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NONSOLVABLE FINITE GROUPS ALL OF WHOSE
LOCAL SUBGROUPS ARE SOLVABLE, II

John G. THOMPSON

In this second paper, the bulk of the work is devoted to
characterizing E2(β) and S*(3). These two groups are "almost"
ΛΓ-groups and it is relevant to treat them separately. The
actual characterizations (Theorems 8.1 and 9.1) are very technical
but the hypotheses deal with the structure and embedding in
a simple group of certain {2, 3}-subgroups.

This paper is a continuation of an earlier paper.1 The bibliographi-

cal references are to I.

7* Groups in which 1 is the only p-signalizer*

DEFINITION 7.1. %f*(p) = {S3 | (i) 35 is a subgroup of © of type
(p, p). (ii) iV(S3) contains a Sp-subgroup of ©.}.

HYPOTHESIS 7.1. ( i ) p is a prime and if S 3 e ^ * ( p ) , then no
i^-subgroup of C(S3) normalizes any nonidentity ^'-subgroup of ©.

(ii) The centralizer of every nonidentity p-subgroup of © is p-
solvable.

Lemmas 7.1, 7.2, 7.3 are proved under Hypothesis 7.1.

LEMMA 7.1. ( i ) ^ ( ί ) ) g ^ ( p ) . (See Definitions 2.8 and 2.10 of I).

(ii) If p^5, then <%f*(p) S gf (p).
(iii) Ifp = S and if no element of ^ ( 3 ) centralizes a quaternion

subgroup of ©, then ^ * ( 3 ) S g ' ( 3 ) .

Proof. If p is odd, choose S 3 e ^ * ( p ) , while if p = 2, choose
S3 e ^ ( 2 ) . We must show that either S3 centralizes every element of
H(33; p') or p = 3, S3 e ^ * ( 3 ) - ^ ( 3 ) and some element of ^ ( 3 ) central-
izes a quaternion subgroup of ©.

Let ^ be a Sp-subgroup of JV(S3), so that $ is a S^-subgroup of
{$. Proceeding by way of contradiction, let D be an element of M(S3; p')
minimal subject to [O, S3] ^ 1. Then Q is a g-group for some prime
q φ Pj Q = [£}, S3], and S30 = C^(Q) has order p. Let (£ - C(S30), e x =
Cφ(S30), and let ^3* be a S^-subgroup of K containing (£le Hypothesis
7.1 implies that Op/(g) = 1. Let φ o = Op(<£). If [5β0, S3] S 33, then

1 Non-solvable finite groups all of whose local subgroups are solvable, I, Bull. Amer.
Math. Soc. 74 (1968), 383-437, which will be referred to as I.
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Lemma 5.16 is violated. Hence, we have | φ* : &, | = | *β0: $o Π Si I = P
and ΠP0,S3]g33.

Suppose S3g*β0. Then Q = [£}, S3]sφ o , so £1 = 1. This is not
the case, s o S g S β 0 . By Lemma 6.1, it follows that S3g <%f(p). Hence,
by construction, p is odd. Since S3 §5 Slo> (S3) implies that p ^ 3. Thus,
p = 3 and S3e^*(3) - ^ ( 3 ) . By definition of ^ ( 3 ) and ^ * ( 3 ) , it
follows that Z(Sβ) is non cyclic and S3 is not contained in the center
of any S3-subgroup of ©.

Since [φo, S3, 93] = 1 and since S3g*β0, it follows that S3gO3((£2,3),
where (£2f3 is a S2,3-subgroup of (£ containing ^3*.

Since S3ogZ0β), we have S3 = 330 x S3X, where S^gZOβ). Since
S30SZ(E), we have S30 S O3(£2,3), and so S3, g O3((£2,3).

Let § be a subgroup of (£2>3 such that
(a) φ*
( b ) SB.
( c) § is minimal subject to (a) and (b).

Let φi = O3(φ). Since the fixed point subspace of S3i on tgJDiQ,) is
of codimension 1, Lemma 5.30 implies that § = ^β*Q.*, where £i* is a
quaternion group and |$β*:φi | = 3, so that QJdλ = ^5*. Since S3L

centralizes />(^i), so does £}*. Let Cφ^Q*) = ^βf. Thus, Ĵj. is a normal
subgroup of φ and | φi " Φf I = 9.

Let φ2* = [$!, Q*]. Then ?̂2* is generated by 2 elements and
W Π $βi* is of index 9 in ^β2*. Hence, ^3* is either elementary of order
9 or is a nonabelian group of exponent 3 and order 27. Furthermore,
& = WW, $r Π W = />(W), and Πβ*, φ*] - 1.

Since ^ g § x , it follows that &, = 33X x ( ^ Π ©i). Hence, ^ ( e j =
D(&i Π ©OS^Γ. We will show that D^) = 1. Suppose false. Let
£* = C{D(&!)), so that e* is 3-solvable. Since K* < #(/>((£,)), it
follows that e * φ is 3-solvable. Since 33: g Z(Sβ), we have S3X s O3((£*φ).
Since Q* centralizes ^ ( ^ 0 , it follows that <S3X, £}*>g<£*. Thus,
<(S3j., O*)> is 3-closed. This is impossible, since <(S3:, O*)> covers φ/φi

If 3̂2* is nonabelian, then Q* centralizes Z(^β*). Since Q* is a
quaternion group, we are done in this case.

We may now assume that Sβ2* is abelian, so elementary of order 9.
Thus, §L = φ* x $*, «β* and K, are elementary and Z{ψ) = «βf x S3,
where S3 = φ* Π Z(^*). Notice that S30S^f. If $* Z)S3O, then since
every subgroup of Sβ? of type (3,3) is in ^ ( 3 ) and since the quaternion
group D* centralizes β̂f, we are done. We may therefore assume
that φf - 330. Hence, Z(*β) has order 9, | ψ \ = 34, | (£, | - 33. Also,
Z(ψ) = 330 x S3. Let J5 be a generator for S30 and let I be the invo-
lution of O*. Then / inverts S3 and centralizes B.

Let 31 = <φ, φ*> g Ni&J. Since SL(3, 3) is a minimal simple group,
it follows that N(^) is solvable. As Oy(3l) = 1, we have 6^ = C ί ^ ) .
Since [&19 ^3*, 5β*] = 1, it follows that 9? contains a normal subgroup
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33* of order 3 and that S2-subgroups of ϋft are quaternion. Now S3* g£ S3,
since $β does not normalize 930 and $β* centralizes no subgroup of 93
other than 1 and 93O. Suppose 33* = 93. Since 33 = 5β*', it follows
that S3-subgroups of $ft/93* are abelian. Thus Sft is 3-closed. But this
is impossible since Sβ Φ ^β*. Hence, 33* is a subgroup of Z(^β*) of
order 3 which is different from 93 and from 33O. Since Z(^β*) = 33O x 93,
there is a generator for 33* of the shape BV, where V is a generator
for 33.

Let J be any involution of 91. Then JVJ = V~ι and JBVJ = BV.
Now I and J both normalize φ* and ^β*' = S3. Hence, ζl, jy maps
onto an abelian subgroup of ^4@(Z(^β*)), which implies that J normalizes
Z(ψ) n C(I) = 330. Hence, JBJ = Bf for some integer /, and the
previous equations yield V2 = 1, which is not the case. The proof is
complete.

HYPOTHESIS 7.2. ( i ) If 21 e £&*ι(p), then M(3ί) contains only 1.
(ii) If 3 is of order p and is in the center of some S^-subgroup

of ©, then OP(W) is of symplectic type and width w, where 9K = N(S).

LEMMA 7.2. Suppose Hypothesis 7.2 is satisfied and that if p —
2, then w ^ 3, while if p = 3, ίΛ,ew w >̂ 2. Lei 93 δe a subgroup of
OP(W) of type (p, p) which contains Q. Then 93 e &{p).

Proof. Let 3̂ ~ be the set of subgroups of Op(fUl) which violate
the lemma. Let ψ\ be the subset of those 93 in y which centralize
at least one element 93 of <%r{p) which 3 c 93 c OP(2R). If Ψ\Φ 0 ,
choose 93e3^0> while if ψ\ = 0 , choose 93 in ψ\

Let φ = OP(2R), §o = C§(93). We first argue that M(^o; ̂ ) is trivial.
Namely, 2K is p-solvable with Opf(W) = 1, so Cm(§) = 3(§). This
implies that C^(^o) is a p-group. Hence, ^^(^o; pf) is trivial. Sup-
pose 3ΐ G H(£o; 3>') It suffices to show that 3ΐ g SK. If £>0 contains an
element 93 of <%ί(p) with g c 93, then by Lemma 7.1 we get that 93
centralizes 31. Hence, 3 ΐgC(3)g9K. If no such elements of <%f(p)
are available, then by construction, 5^0 = 0 . But φ <] 9K, so if 3̂ is
a Sp-subgroup of SK, then φ contains an element 93 of ^(5β). Let
φ x == C (̂93) so that | φ: §i I = P If $ 0 Π Φi contains more than one
subgroup of order p, then there is a subgroup 93* of £>0 Π Φi of type
(p, p) which contains 3 . Since ^ 0 = 0 , 5^* G ^(p) , so 3ΐgC(93*)S
€(S) S SW Suppose ^0 Π ̂ i contains only one subgroup of order p.
Then by hypothesis, we have p >̂ 5, and so φ is of width 1 and is a
jSp-subgroup of ©. Hypothesis 7.1 guarantees in this case that M(£>0; P

f)
is trivial, so 3ΐ = 1. We have thus shown that H(ξ>0; p') is trivial.

Choose D in M(93; p') minimal subject to [93, £}] ^ 1. Then O =
f93, O] and 93O = Q ( O ) is of order p. Clearly, 93O Φ Q. Let Έlx = iV(930)
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so that Tl1 is p-solvable. By the preceding argument, O^SKi) = 1-
Hence, S^O^SKi), so that φ 0 contains an extra special subgroup £>*
of width w - 1 with g* Π 0,(2)^) = 1.

