ^{k} n_{0}>0\right)
$$

where $\log ^{k} n=\log \left(\log ^{k-1} n\right), \log ^{2}=\log (\log n)$, is summable $|A|$ almost everywhere.

Let $\left(\lambda_{n}\right)$ be a convex and bounded sequence, Chow [1] demonstrated that the series

$$
\sum A_{n}(x) \lambda_{n}
$$

is summable $|C, 1|$ almost everywhere, if the series $\sum n^{-1} \lambda_{n}$ converges.
In this note, we are interested particularly in the $|C, 1|$ summability factors of the Fourier series at a given point. For a fixed point x_{0}, we write

$$
\varphi(t)=\varphi_{x_{0}}(t)=f\left(x_{0}+t\right)+f\left(x_{0}-t\right)-2 f\left(x_{0}\right),
$$

and

$$
\Phi(t)=\int_{0}^{t}|\varphi(u)| d u
$$

We are going to establish the following

Theorem 1. If

$$
\begin{equation*}
\Phi(t)=O(t) \tag{i}
\end{equation*}
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=1}^{\infty} \frac{A_{n}\left(x_{0}\right)}{n^{\alpha}}
$$

is summable $|C, 1|$ for every $\alpha>0$.
3. The following lemmas are required.

Lemma 1 [3]. Let $\alpha>-1$ and let τ_{n}^{α} be the nth Cesàro mean of order α of the sequence $\left\{n a_{n}\right\}$, then

$$
\tau_{n}^{\alpha}=n\left(\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right) .
$$

Lemma 2. Write

$$
S_{n}(t)=\sum_{k=0}^{n}(n+2-k) \cos (n+2-k) t
$$

then

$$
S_{n}(t)=O \begin{cases}n t^{-1} & (n t \geqq 1) \\ n^{2} & (\text { for all } t)\end{cases}
$$

In fact, we have

$$
\begin{aligned}
S_{n}(t)= & I\left\{\frac{d}{d t} e^{i(n+2) t} \sum_{k=0}^{n} e^{-i k t}\right\} \\
= & I\left\{\frac{d}{d t}\left(\frac{e^{i(n+2) t}}{1-e^{-i t}}-\frac{e^{i t}}{1-e^{-i t}}\right)\right\} \\
= & I\left\{(n+2) \frac{i e^{i(n+2) t}}{1-e^{-i t}}-\frac{i e^{i(n+2) t}}{\left(1-e^{-i t}\right)^{2}}\right. \\
& \left.-\frac{i e^{i t}}{1-e^{-i t}}+\frac{i}{\left(1-e^{-i t}\right)^{2}}\right\} \\
= & O\left(n t^{-1}\right)+O\left(t^{-2}\right) \\
= & O\left(n t^{-1}\right),
\end{aligned}
$$

if $n t \leqq 1$. This proves the lemma. From this lemma, we can easily derive the following

Lemma 3.

$$
\left|\frac{1}{n+1}\left\{\sum_{\nu=1}^{n} S_{\nu}(t) \Delta \frac{1}{(\nu+2)^{\alpha}}\right\}\right| \leqq \begin{cases}\frac{A}{t h^{\alpha}}+\frac{A}{n t^{2-\alpha}} & (t \geqq 1) \\ A n^{1-\alpha} & (\text { for all } t)\end{cases}
$$

By Lemma 2 , for $n t \geqq 1$, we write

$$
\begin{aligned}
\frac{1}{n+1}\left\{\sum_{\nu=1}^{n} S_{\nu}(t) \Delta \frac{1}{(\nu+2)^{\alpha}}\right\}= & \frac{1}{n+1}\left\{\sum_{\nu=1}^{[t-1]-1}+\sum_{\nu=[t-1]+1}^{n}\right\}+O\left(\frac{1}{n t^{2-\alpha}}\right) \\
= & \frac{1}{n} O\left(\sum_{\nu=1}^{[t-1]} \nu^{1-\alpha}\right)+\frac{1}{n t} O\left(\sum_{\nu=1}^{n} \frac{1}{\nu^{\alpha}}\right) \\
& +O\left(\frac{1}{n t^{2-\alpha}}\right) \\
= & O\left(\frac{1}{n t^{2-\alpha}}\right)+O\left(\frac{1}{t n^{\alpha}}\right)
\end{aligned}
$$