Let X = RviWl,) (see Definition 2.2), 2) - C%(X). Suppose 3 ^ 2 ) .
Since !Q = [D, 31 and ? ) < SK» we have £}£?). Let 36,, be a Sp~
subgroup of 9ft! which contains ^>*. Then ς̂>* centralizes ^(Xp), so
?)§* centralizes Z(XP). Let $ be a S^-subgroup of © conta in ing^ .
Then Z ( $ ) g Z ( ϊ p ) , so § * is contained in a conjugate 3R of Wl, 2R =
i V ^ Z ^ ) ) ) . Furthermore, since 3 D £ ? ) £ § * , £>* is faithfully repre-
sented on ε£(SR). Let $ =J?P(2R), and let φ = & =>,& =) => ©* = 1
be part of a chief series for 5Di. Then since 3£Op(ΐΰl), it follows that
3 does not centralize |>w/Φn+i for at least one value of n, 0 ^n < k.
Hence, | φ n : |)Λ + 11 = pan where an^ rp(Q;$ί). Then by Lemma 5.4,
r p (8; 2K) ^ r c ( 3 ; Φ) Clearly,

On the other hand, ίξ)n is a subgroup of § , so 2w ^ α%. Hence 2w ^
p^-1. If p ^ 5, then w = 1 is forced, so every p-solvable subgroup
of © has p-length at most 1. This is absurd, so p <J 3. If p = 3,
then w = 2, since w ^ 2 by hypothesis. It is clear that this is im-
possible since φ* is faithfully represented on Q|(37l). If p — 2, then
w = 3 or w = 4, since by hypothesis w ^ 2. This is also impossible
by Lemma 5.13. We have shown that 3§=?)

Since ϊ is a p-group, X g SK̂  for some G in ©. Then 36 n &G is
an abelian subgroup of ^>G, so m(ϊ n &G) ^ w + 1 + β, where β = 0 if
p is odd and e = 1 if p = 2.

If p is odd, then X/X Π ̂ ^ is faithfully represented on the Frattini
quotient group of Ω^SQ0), and this latter group is generated by 2w
elements. If p = 2, write O2,2,(2KG) - ^ 3ΐ where |Sft| is odd. Then
[3ΐ, @G] is generated by 2w elements and 36/36 n £>G is faithfully repre-
sented on the Frattini quotient group of [9ΐ, §G]. Thus, by a result
of Schur [32], we have m(X/X Π 3Kσ) g w\ that is,

(7.1) m(X) g ^ 2 + w + 1 + β .

If w = 1, then p >̂ 5 implies that 0̂ (93̂ ) is a Sp-subgroup of ©.
So every p-solvable subgroup of © has p-length at most 1, a contra-
diction. Hence, w ^ 2.

There is an elementary subgroup 3cL of 3c such that A@(XX) contains
a subgroup |>*O, where £L <] §*O is special and φ* = φ* operates
faithfully and irreducibly on £}/Z)(O). Also, |)*Cl acts irreducibly on Xlβ.

Assume that p is odd.
Since § * is extra special of width w — 1, it follows that m(G) ^

pw~ιa, where a = | F g(ζ): Fg |. Here, O is a g-group and ζ is a primitive
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pth root of 1 in an extension field of the prime field Fq. By Lemma
5.3, m(ϊ) ^ m(G)δ, where δ = 2/3 if g = 2 and δ = | i^(τ): F p | if g is
odd. Here τ is a primitive qth root of 1 in an extension field of the
prime field Fp. Together with (7.1), we get abpw~ι ^ w2 + w + 1.
Clearly, ab > 1. Suppose w ^ 4. Then 3™"1 ^ p™-1 < w2 + w + 1, a
contradiction. Suppose w = 3. If p ^ 5, then 52 = 5™-1 ^ pw~ι < 32 +
3 + 1, a contradiction. Thus, p = 3 and # = 2. Since p = 3, w = 3,
it follows that TlG/^G is isomorphic to a 3-solvable subgroup of the 6
by 6 symplectic group over F3. It follows readily that TtG/^G has no
elementary subgroup of order 34. Thus, in this case, m(36) ^ 4 +
+ m(X Π §G) ^ 8, against (4/3) 32 = 12 = αδp™-1 ^ m(ϊ). Hence w =

2. We now get abpw~ί < 7, so p g 5. Suppose p = 5 and q is odd.
Then ab ^ 2, so that 10 < 7. Suppose p = 5 and q = 2. Then α = 4,
so αδ = 8/3. We get (8/3) 5 < 7. Hence, p = 3. Suppose g is odd.
Since α is characterized as the smallest positive integer n with Sn =
1 (mod q), it follows that a ^ 3, so ab ^ 3. This gives 9 ^ αδp"-1 < 7.
Hence, q = 2. Since p = 3, ^ = 2, it follows that 3KG/ΦG has no
elementary subgroup of order 27. Hence, m(H) ^ 3 + 2 = 5. In par-
ticular, m ^ ) ^ 5. Suppose first that <Q is abelian. Since Z(|>*) = 3
acts without fixed points on £}, it follows that Cg*(λ) Π 8 — 1 f° r every
non trivial character λ of £}. So | § * : C^*(λ) | ^ 9 for all λ =£ 1. Hence,
m^) ^ 9, a contradiction. Suppose Q is nonabelian. Let 3£2 be a
subgroup of ϊj. on which Ώ, acts irreducibly. Thus m(362) ^ 2, since
O' does not centralize ϊ 2 . Since mίSEi) ^ 5, and p = 3, it follows that
3E2 = Xx is an irreducible Q-group. Thus, O is extra special. But
m(£ί) = 6, since q = 2 and 11>* | = 27. This yields m(3e:) ^ 23. All
possibilities have led to contradictions. So p = 2.

Since ^ * is extra special of width w — 1, we get that m(Q) ^ 2W~1.
Now Lemma 5.3(a) applied with SO, in the role of φ, ϊ x in the role of
F, yields m(36x) ^ 2W. On the other hand, SS0 is a normal subgroup
of SKi of order 2, so m(ϊ) ^ 1 + 2W.

Let @ be an elementary subgroup of 36 with m(@) = 2W + 1, let
©0 = @ π ^>G, and let @L be a complement to ©0 in @. Since m(£Ό) <:
w + 2, we get mίSi) = α ^ 2W - 1 - w. Since (^ acts faithfully on
02,2,(3KG)/£G, Lemma 5.34 implies that O2,2,(MG)/QG has a subgroup
έl/^6' which admits @x and such that Ql^/tQ0 is the direct product of
a dihedral groups of order twice an odd prime. Let 3ΐ be a S2,-subgroup
of Π. By Lemma 5.12, [£>G, SR] = ^ is extra special of width wL ^ w.
Since ^^ is the central product of & and C§G(91), and since © ^ =
β iV@ ^(3ΐ), it follows that if M = $t/D(Sΐ), then A% &(M) has a subgroup
which is the direct product of a dihedral groups of order twice an odd
prime. Let m(M) = m. Then m = 2wι ^ 2w. Since w ^ 3 by hy-
pothesis, we get w < 2W — 1 — w ^ a, and so 2w < 2α, whence m < 2α.
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This violates Lemma 5.8, and completes the proof.

HYPOTHESIS 7.3. ( i ) p is odd.

(ii) 5̂ is a Sp-subgroup of ©, 31 is a normal elementary subgroup
of 5β with ra(3I) ^ 3, Z(5β) is cyclic, and A%{&) = A(^)9 where ^ :
S ip 33 n Z(5β) =) 1. Also, 31 < JV(Z(5β) Π 31).

LEMMA 7.3. Suppose Hypothesis 7.3 is satisfied. Let 3 = Z&>) Π
SI. 2%ew eαc/& subgroup of 31 o/ ίi/pe (p, j>) which contains 3 is m

Proof. The lemma is an immediate consequence of Lemma 5.5,
together with Hypothesis 7.1 (i).

HYPOTHESIS 7.4. ( i ) © is simple.
(ii) {2, 3}^ττ4(©).
(iii) The centralizer of every involution of © is solvable.
(iv) The normalizer of every nonidentity 3-sugroup of © is solvable.
( v ) If 3 I G ^ - 3 ( 2 ) U ι$W3), then M(3t) contains only 1.

All remaining lemmas in this section are proved under Hypo-
thesis 7.4.

DEFINITION 7.2.

= {(SI, S3) 11. SI is a 2-subgroup of ©.
2. 93 is a 3-subgroup of ©.
3. <SI, 33> is not solvable.}

We remark that in the following lemmas, Lemma 7.1 may be
invoked, since Hypothesis 7.4 implies that Hypothesis 7.1 is satisfied
for p = 2 and for p = 3.

LEMMA 7.4. If 31 is a four-subgroup of © which centralizes every
element of M(SI; 3) and 33 is a subgroup of © of type (3, 3) which
centralizes every element of M(33; 2), then (31, S3) e

Proof. Notice that if G, He®, then the pair (3F, 33*) satisfies
the hypothesis of the lemma.

Suppose the lemma is false and St, 33 are chosen so that <(3I, 33>
is minimal. It follows as in Lemma 0.10.2 that <SI, 33> = 31 x 33. We
may then choose A in 31* such that E(A) contains an element 2ΪX of
^ ( 2 ) . Hence, <3I:, 33> is solvable. Thus, we may assume that 31 e ^ ( 2 ) .
Let 3Ϊ = 2V(St). Since 2 G7Γ4, we have O2,(3l) = 1. This is absurd since
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33 centralizes O2(3i) and 31 is solvable. The proof is complete.

We set

©! = {G I G e ©, C(G) is solvable.}
&p = {G I G 6 ©, C(G) contains an elementary subgroup (£ of

order p2 which centralizes every element of IΊ(@; q)} ,
p = 2, 3, g = 2, 3, p ^ q .

We conclude from Lemma 7.4 that

(7.2) ©x n ©2 n ©3 = 0 .

There are some subtle consequence of (7.2).

DEFINITION 7.3.

£gr — {33 11. 33 is a noncyclic elementary 3-subgroup of ©.
2. Every element of 33 centralizes an element of ̂ ( 3 ) .
3. 33 centralizes every abelian subgroup in M(33; 2).}

LEMMA 7.5. Suppose Sί e ^ ( 2 ) , 33 e 2f and X is a 2, Z-subgroup
of © which contains <(2t, 33)>. Lei £ 2 6e a S2subgroup of X. Then
^ 2 ^ ( @ ) (see Definition 2.7) contains an element Tt such that

( a ) O2,(3K) = 1.
( b ) O2(2Jί) is ί/̂ e central product of [O2(Wl), 33], which is extra

special of width w = 2, 3 or 4, cmd o/ CΌ2(^)(33), which is either cyclic
or of maximal class ^ 3.

( c ) [O2(Tt), 33] is the central product of w %5-invariant quaterni-
on groups D,lf , £ \ whose centralizers in 33 are w distinct subgroups
of order 3. In particular, no element of 33* centralizes any four-
subgroup of [O2(2K), 33]. If w>2, then Cθ2(^)(33) = [O2(2K), 33]' is the
center of O2(M).

( d ) Z2am.
(e) 33 c Sft, α^ώ if £l is a quaternion subgroup of £ 2 which is

normalized by 33 ίmί is not centralized by 33, then Q c O2(3K).
( f ) If J is an involution of SK n C(33), ί/^e^ J e O2(SW). // SOί

contains a S2-subgroup of C(J) (e.g., if C(J) = X), then C(J)S3K.
( g ) 2K contains a S2-subgroup of ©.

Proof. Let ^ be the set of 2, 3-subgroups of © which contain
<33, X2y. Choose @ in ^ so that | @ |2 is maximal. Let &p be a Sp-
subgroup of @, p = 2, 3, chosen so that 2 2 £@ 2 , 33S@8. Let 3d, ,
Sίw be all the elements of ^ ( 2 ) in @2. By Lemma 7.1, each 3C<
centralizes O3(@), so by Lemma 7.4, | O3(@) | ^ 3. In particular, 33 is
not contained in O2(@) and 33 centralizes O8(@). Since 33 g F(@), 33
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does not centralize O2(@). Hence, O2(@) is nonabelian since S G ^ .
Let Λ = Oa(@)' Π 3(O2(@)), so that Λ ^ 1. Let 9? = N(St)9 £ - C(Λ),
and observe that 33 S E . Since the centralizer of every involution is
solvable, K is solvable. Let @* be a S2-subgroup of 5ϊi which contains
@2. Then E@2* is solvable. By D2>3 in K@2* and maximality of | @ |2,
it follows that ©2* = @2. Hence, if @2** is a S2-subgroup of © containing
@2, then @2 contains every element of g^(@2**). We may therefore
assume that S ^ e ^ β f * ) .

Since % centralizes O3(@), it follows that §IX Π Z(@2**) gZ(O2(@)).
Since 33 centralizes Z(O2(@)), maximality of | @ |2 guarantees that @2 =
@2** is a S2-subgroup of ©.

Let @g2fte_^9^(©). Thus, (g) holds, as does (d). Since 3K
contains a S2-subgroup of ©, and since 1 is the only 2-signalizer of ©,
it follows that O2,(Wl) = 1, and (a) holds. Let £ = O2(3K). Suppose
£> contains a noncyclic characteristic abelian subgroup «g>0. Then S3
centralizes ξ>0Z(φ) and £>0Z(£>) contains an element of ^(@ 2). This
violates Lemma 7.4.

Clearly, φ is noncyclic, since £> = F(Ti) and 2K is solvable. Thus,
ίg is of symplectic type. The width w of ίg is at least 2, since 33 is
faithfully represented on φ.

Suppose w ^ 3 and J5 e 33* centralizes a four-subgroup 33 of ξ> with
^ 1(Z(φ))c3S. By Lemma 7.2, 33 centralizes every element of M(33; 2').
Since C(B) contains an element of ^ ( 3 ) , (7.2) is violated. Thus, if
w ^ 3, then no element of 33* centralizes any four-subgroup of £>.
This immediately implies that φ is extra special and w ^ 4. Now (b)
and (c) follow from Lemma 5.12.

We next prove the first assertion of (f). Let J be an involution
of Tl Π C(33). If w = 2, then 33 is a S2,-subgroup of 3K and (f) is clear.
Suppose w ^ 3. In this case, £> is extra special, so ^ Π C(33) = !Q' is
of order 2. Let 330 be any subgroup of 33 of order 3. Since J central-
izes 33O, it follows that / normalizes C (̂33O). We will show that /
centralizes C§(330). This is clear if C (̂330) = £', so suppose C (̂33O) z> ̂ ' .
Since § is extra special, so is C (̂33O), so C (̂330) is a quaternion group
on which 33/330 is faithfully represented. Since a quaternion group has
no automorphism of order 6, J necessarily centralizes C (̂33O). Hence,
J centralizes <Cφ(S30) | 33O c 33, | 3301 = 3> = £>, so Je §. This proves the
first assertion of (f).

Now for the second assertion of (f). If w > 2, then <(J)> = $', by
what we have just shown, together with (c). So suppose w = 2 and
<J> $ 2R. Let ^ 0 = [£, 33], & = C§(33). Thus, JeQlfJ*Z, where
Z is central involution of φ l β Since w = 2, 33 is a S2,-subgroup of 2K.
Let 2:0 be a £2-subgroup of C(J) which is contained in 93Ϊ. Thus,
C(J) 3 ΪOS3, S 0 3 § 0 x <J>, and ^ 0 is the central product of 2 quaternion
groups.
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Since C(J) contains an element of ^ ( 2 ) , it follows that OV(C(J)) =
1. Since Z centralizes %0, a £2~subgroup of C(J), it follows that
ZeO2(C(J)), and so Ze Z(O2(C(J))). Since 33 £ C ( J ) , it follows that
O2(C(J)) e M^(3S; 2). Hence, O2(C(J)) SO2(2K) = £, since S3 is a S2,-
subgroup of m. Hence, O 2 (C(J))g£ n ϊ f l = § o x <J>. If O2(C(J)) is
not elementary, then <Z> char O2(C(J)), and so C(J)gS9ΐ. Suppose
O2(C(J)) is elementary. Since 33 is faithfully represented on O2(C(J)),
it follows that | O2(C(J)) | ^ 24. However, O2(SK) contains no elementary
subgroup of order 24 on which 93 is faithfully represented. This com-
pletes the proof of the second assertion of (f).

We turn to the proof of (e). Let Q be a quaternion subgroup of
M normalized but not centralized by S3. Let 3S0 = 33 Π C(Q), so that
33D = 330 x 23xa, where | S3, | = 3 and S3X is faithfully represented on £}.
Let Q 0 = Q n φ . By ( f ) , Q 0 3 Q ' ( Since £}/£}' is an irreducible 33-
group, we may assume by way of contradiction that O0 = Q'.

Let 9ΐ be a 33Q-invariant subgroup of Q\{Wΐ) minimal subject to
[3ΐ, O] ^ 1. Thus, 3ΐ may be viewed as a SQ/O'-group; as such 33^/Q'
acts faithfully. Since w <; 4, it follows that 9ΐ is elementary of order
33 and is centralized by 330. Thus, w = 4 and S3-subgroups of ίΰl are
of order 35. Also, 3ΐ is incident with an elementary subgroup 3ΐ0 of
3K such that <33O, %y is elementary of order 34.

Let $ be a S3-subgroup of © containing <(330, 3ΐo> and choose U in
^(^3). Then <(330, Sΐô  contains an elementary subgroup @ of order 3 s

which centralizes U. Since G? £ SK, there is an element i? of @* such
that § n C(E') contains a four-group. But then E e © : π ©2 Π ©3, a-
gainst (7.2). This contradiction completes the proof of (e) and the lemma.

Throughout the remainder of this section, Sβ denotes a >S3-subgroup
of @.

LEMMA 7.6. Suppose | $β | > 34.
( a ) // φ 0 is α subgroup of ϊβ of index at most 9 cmd ^30 contains

an element of %f *($$), then M(̂ β0; 2) contains only 1.
( b ) 1/ Si is a subgroup of Sβ o/ ί̂ /pe (3, 3) απrf | ψ. C^(2I) | ^ 3r

then 2ί centralizes every element of M(2t; 2).
( c) If % is a subgroup of 5β o/ ίτ/pβ (3, 3), if \ 5β: Cφ(St) | ^ 9,
ΐ/ Cςg(3ί) contains an element of ^*($β), ίΛeπ 21 e ^ .
( d) If & is a normal elementary subgroup of 3̂ o/ order 27

= 3, then 2ΪG g"(3) /or eαcA subgroup 2ί o/ meZea; 3 w

Proo/. ( a ) Let 33 be an element of ^*(5β) with 3 3 S ^ 0 . We
will show that M(33; 2) contains only 1. To do this, we first show
that if X G ̂ ( 3 ) , then | C(ϊ) | is odd. Suppose J is an involution of
of C(ϊ). By Lemma 5.38, C(J) contains an element 2) of ^ ( 2 ) . Hence,
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by Lemmas 7.1 and 7.4, <£, 2)> is nonsolvable, against < ϊ J )
In particular, 36 does not centralize any quaternion subgroup of ©. By
Lemma 7.1(iii), it follows that S3 centralizes every element of M(S3; 2).
Suppose K is an involution of C(S3). Then by Lemma 5.38, C(Λ)
contains an element 3 of ^ ( 2 ) , so by Lemmas 7.1 and 7.4, <(S3, 3> is
nonsolvable, against <S3, 3>^C(K). We conclude that | C(S3) | is odd,
and so M(S3; 2) contains only 1. Since M(^o; 2) gM(S3; 2), (a) follows.

Suppose (b) is false. Let Q be a 2-group normalized by §1 and
minimal subject to [Q, 2ί] Φ 1. Then O = [£}, 21] is either a quaternion
group or a four-group, and §1 = 2I0 x 2lx where | 2ί; | = 3 and 2I0 = (^(Q).

Let K = C(2ί0) 3<C^(3ί), G>. Since C^(2t) is of index at most 3 in
Sβ, it follows that C^(SI) contains an element 11 of ^(Sβ). We argue
that C™(21) contains an element of <$&*g($β). Namely, let

If m(3) ^ 3, let S3 be an element of S&~4!$) which contains 3 . Since
SIS33, we get S3SC^(2I). Suppose ra(3) ^ 2. Then 3 = 21 < φ, so
by Lemma 0.8.9, 21 is contained in some element of *$£~3(Sβ). So C^(2t)
contains an element of *£&*3(Sβ). By Hypothesis 7.4(v), O3,((£) = 1.

Let ψ* be a S3-subgroup of C which contains (7^(21). Since 2^
does not centralize O3((£) = φ, it follows that *β* = £C^(2I) is a S3-
subgroup of ©. Also, since 2I 1 £/£gZ(i$7£), it follows that 2IXS
O3f3/f3(6;). Hence, D S O3,y(&). Since C (̂SCi) is of index 3 in φ, it follows
that [Ql(&), 2ίJ is a quaternion group. Hence, E = D^β* is a group.
Let § = O8(<£). Thus, φ* - §2IX and |> n C(O) is of index 9 in Q,
while φ n C(Q) < $β*. Since D' centralizes no element of ^ * ( φ * ) , it
follows that |> n C(D) is cyclic. Since | φ | > 34, so also | φ* | > 34, so
2I0 is a proper subgroup of |> Π C(O) = §i0.