and for all t,

$$
\begin{aligned}
\frac{1}{n+1}\left\{\sum_{\nu=1}^{n} S_{\nu}(t) \Delta \frac{1}{(\nu+2)^{\alpha}}\right\} & =\frac{1}{n+1} O\left\{\sum_{\nu=1}^{n} \nu^{\nu} \frac{1}{\nu^{1+\alpha}}\right\} \\
& =\frac{1}{n+1} O\left\{\sum_{\nu=1}^{n} \nu^{1-\alpha}\right\} \\
& =O\left(n^{1-\alpha}\right)
\end{aligned}
$$

This proves the lemma.
4. We have

$$
A_{n}\left(x_{0}\right)=\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \cos n t d t
$$

Let $\tau_{n}\left(x_{0}\right)$ be the nth Cesàro mean of first order of the sequence $\left\{n A_{n}\left(x_{0}\right) / n^{\alpha}\right\}$, then

$$
\frac{\pi}{2} \tau_{n}\left(x_{0}\right)=\int_{0}^{\pi} \varphi(t) \frac{1}{n+1} \sum_{\nu=0}^{n} \frac{(\nu+2) \cos (\nu+2) t}{(\nu+2)^{\alpha}} d t
$$

Abel's transformation gives

$$
\begin{aligned}
\frac{\pi}{2} \tau_{n}\left(x_{0}\right)= & \int_{0}^{\pi} \varphi(t) \frac{1}{n+1}\left\{\sum_{\nu=0}^{n} S_{\nu}(t) \Delta \frac{1}{(\nu+2)^{\alpha}}\right\} d t \\
& +\int_{0}^{\pi} \varphi(t) \frac{1}{n+1} \cdot \frac{S_{n}(t)}{(n+3)^{\alpha}} d t \\
= & I_{1 n}+I_{2 n}
\end{aligned}
$$

say. Thus, on writing

$$
I_{1 n}=\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{3 n}+I_{4 n}
$$

say, we see that

$$
I_{3 n}=O\left(n^{1-\alpha} \int_{0}^{1 / n}|\varphi| d t\right)=O\left(n^{-\alpha}\right),
$$

by condition (i) of the theorem.

$$
I_{4 n}=O\left\{\frac{1}{n^{\alpha}} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t\right\}+O\left\{\frac{1}{n} \int_{1 / n}^{\pi} \frac{|\varphi|}{t^{2-\alpha}} d t\right\}
$$

Now,

$$
\int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t=\left(\frac{\Phi}{t}\right)_{1 / n}^{\pi}+\int_{1 / n}^{\pi} \frac{\Phi}{t^{2}} d t=O(1)+O\left\{\int_{1 / n}^{\pi} \frac{d t}{t}\right\}=O(\log n)
$$

and

$$
\int_{1 / n}^{\pi} \frac{|\varphi|}{t^{2-\alpha}} d t \leqq n^{1-\alpha} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t=O\left(n^{1-\alpha} \log n\right)
$$

It follows that

$$
I_{4 n}=O\left\{\log n / n^{\alpha}\right\}
$$

As before, we write

$$
I_{2 n}=\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{5 n}+I_{6 n}
$$

say. Then,

$$
I_{5 n}=O\left(n^{1-\alpha} \int_{0}^{1 / n}|\varphi| d t\right)=O\left(n^{-\alpha}\right)
$$

And

$$
I_{6 n}=O\left\{n^{-\alpha} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t\right\}=O\left\{\log n / n^{\alpha}\right\}
$$

by the similar arguments as in the estimation of the integral $I_{4 n}$. By Lemma 1, we have to establish the convergence of $\sum\left|\tau_{n}\left(x_{0}\right)\right| / n$. And from the above analysis, it concludes that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\left|\tau_{n}\left(x_{0}\right)\right|}{n} & \leqq \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left\{\left|I_{3 n}\right|+\left|I_{4 n}\right|+\left|I_{5 n}\right|+\left|I_{61}\right|\right\} \\
& =O\left\{\sum_{n=1}^{\infty} \frac{\log n}{n^{1+\alpha}}\right\}=O(1)
\end{aligned}
$$

This proves Theorem 1.