Let φo = [Q, § ] . By the three subgroups lemma, |>0 and 2ί0 com-
mute element wise. Furthermore, either ξ>0 is elementary of order 9
and § = |>o x Sίo o r Φo is a non abelian group of order 27 and exponent
3 and | ) is the central product of |>0 and 8Ϊ0.

Since C(Sli) Π § is of index 3 in φ, it follows that 2IX centralizes
t 0 . Set S3 = <2t:, t o > = 2Ii x t 0 , and let I be the involution of £}.
Thus, S3gC(7) and C(I) contains an element of ^ ( 2 ) . Thus, C(I)
contains no element of ^ * ( 3 ) . Since 33 is of index 9 in ^β*, it follows
that S3 is a S3-subgroup of C(I). Let 8 be a S2)3-subgroup of C(I)
which contains S3D. Then O3(S) = 1, so S3 is faithfully represented on
O2(S). We can thus choose a subgroup S30 of order 3 in S3 such that
§o is faithfully represented on O2(S) Π C(S30). Let ϊ = C(S30). Then
O3,(ϊ) is of_odd order by (a). Thus, O8S8(ϊ) Π So = 1, so that | O3,,3(X) |3 ^
27. But So is faithfully represented on the Frattini quotient group S3
of O3,f3(X)/O3,(X). Since | SS | ^ 27 and t 0 is cyclic of order ^ 9, we have
a contradiction. The proof of (b) is complete.
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Suppose (c) is false. Let 33 be a four group in M(2ί) which is not
centralized by Si. Then 21 = 2I0 x 2ίx where | 21, | = 3 and 2I0 = (^(33).

Set (Σ = C(2I0) and let ^β* be a S3-subgroup of £ which contains
C$p(2l). By (a), O3,((£) is of odd order, so 2IX33 is faithfully represented
on O8,,8(S)/0V(<E). S e t $ = 5β*n08,fa((E). By (5), 15β: ̂ (21,) | ^ 9. Thus,
φ* = £C^(2ί) is a S3-subgroup of ©, so that O3,((£) = 1.

We may now apply Lemma 5.42 with K/φ in the role of @, φ//)(φ)
in the role of Gc, and 2^ in the role of 3 Let Kx be the inverse image
in (£ of [QK&)> Sίil Thus, KL = £ Q where £} is either a four-group
or is the central product of 2 quaternion groups. Since C^(3ti) covers
5β*/φ, it follows that (Ŝ  is a minimal subgroup of the group & = 33$$*.
Let S = O3($), so that ^3*/£ is elementary of order 3 or 9. Since
33C&!, we assume without loss of generality that S3 S O .

Since 2IX centralizes Z)(£), so does £}. Thus, C(D) ί l S < | S . Since
iV(G) Π SB normalizes C(O) Π 8, it follows that C(£>) Π 8 < Sβ*. Since £1
centralizes no element of ^ * ( 3 ) , it follows that C(Q) Π 8 is cyclic.
Naturally, 2t0 £ C(O) Π 8.

Case 1. φ* = S2I,.
Since 2^ normalizes 33, it follows that ^ = 3̂*33 is a group and

that £ = OaίSBi). Let £L = Cs(33) 3/)(£). Thus, 2, <\ BL and £/£x is
elementary of order 27. Also, £x is cyclic, since no element of ^ * ( 3 )
is centralized by 33. Since £/£x is a chief factor of ^ or order 27, it
follows that £ = 2, x S2, where £2 = [£, 33] is elementary of order 27,
£2 < 5Ble Let F be an involution of 33. Thus, 33 - <fi{V) Π S2, 2I0> is
elementary of order 9 and | φ* : C *̂(33) | = 3.

By (b), 33 centralizes every element of M(33; 2). Since C(V) con-
tains an element of ^ ( 2 ) , (7.2) is violated.

Case 2. φ*=)£2I1.
In this case, ^?*/£ is elementary of order 9, so O is the central

product of 2 quaternion groups.
Suppose £ is abelian. Then £ = 21 x £2 where 8X = [£, O] is

elementary of order 34 and £2 = CS(Q) is cyclic. Notice that 2I 0 S8 2 .
Since C2(33) is of index 27 in £ by (B), it follows that £ Π C(%) Π C(33)
contains a subgroup 33 of type (3, 3). But then | φ * : Cr(33) ^ 3, so
by (b), 33 centralizes every element of M(33; 2). Hence, 33* £ @x Π ©2 Π @3,
against (7.2). We conclude that £ is non abelian.

Since 2^ centralizes />(£), so does Q, so £2 = Cs(Sϋ) <] 8. Hence
£2 < φ*, and £2 is cyclic. Let Sx = [£, Q]. Then SiJDfa) is elementary
of order 34, S[ = />(£x) and ZJDiZ,) is a chief factor of K. Being a
chief factor, £://>(£:) is centralized by £. Hence, [S2, S 1 ]£Z)(S 1 )£S 2 ,
so [S2, S1? D] = 1. Since [O, £2] = 1, so also [£}, £2, £J = 1. By the
three subgroups lemma, [Slf Q, £2] = 1, that is, [£1? £2] = 1. Hence,
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SZ(SX). Since 2 is nonabelian, so is S lβ Since 2^0(2,) is a chief
factor of ®, />(SX) = Z ^ ) - £ [ S £ 2 , so Sx is extra special of order 3\

Now 21x95 is faithfully represented on 2lm Also, | 2: 2 ΓΊ C(9S) | =
I 2,: 2, Π C(93) | = 33, by (B). Hence, 2, Π C(») = 32. This is not the
case, since 2λ Π C(S3) is either extra special or is 2[. The proof of (c)
is complete.

Suppose (d) is false. Let D be an element of M(2ί; 3') minimal
subject to [21, D] Φ 1. Then Q is a g-group for some prime q, D =
[D, 21], and 21 - 2ί0 x 2IX, where | 21, | = 3 and 2ί0 = C^(O). By (b),
4 =£ 2. Let S = C(2ί0). Since C^(2I) contains an element of ^ S f ^ O β ) ,
it follows from Hypothesis 7.4(v) that O3,(£) = 1. Let φ* be a S3-
subgroup of (£ which contains C^(2I0). Since | ̂ β: C^(2ί) | ^ 3, so also
15β*: Cφ(Sίo) I ̂  3, and so [Sβ*, 21, 2ί] = 1.

Let φ be a AS3,g-subgroup of E which contains Sβ*. Since g is odd,
{£) implies that 2 ίS0 3 (§) . Let £* be a S3,,-subgroup of & which
contains 2IQ. By Lemma 0.7.5, we get 2ίgO 3 (£*), so O = [O, 21] g
O3(φ*). This contradiction completes the proof of (d) and the lemma.

LEMMA 7.7. Assume the following:
( a ) 353 is a normal elementary subgroup of ^β, 2ί = JL@(2S).
( b ) ^ is the image of 3̂ in 21 αwd ̂  is faithfully represented

on Q, O δem^r α πow abelian special 2-subgroup of 21.
( c) $β contains a subgroup $β0 o/ order 3 which centralizes a

hyperplane of 2δ.
^ centralizes G'.

Proof. Let Qo = [̂ β0, O]. Thus, D o is a quaternion group, and
2B - 2So x 2Si, where 2S0 = [Do, 2δ] is of order 9 and SB, = C^($X)-
Since | C(2δ) | is odd, some involution I of JV(2B) maps to the involution
of DQ. Let Sβi be the normal closure of ^ 0 in ^ . Thus, Sβx centralizes
D'. Let J B 2 = C^ί^i) so that D' is faithfully represented on 3S2.
Suppose ^ does not centralize Q'. Then by Lemma 4.4 of [17], there
is an elementary subgroup 2B* of 2S2 which is of order 27, normal in
φ and with | φ : Cφ(2δ*) | = 3. Since φ o centralizes 2B*, it follows that
2S* Π 2δi is noncyclic. Let 93 be a subgroup of 33* n 2δi of order 9.
With SB* in the role of © in Lemma 7.6(d), we conclude that 33 e if (3).
But now C(7) contains an element of ^ ( 2 ) and also contains 35, against
Lemma 7.4. The proof is complete.

LEMMA 7.8. Suppose that β̂ is of exponent 3, order 81 and that
Z(Sβ) | = 9. Then N(ty) is the unique element of^€9*(%) which

contains ^β.

Proof. Suppose false. Let © be a solvable subgroup of ® which
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contains β̂ and is minimal subject to $β <f\ @. Let ?βQ = O3(β5). Since
Z(φ) c φ 0 cz φ, it follows that *β0 is abelian of order 27. Since @ is
not 3-closed, it follows that @ = ^β£l where Q, is a quaternion group.

Let φ 0 - φ, x φ 2 where ξβ, - C¥o(Q), ^ 2 = [$„, &]. Thus, | ξβ41 -
3% i = 1, 2. Let φ, = «β2 n Z($β). Thus, Z(Sβ) = φ, x | and ψ = ψ,.
Let £}' = < / > ^ N(ty). Write JV($β) = ^3ϊ where 3ΐ is a complement to
β̂ in N($) which contains I. Since 3ΐ normalizes ψL, it follows that

A%(Z(^)) is abelian. Hence, Z(φ) Π C(I) <j JV(*β). Since Z(5β) Π C(I) =
φ x , we get that JV($)S JV($R). Since IeiV($β), it follows that spx may
be characterized as the only subgroup of Z(Sβ) of order 3 which is
normal in N(^>) and is not contained in $β'.

Let ί£ be any solvable subgroup of © which contains ^3. We will
show that β S JV(^). We may assume that «β ^ β. Let φ o = O3(5Ϊ) =)
Z(^β). Thus, φ 0 is abelian of order 27. By our characterization of Sβj,
it follows that φ, < ®, that is, ffiCJV(^).

Set 3K = iV^) , so that SK is the unique element of ^CS^(@) which
contains ^3. Let 21 be any elementary subgroup of β̂ of order 27.
Then φ g JV(3I), so JV(9I)S2K. Now let A be any element of ψ. We
will show that C(A) S 2K. This is clear if A e Z(φ). Suppose A ί Z(^).
Then C^(A) = 21 is of order 27 and is abelian. Hence, iV(2I) S 3K.
This implies that some S3-subgroup of C(A) is contained in 2K. If
C(A) contains a S3-subgroup of ®, then C(A) Q 2K, by uniqueness of
3K. So suppose that 21 is a S3-subgroup of C(A). Then since M(2I) is
trivial, we get that 2t <] C(A), so in any case, C(A)^Έi.

Let @ be any non identity subgroup of Sβ. We will show that
JV(g) g SK. If I e ' | = 3, it suffices to show that 7V(@') C 2K. If | @'| ^
3, then ® is abelian, since | ^βr | — 3. This, we may assume that © is
abelian. By the preceding paragraph, C(@) S SK. Let @* be a S3-
subgroup of C(@). Then JV(@) = C(@) (iV(@) Π iSΓ(®*)), so it suffices to
show that N(<£*) S 2R. But | ®* | ^ 27, so iV(@*) s 2W-

It is a consequence of the preceding results, that if $ is a solvable
subgroup of © such that ξ> Π ̂ β is noncyclic, then φ S SW.

Let 93 = φ n iV(£y) so that 33 is noncyclic. Hence, iV(O') S 9K.
This is not the case since JV(£}') contains an element of ^ ( 2 ) , while
3K contains an element of

8* A characterization of E2(3).

THEOREM 8.1. i?2(3) is the only simple group © with the following
properties:

( i ) 1 is the only S-signalizer of ©.
( i i ) The center of a Sz-subgroup of © is noncyclic.
(iii) The normalizer of every nonidenty ^-subgroup of © is

solvable.
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(iv) The centralizer of every involution of © is solvable.
( v ) S2-subgroup of © contain normal elementary subgroups of

order 8.
(vi) If X is a S2-subgroup of © and $ίe^^(%), then M(St) is

trivial.
(vii) 2-3.

The proof of Theorem 8.1 is elaborate. I am indebted to J. Tits
for helpful discussion.

We first derive some properties of E2(q). We use the notation and
calculations of Ree [30]. In addition, we let 93 = U£>, 9£ = <φ, ωa, ωby.
Fq is the field of q = pn elements, and if x e Fq, then tr(x) = trFqlFp(x) =
Σxσ, σ ranging over all the automorphisms of Fq. If reΣ, then ϊ r =

We need the usual sort of omnibus lemma.

LEMMA 8.1. Let 11, 33, φ, Sft denote the subgroups of E2{q) given
above.

( i ) 2B0 = ^6^o> ω2a^b} is a dihedral group of order 12 and is
a complement to φ iw 9i.

(ii) § is £Ae direct product of two cyclic groups of order q — 1,
with generators Hx = h(χa>z), H2 — h(χb)Z). Here z is a generator for
F*. If Wx = ω\ωa1 W2 = ω2

aωb, then

WτΉ2W2 = Hςι ,

(iii) If q is a power of 3 α^d v is a nonsquare in Fq, then

is α seί o/ representatives for the conjugacy classes of E2(q) of order 3.
If ceFq satisfies tr(c) = 1, then {xa(l)xb(l)x3a+b(ec), e = 0, 1, — 1} is α
sβί o/ representatives for the conjugacy classes of elements of E2{q)
of order 9. U is of exponent 9.

(iv) Assume that q is odd.

( a ) Let » = C\g(ω2

α), & - C (̂α>9;). Lei © = CE^q)(O- τ^en
(£ = ^9ΐ^. (£ contains a subgroup (£0 = ©iK2, where ^ = SL(2, q),
i — 1, 2, &! Π ©2 = ^(Si) = <(ω^, ©! α^d (£2 commute elementwise and
I (£: e01 = 2. Furthermore, ^ < K, ΐ = 1, 2.

( b ) -For i = 1, 2, ϊeί ^ 6e ίfeβ isomorphism from ^ ία

SL(2, g) induced by xu(t) —> (^ Λ, z_r.(t) —> ί . - j , where rι = a, r2 =

3α + 26. Each element X in έ — ©0 induces an automorphism φf
of Oίi such that a^fa^1 coincides with the automorphism of SL(2, q)
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induced by an element of GL(2, q) whose determinant is a nonsquare.
( c ) There are involutions in & — Ko If X is an involution

in & — Ko, and q = ε(mod 4), e = ± 1 , then C(X) Π &0 has order 2(q + ε)2

and

C(X) = gpζw, x, y, z

= w, w2 = 1, xy =

= x~\ z~γyz == 7/-1, z2 =

( v ) If q is odd, then i(E2(q)) = 1.

Proof. The Weyl group of G2 is dihedral of order 12, so wαwδ is
of order 6. By (1.8) of [30], (ωaωb)

6 = fe(χ), for some χeX. We show
that χ = 1. It suffices to show that χ(α) = χ(b) = 1, that is, ηa =
ηb = 1. This follows readily from table (3.4) of [30]. Since ω^ωlω,, =
ωfω2, and ωb~

1ω2

aωb — ω2

aω\, the elements ω|α)α and ω\ωh are involutions.
We have (ω2

bωa)(ω2

aωb) = ω2

6α)~1ωδ - ω^a)-1 = (ω^^,)-1, proving (i).
It is convenient for calculations to use the following character table:

Xa,z

a

z2

z-1

b

z~%

z2

To determine this character table, we need to compute the values
u(r), u, reΣ (see [30], p. 433). The relevant values of u(r) are given
as follows:

\ . γ

a

b

a

2

- 3

b

- 1

2

Using this table, we compute the values wr(s), as follows:

a

b

— a
a + b

3a + b

-b

(Using the geometric interpretation of wr, we can read these results
directly from Figure 1 of [30].)

We next compute wr(χ) for r = α, δ and χ = χatZ, χb}Z. For example,
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)-1 = z~2[Wa(χa,z)](a) = Xα,.(wβ(α)) = χ., β (-α) = X
fashion, we get the following table of values:

= z~ Continuing in this

w (Ύ )

o\/^b }Z/

Wb\Jla,z)

Wb(Xb,z)

a

z-*

z
z-1

z

b

z3

z-1

z3

z-z

Referring back to the character table, we have

= Xa,zXb,z

Wb(Xa,z) =

The map from J to § induced by χr,z —> h(χr,z) is an isomorphism,
since X and ξ> have order (q — I)2. The previous information, together
with (1. 7) of [30] implies that (ii) holds.

Let tt^Un U>, U2 = U Π VLωK By using (3.10) of [30] it is
straightforward to verify that UL (J U2 is the set of elements of U of
order 1 or 3. This then implies easily that every element of E2(q) of
order 3 is conjugate to an element of Ux Π U2 = <Xα+&, X2α+δ, 3£3α+δ, 9c3α+2&>.
Since S3 = iV(U), it follows from Lemma 14.3.1 of [21] that elements
of Z(U) are conjugate in E2(q) only if they are conjugate in 33. Since
the action of $ on Z(tt) = <ϊ 2 σ + δ, ϊ3 α + 2 6> is determined by (1.5) of [30]
and our character table, it follows that any element of E2(q)* which is
conjugate to an element of Z(VL) is conjugate to exactly one of x2a+b(l),
x3a+2b(l), x2a+b(l)x3a+2b(l). Furthermore, since the Weyl group permutes
transitively the roots of a given length, and since 2a + b and 3a + 26
have different lengths, it follows that every element of the shape
xr(t),reΣ, is conjugate to an element of ZQ1). Suppose x e Ui n 112,
x = xα+δ(ίi)x2α+δ(ί2)^3α+δ(ί3)^3α+26(ί4), and that x is conjugate to no element
of Z(VL). Hence, either tx Φ 0 or ts Φ 0. Suppose t3 = 0. Conjugation
by xa( — tτ%/2) enables us to assume that ί2 = 0. Conjugation by ωa

then yields that x is conjugate to an element of Z(U). Hence, t3 Φ 0.
Suppose ίi = 0. Conjugation by xb(t^%) enables us to assume that
ί4 = 0. Conjugation by ωb yields that x is conjugate to an element
of Z(VL). Hence, ίjίg Φ 0. Conjugation by xa( — tv%/2)xb(ti%) enables
us to assume that t2 = t4 = 0. Since Mχα,,)^α+δ(ίi)MZα,,)~1 = ^α + 6(^-1ί1),
we may assume that tγ — 1. Since h(χa,zχhyZ) centralizes xa+b(l) and
since ^(χα^χδ.J^α+δί^^ίZα^Zδ,,)"1 = Xza+bitsf), we may assume that t3 =
1 or v. A direct calculation shows that the centralizer of xa+b(l)x3a+b(u)
does not contain a S3-subgroup of E2(q) for any % in F*, and a further
calculation shows that xa+b(l)x3a+b(l) is not conjugate to xa+b(l)x3a+b(v),
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completing the proof of the first part of (iii).
If tu Φ 0, it is easy to verify that xa(t)xb(u)x has order 9 for all

x in Ux n U2 and that (xa(t)xb(u)Y = (xa(t)xb(u)x)\ A calculation shows
that ξ> permutes transitively the elements xa(t)xb(u), tueF*, so every
element of E2(q) of order 9 is conjugate to an element of the shape
xa(l)xb(l)x, with x in U, f] U2. Let x = Xa^it^x^^iQx^^iQx^^U).
Conjugation by xa(u) enables us to assume that t3 = 0. A further
conjugation by xa+bM^a+bM enables us to assume that t2 = t4 = 0.
Thus, it suffices to show that

xa(l)xb(l)xa+b(u) is conjugate to xa(l)xb(l)xa+b(v)

if and only if tr(u) = tτ(v). If g conjugates the first element into the
second then g centralizes (xa(l)xb(l)y. A calculation shows that the
centralizer of (xa(l)xb(l)f is II, and a further calculation completes
the proof of (iii).

By a direct calculation, 33 = <ϊα, K3α+2δ, €>>> ̂  = Φ> ω*, (ωαω6)
3>.

Suppose ω\ centralizes xhωx', x e U, h e φ, ω e 3SOτ »' e Uw, w being the
image of α> in the Weyl group. Then the normal form implies that
x, x', h, ω e C(ofa), so the first assertion of (iv) is proved.