5. Let $\tau_{n}\left(x_{0}\right)$ be the nth Cesàro mean of first order of the sequence

$$
\left\{n A_{n}\left(x_{0}\right) /\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}\right\} \quad(\varepsilon>0)
$$

where k is a positive integer. Abel's transformation gives

$$
\begin{aligned}
\frac{\pi}{2} \tau_{n}\left(x_{0}\right)= & \int_{0}^{\pi} \varphi(t) \frac{1}{n+1}\left\{\sum_{\nu=0}^{n} S_{\nu}(t) \Delta \frac{1}{\left\{\prod_{\mu=1}^{k-1} \log ^{\mu}(\nu+2)\right\}\left\{\log ^{k}(\nu+2)\right\}^{1+\varepsilon}} d t\right. \\
& +\int_{0}^{\pi} \varphi(t) \frac{1}{n+1} \cdot \frac{S_{n}(t)}{\left\{\prod_{\mu=1}^{k-1} \log ^{\mu}(n+3)\right\}\left\{\log ^{k}(n+3)\right\}^{1+\varepsilon}} d t \\
= & I_{1 n}+I_{2 n},
\end{aligned}
$$

say. As before, we write

$$
I_{1 n}=\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{3 n}+I_{4 n},
$$

say, and

$$
I_{2 n}=\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{5 n}+I_{6 n},
$$

say. Since, for $\nu \geqq n_{0}$,

$$
\left|\Delta \frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} \nu\right)\left(\log ^{k} \nu\right)^{1+\varepsilon}}\right| \leqq \frac{A}{\nu\left(\prod_{\mu=1}^{k-1} \log ^{\mu} \nu\right)\left(\log ^{k} \nu\right)^{1+\varepsilon}},
$$

we obtain

$$
\begin{aligned}
& \left\lvert\, \frac{1}{n+1}\left\{\left.\sum_{\nu=0}^{n} S_{\nu}(t) \Delta \frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu}(\nu+2)\right)\left(\log ^{k}(\nu+2)\right)^{1+\varepsilon}} \right\rvert\,\right.\right. \\
& \leqq \begin{cases}\frac{A}{t\left(\prod_{\mu=0}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}+\frac{A}{t^{2}\left(\prod_{\mu=1}^{k-1} \log ^{\mu} \frac{1}{t}\right)\left(\log ^{k} \frac{1}{t}\right)^{1+\varepsilon}} & (n t \geqq 1), \\
\frac{A n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} & \text { (for all } t) .\end{cases}
\end{aligned}
$$

Now, if

$$
\Phi(t)=O\left\{\frac{t}{\left(\prod_{\mu=1}^{k} \log ^{\mu} \frac{1}{t}\right)}\right\}
$$

as $t \rightarrow+0$, then

$$
\begin{aligned}
I_{3 n}= & O\left\{\frac{n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\operatorname{long}^{k} n\right)^{1+\varepsilon}} \int_{0}^{1 / n}|\varphi| d t\right\} \\
= & O\left\{\frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\} \\
I_{4 n}= & O\left\{\frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t\right\} \\
& +O\left\{\frac{1}{n} \int_{1 / n}^{\pi} \frac{|\varphi|}{t^{2}\left(\prod_{\mu=1}^{k-1} \frac{1}{t}\right)\left(\log ^{k} \frac{1}{t}\right)^{1+\varepsilon}}\right\}
\end{aligned}
$$