Let &! = <£α, 3c_α>, S2 = <ϊ3α+2&, K-(3α+2δ)>, so that e x ^ (£2 ^ SL(2, g).
Clearly, (Ŝ  and K2 commute elementwise. Since χ3α+2&,_i = χα,-i> it
follows that Ĝ  Π K2 = </*O, so that Ko = &fil2 is the central product
of (£1 and S2. Setting U = U Π S, we have

I u n u ω - 1 = I δ n u ω « ( ω α ω 6 ) 3 1 = g ,

and fit n ϋ('"«w*)3 = 1, it follows t h a t | e | = g2(g - 1)2(1 + 2q + g2). Hence,

< * ) I <£: e 0 1 = I ©: Φ n e 0 1 - 2 .

Since φ normalizes ϊ r for all 7̂  in 21, (iv) (a) is proved.
We observe that by (1.5) of [30],

) - 1 = xa(zrH) ,

) - 1 = x_a(zt) .

Hence, if η = φ(h(χh)Z) denotes the automorphism of (Ŝ  induced by h(χbtZ)~\
then a{ηa^1 is the automorphism of SL(2, q) induced by the map

1 ί\ (1 z-'t\ (1 0\ (1 0

0 1/ \0 1 j ' \ί l j ~~* [zt 1

This automorphism therefore coincides with the automorphism induced

by (Q - j . A similar argument applies to (£2. Since (£ — Ko coincides

with the coset &oh(χbfZ) whenever z is not a square of F*, the proof
of (iv)(b) is complete.
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Let K = (W1W2)\ By (i), K is an involution, and by (ii), K
inverts ξ>. Thus, $K is a set of involutions in (£. If &K"SK£0, we
get £ g; <φif> g; Co, against (*). So (£ — (£0 contains an involution.

We will use (iv)(b) in the proof of (iv)(c). First, suppose ε = — 1.

In this case, —1 is not a square in Fq. Since &L and (£2 commute

element wise, we assume without loss of generality that for i = 1, 2,

oCiψfoci1 is the automorphism of SL(2, q) induced by ( π if). Hence,

Ki Π C(X) is cyclic of order q — 1. Since the commutator of ί Q -.1

and (_J J) is - I , and since (_J J) inverts (j JL) for all xeίy%
(iv)(c) follows in this case.

Now suppose ε — 1. In this case, —1 is a square in Fq. Choose

a,beFq such that α2 + b2 = c is a nonsquare. We may assume that

for i = 1, 2, aiφψaz1 is the automorphism of SL(2, #) induced by

(ft _ )• A short calculation shows that (iv)(c) holds.
Since | C(ω\) \ = (q(q2 - I))2, it follows that C(ω2

a) contains a S2-
subgroup of E2(q). Thus, to prove (v), it suffices to show that each
involution X of K is conjugate to ω2

a in E2(q). Since E2(q) is simple,
Lemma 5.38 (a)(i) implies that X is conjugate in E2(q) to an element of (£0

Thus, it suffices to show that all involutions of (£0 are conjugate
in E2(q). Since (£,- has just involution for i = 1, 2, it follows that
every involution of (£0 different from α)2, is of the shape IJ2 where
Ii e (£; and 7? = α)2. Since (£; has just 1 conjugacy class of elements
of order 4, it follows that (£0 has two conjugacy classes of involutions.

Case 1. Every involution of φ is in (£0.
By (ii), all involutions of ξ> are fused in 9ΐ. By the preceding

paragraph, (v) follows.

Case 2. J is an involution of ((£ — Eo) Π φ.
Set J = ω2

a, K = ( W ^ ^ , so that iΓ inverts φ and so centralizes
7 and J . Let §1 = <T, J, iΓ)>. By (ii), the involutions of Si are fused
in SSI as follows:

7 ~ J ~ IJ,IK~ JK~ UK .

It is clear that in K all the involutions of K — Ko are conjugate.
Let Sto = 2t Π ®o. Thus, % is one of <7, # > , <7, JX>. Suppose 3I0 =
<7, ϋΓ>. Then, /, J7, JiΓ, J7i ί are the involutions of 21 — 2ΐ0, so are
all conjugate in (£. Since iΓe Ko, Z" and iΓ7 are conjugate in (£0. Thus,
all involutions of 21 are conjugate in E2(q), so (v) follows. Suppose
St0 = <7, JK>. Then, J, J7, iΓ, iΓ7 are the involutions of 21 - 2ί0, so
are all conjugate in (£. Again all involutions of 21 are conjugate in
E2(q). The proof of (v) is complete.
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LEMMA 8.2. ( a ) Suppose @ is a finite group and S3 is a four-
subgroup of ®. Suppose also that whenever I and J are distinct
involutions of S3, land IJare conjugate in C(J). Then A(%$) = Aut (S3).

( b ) ^2(3)(53) = Aut (S3) for every four-subgroup S3 of E2(3).

Proof. Choose X in C(J) such that X~ιIX = IJ. Thus,

XeN(V)f]C(J) .

Replacing the pair I, J by the pair J, I we choose Y in C(I) with
Y~ιJY = IJ. Then Si = <XΓ> permutes /, J, / / cyclically. Thus,
ζX, Yy maps onto Aut (S3), proving (a).

Let S3 be a four-subgroup of E2(S) and let I, J be distinct invo-
lutions of S3. We will produce X in C(J) such that X~ιIX = IJ. We
may assume that J = α>2

α, since i(2?2(3)) = 1. Since O2(C(co2

a)) is extra
special, we are done in case IeO2(C(ω2

a)). If I$O2(C(o)2

a)), then I
induces an outer automorphism of both quaternion subgroups of O2(C(o)2

a)),
so again X is available. Now (b) follows from (a).

We omit the proof that K = CE2{3)(ω2

a) has exactly 19 + 72 invo-
lutions; namely, O2((£) has exactly 19 involutions, while all involutions
of K — O2(K) are conjugate in (£. Furthermore, it is straightforward
to verify that K has exactly 3 con jugacy classes of elementary subgroups
of order 8. Representatives <£19 G?2, Gr3 for these classes may be chosen
so that if X denotes a fixed S2-subgroup of (£, then @ί <] 2, and

We argue that @: and @2 are not conjugate in E2(S). Suppose
e? = @2. Then £ G normalizes ©2, as does X. Then SG = 2/v for some
iV in JV(@2). Hence, GΛΓ"1 e iV(S) = ϊ , so G e ZN^ iV(©2). Since (gf =
®2> we get @! = @2, a contradiction.

Set S3 = @x Π @2 so that S3 is a four-subgroup of X and O2(%) Π C(S3) =
@!@2 is the direct product of a group of order 2 and a dihehral group
of order 8. Let 2) = C^o)(S3) = CV(S3), a group of order 32. We omit
the proof that ® has exactly 4 elementary subgroups of order 8, among
which are &1 and @2. By Lemma 8.2 (b), iV(S3) has an element A of
order 3 which permutes transitively the involutions of S3. If A normal-
izes both @! and @2, then A normalizes the derived group of @!@2, that
is, A normalizes ζp)2^). Since this is not the case, we can choose i in
{1, 2} so that the orbit of (Ŝ  under ζA} has 3 elements. Since @x and
<£2 are in different orbits under ζA}, it follows that A normalizes (Ŝ  ,
where {i, j} = {1, 2}.

We omit the proof that N(Qίj) Π © permutes transitively the invo-
lutions of @y — <^O. Since A does not centralize ω2

a1 it follows that
permutes transitively the involutions of G?i# Thus, | N(Qε/) \ =

Π (E| = 8-24.8. Hence,



470 J. G. THOMPSON

2ί*2(3)(©;) - Aut (©,.) .

We have proved (a) of the next lemma.

LEMMA 8.3. ( a ) E2(Z) is not an N-group.
( b ) E2(Z) satisfies the hypotheses of Theorem 8.1.

Proof. It suffices to verify (b).
By Lemma 8.1 (iv), hypothesis (iv) of Theorem 8.1 is satisfied. By

definition of ~ , so is hypothesis (vii), CE2{z){o)2

a) being the relevant
solvable group. Hypothesis (ii) is clearly satisfied, since

Clearly, 1 is the only 2-signalizer of C(<o\), so if % is a S2-subgroup
of C(o)2

a) and 2 is a nonidentity 2'-subgroup of i?2(3) normalized by £,
then ω2

a inverts 8, so 8 is abelian. Furthermore, 2 is a 3-group, as
every {2, 3}'-subgroup of E2(3) is cyclic. Since 2 is a faithful ^-module,
12 I ̂  34. Since XI has no abelian subgroup of order 35, it follows that
is elementary of order 34. It is straightforward to verify that every
elementary subgroup of IX of order 34 is conjugate to

the normalizer of this last group is 33, so does not contain a S2-subgroup
of E2(S). Thus, 1 is the only 2-signalizer of £7,(3). It is trivial to
verify that 1 is the only 3-signalizer of i?2(3), so hypothesis (i) is
verified.

Since J572(3) is of order 26.36.7.13, and since the centralizer of every
nonidentity 3-element of E2(3) is a 2, 3-group, it is easy to check that
hypothesis (iii) is satisfied. Since S2-subgroups of E2(S) are of order
64, and since (**) holds, hypothesis (v) is satisfied.

Suppose that SI e <S^f^r 3(φ) for a S2-subgroup *β of £7,(3), and
33 is minimal nontrivial element of M(2I). Then 2133 is contained in the
centralizer of an involution; say 3133 §Ξ(£ = C(o)\). But, by Lemma 8.1
(iv), (£ contains no nontrivial 2'-subgroup 33 for which iVg(33) contains
an elementary subgroup of order 23. This contradiction proves that
M(2I) = {1}, which is hypothesis (vi). The proof is complete.

The remaining results in this section are proved under the hy-
pothesis that © satisfies the hypothesis of Theorem 8.1.

LEMMA 8.4. ( i ) © satisfies Hypothesis 7.4.
(ii) © satisfies Hypothesis 7.1 for p = 2 and for p = 3.