But since

$$
\begin{aligned}
\int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t & =\left(\frac{\Phi}{t}\right)_{1 / n}^{\pi}+\int_{1 / n}^{\pi} \frac{\Phi}{t^{2}} d t \\
& =O(1)+O\left\{\int_{1 / n}^{\pi} \frac{d t}{t\left(\prod_{\mu=1}^{k} \log ^{\mu} \frac{1}{t}\right)}\right\} \\
& =O(1)+O\left\{\log ^{k+1} n\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{1 / n}^{\pi} \frac{|\varphi|}{t^{2}\left(\prod_{\mu=1}^{k-1} \log ^{\mu} \frac{1}{t}\right)\left(\log ^{k} \frac{1}{t}\right)^{1+\varepsilon}} d t & =O\left\{\frac{n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t\right\} \\
& =O\left\{\frac{n \log ^{k+1} n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\}
\end{aligned}
$$

we obtain

$$
I_{4 n}=O\left\{\frac{\log ^{k+1} n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\}
$$

Finally,

$$
\begin{aligned}
I_{5 n} & =O\left\{\frac{n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \int_{0}^{1 / n}|\varphi| d t\right\} \\
& =O\left\{\frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
I_{6 n} & =O\left\{\frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t\right\} \\
& =O\left\{\frac{\log ^{k+1} n}{\left(\prod_{\mu=1}^{k=1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\left|\tau_{n}\left(x_{0}\right)\right|}{n} & =O\left\{\sum_{n=n_{0}}^{\infty} \frac{\log ^{k+1} n}{n\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\}+O(1) \\
& =O(1)
\end{aligned}
$$

Hence, we establish

Theorem 2. If

$$
\begin{equation*}
\Phi(t)=O\left\{\frac{t}{\prod_{\mu=1}^{k} \log ^{\mu} \frac{1}{t}}\right\} \tag{ii}
\end{equation*}
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=n_{0}}^{\infty} \frac{A_{n}\left(x_{0}\right)}{\left(\prod_{k=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \quad\left(\log ^{k} n_{0}>0\right)
$$

is summable $|C, 1|$ for every $\varepsilon>0$.
6. For the conjugate series

$$
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right) \equiv \sum B_{n}(x)
$$

we can derive two analogous theorems. Write, for a fixed $x=x_{0}$,

$$
\Psi(t)=\int_{0}^{t}|\psi(u)| d u \equiv \int_{0}^{t}\left|f\left(x_{0}+u\right)-f\left(x_{0}-u\right)\right| d u
$$

We have the following

Theorem 3. If
(iii)

$$
\Psi(t)=O(t)
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=1}^{\infty} \frac{B_{n}\left(x_{0}\right)}{n^{\alpha}}
$$

is summable $|C, 1|$ for every $\alpha>0$.

Theorem 4. If

(iv)

$$
\Psi(t)=O\left\{\frac{t}{\prod_{\mu=1}^{k} \log ^{\mu} \frac{1}{t}}\right\}
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=n_{0}}^{\infty} \frac{B_{n}\left(x_{0}\right)}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{2+\varepsilon}} \quad\left(\log ^{k} n_{0}>0\right)
$$

is summable $|C, 1|$ for every $\varepsilon>0$.

References

1. H. C. Chow, On the summability factors of Fourier series, J. London Math. Soc. 1941, 16 (1954), 215-220.
2. M. Fekete, On the absolute summability (A) of infinite series, Proc. Edinburgh Math. Soc. (2) 3 (1932), 132-134.
3. E. Kogebetliantz, Sur les séries subsolument commables par la methode des moyennes arithmétiques, Bull. Sci. Math. (2) 49 (1925), 234-256.
4. B. N. Prasad, On the summability of Fourier series and the bounded variation of power series, Proc. London Math. Soc. 14 (1939); 162-168.

Received February 28, 1969. This paper was written and completed during the author's stay at Berkeley in 1958.

University of California, Berkeley, and
National Taiwan University, Formosa