Proof. We first show that ^ 9 f ^ 3 ( 3 ) Φ 0 . Suppose false. Let
be a Ss-subgroup of ©. Since ^^1x^(^3) = 0 , it follows that
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is of type (3, 3). This implies that every 3-solvable
subgroup of © has 3-length at most 1. Since 1 is the only 3-signalizer
of ©, it follows that 5β = (7(^(2^))) . Hence, 1 is the only element
in M(β1(Z(φ)); 3'). Thus, if B is a 3-solvable subgroup of © and Sr

subgroups of & are noncyclic, then £ is 3-closed. This implies by
definition of ~ that A^Ω^Z^))) contains an abelian subgroup of type
(4, 2) or an elementary subgroup of order 8. Neither of these possi-
bilities holds in Aut (Ω^Z^))). Hence, ιp&*8(3) Φ <Z). We have shown
that (i), (ii), (iii), (iv) of Hypothesis 7.4 hold. If SI e ,5W2), then M(Sί)
contains only 1 by Hypothesis (vi) of Theorem 8.1. Suppose 2ί e <p^3(3),
and £} e M(3I), Q Φ 1, O minimal with these properties. Let $ be a
S3-subgroup of JV(2I). Since Z(Sβ) is noncyclic, we may choose Z in
C(Q) n Z($) s. It follows that QgO 3,(C(Z)) against Hypothesis (i) of
Theorem 8.1. (i) is proved.

Hypothesis 7.1 follows from Hypothesis 7.4 since if p = 2 or 3
and 2 3 e ^ * ( p ) , then C(S3) contains an element of S^^3(p).

In the remainder of this section, Sβ denotes a £3-subgroup of ©,
and §Be^(5β).

Let 33<, 1 ^ i ^ 4, be the subgroups of 33 of order 3. Let % =
JV(S3<), let ®, = S3** and let Kf. = C^.(®,). Since 3GTΓ4 and 5β£S^, we
have O3,(9^) = 1. Hence, by Lemma 5.10, ©4 is 3-reducible in 9^.
Finally, let S< = 9^/&;. Thus, Si may be identified with a subgroup
of Aut (©i), Ŝ  = ^ . ( © i ) , and as such S< is a 3-solvable group with
no nontrivial normal 3-subgroups. We let ^ = O3'(8ί), so that $ { is
that subgroup of 2{ generated by the 3-elements of S i e

The following lemma is important.

LEMMA 8.5. Suppose for some i, 1 ^ i ^ 4, ^ contains an element
of order 3 which centralizes a subgroup of 3^ o/ index 3. ΓΛe^

( a ) | 3 ) 4 | = 2 7 .
( b ) ^ ^ SL(2, 3).
( c ) ®, = S3, x <Si9 where @, <] 9^.
( d ) Bi is faithfully and irreducibly represented on @ie

Proof. Let U be the set of 3-elements of 9t< which centralize
some subgroup of index 3 in ® ίβ Since 3^ <] SRi, tl is an invariant
subset of %li. By hypothesis, VL — &i Φ 0 .

Let U* = U n $ , and let UL = <C7| i7eU*>. For any subset § of
SRi, let § = $&il&iL Since S* is 3-reduced, so is ^ . Furthermore, if
UeVL — (£;, then U is an exceptional element in the sense of Hall-
Higman [26, p. 10], or as we might say, an exceptional element, being
the identity on a hyperplane of S,. (In a perhaps more frequently
used terminology, U is a transvection.)

Let φ = O^^modG^), so that Ui is faithfully represented on § .
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By (JB), 5 X centralizes some S2,-subgroup of φ. Let ίS = [|>, Gj. Since
^ is solvable, it follows that $ is a ^-invariant 2-group on which ΐtx

is faithfully represented, and that ^ = [̂ , S j . By Lemma 5.17, S is
special, since by (B), Uλ centralizes every abelian U^invariant subgroup
of S.

It may now be verified that if UeVL* — ̂  and 33 = <(£Γ>, then
[$, S] is a quaternion group and [$, S3] centralizes a subgroup g of
index 9 in ©*. Furthermore, ©< = (^ x g, where ©< = [5δ, S3, S)J is of
order 9, and G?ί0 = [®ί> 95] is of order 3. Since 6^ and % are U-invariant,
and since [/centralizes some hyperplane of 3^, it follows that C<%.(U) =

_
Let φ x = φ Π C(S) and let 8 =Jβ®._ Since £ is faithfully repre-

sented on ©i, so is its subgroup Sβjδ = ^ x Jl. Hence, by Lemma 3.7

of [20], Jl is faithfully represented on £>< = C ® ^ ) . Since φ/φx is

faithfully represented on S, it follows that S/^L is faithfully repre-

sented on ®,. By Lemma 7.7, φ/φ, centralizes JF&/&. Since ^ -

^ x 5βx, it follows that 5β centralizes ^ ' .
Since Ui is faithfully represented on $/$', and since each element

ίt* centralizes a subgroup of ^/^ ' of index 4, it is straightforward to
verify that Ux is elementary. It then follows that every element of
Uf is exceptional (though we don't contend that every element of ί̂
centralizes a hyperplane of ®;).

The preceding paragraph, together with [ '̂, ψ] = 1 and Corollary 2
of §2.6 of [24] imply that G ^ Z ^ ) . Returning to S3, we see that
[̂ , δ] is ^-invariant. This in turn implies that g is ^-invariant. If
131 ^ 9, then % contains an element of ^*(3) and Lemma 7.4 is
violated. Hence, | g | < 9. Since 35̂  <Ξg, we see that (a) and (c) hold.
By construction, (b) and (d) follow. The proof is complete.

J denotes the subset of {1, 2, 3, 4} whose elements satisfy the
hypothesis of Lemma 8.5.

LEMMA 8.6. Let ieJ and let % be a subgroup of Ĝ  of order 3.
Let 5X2: = JV(2ί), let ft be the normal closure of 33; in %l and % be the
normal closure of ®, in 9ΐ. Then

( a ) [%%] = 1.
(b) [ ϊ̂ίjga.

Proof. Let 21* = 21 x S3ie Since the subgroups of (£< of order 3
are permuted transitively in 3li9 it follows that C^(Sl*) contains a S3-
subgroup φ* of ©. Thus, 85,- is contained in the center of a S3-subgroup
of % namely φ*. By Lemma 5.10, ft is 3-reducible in %l. Since
φ* s C@(2I) and 3 e ττ4, we have O3,(C@(2I)) - 1, which implies that

= 1. Since S),/2ί C Z(5β*/aC), we conclude that
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and so ®, C C ^ ) , by 3-reducibility of ft in 5R. Since C^Φ) <\ % we
have [fft, %] = 1. Since ©^2ίS^(O8(3i/.A)), we also have [%, & J S 3 I .

We now set ® = <®x, ®2, ®3, ®4>. Since 33 g Z(5β), it is clear that
33gZ(®) and that ® < 5β.

HYPOTHESIS 8.1. ( i )

5β S 2K e

(E = C^(33), 33* = F(ccy®); 5β) .

(ii) 33* §£(£.

The long argument to follow is carried out under Hypothesis 8.1.

Choose G in © so that ® G g $ but ® G g K . The element G plays a

passive but important role. If § is any subset of ($, we set φ = φ*,

while if § is any subset of SK, we set § = φS/K.

Let 3ΐ be any subgroup of O8/(SK) which admits S) and is minimal

subject to [® , 91] Φ 1. (Notice that 3t is available.) Let ΛΓ = JV(Sϊl) =

{ΐ I 1 <̂  i ^ 4, %\ does not centralize C^S;)}- We argue that JV Φ 0 .

This is clear if 33* centralizes 9ΐ, so we may assume that [33% 9ΐ] Φ 1.

Since 33* is noncyclic, it follows that 91 - <3ΐ Π C(S5;) 11 ^ i ^ 4>, so

we can choose i such that ® does not centralize (7^(93;). Minimality

of 3ΐ guarantees that 3ΐ = C (̂33ί)• Thus, 33. does not centralize

C^(S9;). Since 33* S ® , we have i e N(ϋt). In the following discussion,

9ΐ is a fixed subgroup of O^(Έl) which admits ® and is minimal subject

to [® , 3ΐ] Φ 1, and j is a fixed element of JV(9t). As already observed,

33} centralizes 9ΐ.

Let Q be a ®;-subgroup of 9ΐ minimal subject to [S;, £ι] Φ 1.
Let ®ό = ker(S)j —Aut(Q)), so that l ® , : ^ ] = 3 and 33,^®^

Since O is faithfully represented on 33, Lemma 3.7 of [18] implies
that £} faithfully represented on C$B(S5);). Since S)j does not centralize
Cy®;), we may choose V in ©^(©ό) - C(® •). Then

Thus, GFG" 1 is a 3-element of ^ — (£,. which centralizes a subgroup
of SJy of index 3. By Lemma 8.5,

(8.1) jeJ, | ® , | = 2 7 , . . . .

This implies that | C^(®0

#): C^(®;) | = 3, which in turn implies that O
is a quaternion group.

Since O is a quaternion group, the following assertions hold:
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( a ) ®* centralizes a S2,-subgroup of O8,(SK).

( b ) ® centralizes every abelian subgroup of Os,(2ft) which ®
normalizes.

( c) If g is the normal closure in *β of © , then [g, O3,(SK)] = 6
is a special 2-group whose derived group is centralized by g. Namely,
if either (a) or (b) were false, we could find 3ϊ such that 3ΐ contains
no quaternion group. Since this is not the case, (a) and (b) hold.
Now (c) follows from Lemma 5.17, together with the solvability of
O3,($Jl). We retain the previous notation and continue the argument.

Let 21 = [Csβ(S)o'), S5}] T h u s , 2X is a subgroup of ®; of order 3.
Let 53 - 53O x S3i, where 53O = CyO), 53, = [SB, &]. Since 31' S » ,

we have S3SiV(2t ) = 9l#, so that [SB, 33 •] S83j*'. By Lemma 8.6,
[53, 95;, ® •] = 1. This implies that Q centralizes [53, 33}], which in turn
implies that [53, S3*] g 530. Hence, 93} centralizes 53,. Hence, ®; central-
izes [53,, ®ό] As Q normalizes [53,, ®;], it follows that O centralizes
[53,, SB;]. By definition of 53,, we get [53,, SB0"] - 1. Hence, [53,, ® •] =
2l and I 53,1 - 9.

Suppose 5β centralizes ©'. Since Q j S , it follows that $β central-
izes £V, a group of order 2. Hence, Sβ normalizes 53O = C%(£L'). Since
the inverse image of O' in 3K contains an involution, it follows that
S30 contains no element of ^ * ( 3 ) . But 530 <] ^3, so the only possibility
is that 53O is cyclic. Since Z(ψ) is non cyclic, we get | 53O | = 3.

Suppose Sβ does not centralize ©'. Let ®, = [@r, ^ ] , and let 3S
be a subgroup of 53 which admits $β©' and is minimal subject to
[©!, 3ΰ] ^ 1. Since g centralizes ©', it follows that g centralizes SB;
so ® centralizes SB. Hence, 2BgΞ530 x 9Xe. By Lemma 4.4 of [19],
5S contains a subgroup 2B0 of order 27 such that 2B0 < φ, | φ: Cφ(S2δ0) I =
3. Since | 21* | = 3, it follows that 53O Π 230 is noncyclic. Let 2B, be a
subgroup of 53O Π 2B0 of order 9. Since | $β | is clearly larger than 34,
we conclude from Lemma 7.6 (d) that 2B, e Sf (3). Let / be an involution
in the inverse image of O in 2Jί; then / centralizes 53O, so centralizes
SB,. Hence, by Lemma 7.4, C(I) is nonsolvable. This contradiction
shows that [̂ β, &] = 1. Hence, | 5301 = 3, an important equality.

Since 23Ϊ e ^Z9*(G), it follows that SK - iV(530), so that SK = %
for some ΐ, 1 £ i ^ 4. Thus, i e J, 53O = 23̂ , 53, = ©„ 53 = ©;,(£ = St..

Let φ 0 = φ n e<, Sϊo = Λ^.(φ0), so that 5fto£, = 5Ji,e Let Do be a
S2-subgroup of 3̂ 0 permutable'with φ. Let @ = φ θ 0 n C(53,), and set
Q = 6 π Ω o . Then @ - ^ D .

Since i e J, Lemma 8.5 implies that a ιS2,3-subgroup of 9^/6^ is not
3-closed. Since ^3Q0 is not 3-closed, neither is @, since | ^3O0: @ | ^ 2.
Let I be an involution of Q. Suppose ®^ Π C(I) 3 33̂ . Then ®< Π C(J)
contains a subgroup S) of order 9 with ® Z) 53̂ . Since @ permutes
transitively the subgroups of (5̂  of order 3, it follows that ® is central
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in some S3-subgroup of @, that is, I centralizes an element of
This is not the case, since C(I) contains an element of ^ ( 2 ) . This
contradiction forces S^ Π C(I) = S3; for all involutions / of £1. Since
3̂ <f\ @, £ι is not cyclic. Thus, d is a quaternion group. Also, ^30 =

O3(@) = @ Π <£< and @/φo = SL(2, 3). In particular, S3; C Φo, while

Since i e J, it follows that [Cφ(S3;), ®;] S 6 ; . Since S3}SSPo and
®ί g β̂o, it follows that @; g ^So. Hence, © Π ̂ β0 = 21*. This implies that

(8.2) [c¥o(SBj)f Φ J ] - a - .

For any subset £ of Θ, let £ = SG /̂G .̂ It is important to show that

(8.3) Cφ ) = C^SS;)/©,

Namely, suppose P in % satisfies [S3;, P ] S ® i e Now @, - 2ΐ* x 21*,
where 21' and 21* are of order 3 and Sί g Gq. We may apply Lemma
8.6 to STC . Since PeSR , we get [S3;, P, ® •] = 1. Hence, [S3;, P] S
@i Π C(®; ) = 21". Consider the group 93; x §1*, which is normalized by
the 3-element P. Since Sfϊ permutes transitively the subgroups of Gr;
of order 3, it follows that 33} x 21* is in the center of some S3-subgroup
of ©. Hence, -4@(S3; x 21*) is a 3'-group, so P centralizes SB; x 2ί#.
We have proved (8.3).

Since 21 C ^ , so also φ o S $β' Hence

(8.4) [φo,®;,®;-]g2I ,

by Lemma 8.6 (b) applied to 9ΐ*. We will use this fact several times.
We next show that

(8.5) Cφo(D') = Cφo(iQ) .

Since O^^ is a Frobenius group, it suffices to show that C^0(£l') =
Cs^0(O). Let ^ be part of a chief series of @ from ^30 to 1, one of
whose terms is G .̂ If g is a chief factor of &*, it suffices to show
that if Q/ centralizes g, so does d . If this were not the case, then
elements of ®' — ^30 would have minimal polynomial (x — I)3 on g,
against (8.4). Thus, (8.5) holds.

Suppose Q' centralizes 5β0. Let φ x = Cφn(D'). We get φ o = φ ^ ,
φ i η @i = 1. Since ©̂  is an irreducible Q-module, we have φ 0 = ?βL x
S .̂ If $& is not cyclic, then Q' centralizes an element of ^>:<(3), which
is not the case, since O' centralizes an element of ^ ( 2 ) . Thus, $βx is
cyclic. Clearly, ^ Φ 1, since 33, g $ L . If

15βx I > 3 , then ϋ

ι(^) < <%, 5β}> ,

while it is trivial that <9^, $ίl;> is non solvable. Hence, ^ = S3<. But
then Lemma 7.8 is violated.
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Let ^β2 = [$βo> Ω]. By the preceding paragraph,

(8.6) ψtΦl.

We will show that

(8.7) φ 2 is of exponent 3 and class at most 2 .

Let % = [5β2JLίS}]. Since φ 2g9ΐ% Lemma 8.6 (b) implies that [3^, 3tJ £
2t , so that Sli is abelian. Since ®; is elementary so is 3^. Thus %
is a normal elementary subgroup of ψ2. Let Q be an element of Q
of order 4, and set 3ΐ2 = 3t?. We argue that ξftjft2 = Sβ2. To see this,
observe that since £}' inverts ^?2//>(^β2), and since the minimal polynomial
of each element of ®; on £β2//>(Sβ2) is a divisor of (a? — I)2, it follows
that ati, 3ΐ2 map onto subspaces of 5β2/D($β2) which generate 5β2//>(̂ β2),
so our assertion follows. Since 3^, 9ϊ2 are normal elementary subgroups
of φ 2, (8.7) holds. Since we now have D(^2) = [%, %] ^%, and
since S centralizes ίRlf it follows that

(8.8) O centralizes

Since £} has no fixed points on ^2//>(^β2)j it follows from (8.4) that

£1 operates on $β2/Z)($β2) as a multiple d of the

faithful irreducible O-representation .

In particular,

(8.10) I &:/>(&) I = 3 2*.

Let 5 a generator for 33}, and for any element S of @, let S] be
the mapping of ^32 into itself which sends P to [P, S]. We may view
J?] in more than one way. Since D centralizes β̂o/̂ 2> we have B = CC7,
where C e C^0(Q) and ί/e 5β2. Since ?7e ^32, JS] and C] induce the same
mapping from ^2/B(^2) to itself. In particular, [*β2, B]D(φ2) admits
Q. By Lemma 8.6 applied to Sfc , we have [φ2, B, ®; ] = 1. This implies
that O centralizes [̂ β2, JB]/)(?β2)/Z)(?β2), so by construction of Sβ2, we have

(8.11) [%,5]S/>(5P 2).

Hence, [φ2, C] S/)(φ 2 ). Since C centralizes Q and O centralizes Z)(5β2),
we conclude that C centralizes φ2, by the three subgroups lemma.
Hence, B and U induce the same automorphism of Sβ2.

By Lemma 8.6 applied to 31', B centralizes the normal closure of
3); in SK . Hence, C? 2(B) 2 [φ2, ®;•](£#$£. We will show that

(8.12) CΨ,(B) = [$„

(8.13) IC
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Let 2BX be the set of fixed points of ©j on $2/D(%), let

, and let W* =

From (8.2) and (8.3), we get that SS^eS^. By Lemma 8.6 (a) applied
to 9Ϊ , we get 2B2saS3. By (8.10) and Lemma 5.2, it follows that
I2BJ ^ 3d. Using (8.10) once again, we get |2S 2 | ^ 3d. Since 2B2S
a©3 g 23^ it follows that 22̂  = 3Ώ2 = 2δ3 is of order 3d. This yields
(8.12) and (8.13).

Let 33* - S5j*. Since 5β centralizes 21% we have 33*g33 ^ . By
Lemma 8.6, 33* and ®}^ commute elementwise. Set φ 3 = [5β2, 33*]®* < Sβ.
Since 5 centralizes 5β2//)($β2), (8.8) implies that O normalizes ^β3. Thus,
^β3 <1 @. Since S}^ and 33* commute elementwise, [̂ }32, 3); ] centralizes
5β3. Hence, [5β2, ®;]« centralizes φ3

ρ = «β3, Q being an element of D - Q'.
Since φ 2 - [Sβ2, S);][^2, ®}]ρ, it follows that ^ 2 centralizes ^β3.

Let φ 3 = φ 3 n C(O). Thus, φ 3 = ^ 3 x ©,. Clearly, iV@(Q) normal-
izes ^ 3 ; so does ^52 since ^β2 centralizes ^53. Since @ = ^iV^ίd), we
have $β3 <] @. Since £l contains an involution, no subgroup of φ 3 is
in ^ * ( φ ) . Hence, $ 3 is cyclic. Since ^β3 is isomorphic to a subgroup
of $β2, it follows that $β3 is of order 1 or 3.

Suppose [5β2, B] S ©*. Then (8.3) forces [5β2> B] = 1. This violates
(8.6), (8.10), (8.13). Thus, φ 3 is of order 3 and ^ 3 = [5β2, B]<Si9 and
[φ2, B] is of order 3. Now (8.10) and (8.13) yield that d = 1.

Suppose Z>Oβ2) = 1. Then by (8Λ1), B centralizes ψ2. This conflicts
with (8.10) and (8.13). Hence, D(ψ2) Φ 1, so that

(8.14)

Since 33^ 3 is a normal subgroup of @ centralized by O, we get
φ3, as O centralizes no element of ^ * ( 3 ) . Hence,

(8.15)

Since ^β2 is the normal closure of [Sβ2, ®; ] in @, and since ®}^' is
of exponent 3, it follows that ^S2 is generated by elements of order 3.
Since ^β2 is of class 2, it follows that

(8.16) ^52 is of exponent 3 .

Since 33̂  c ^β2, the group ^β2/33; is of order 34 and is inverted by
the involution of £}. Hence, ^ S S S i . Since ^β2 is non abelian it
follows that

(8.17) ψ2 = S3, .

We next show that J5e^ 2 . Namely, 33 = CU, so that_ [C, U] =
[C, Cί7] = [C, B]. As we have already seen, C centralizes ^β2, that is,
[C, Ϊ7] e e<. Since [C, Z7] = [C, B], (8.3) implies that [C, B] = 1. Since
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we have also shown that [̂ β2, B] has order 3d = 3, it follows that U
is not in Z(5β2). Since ψ2/ψ2 is an irreducible £}-module, it follows that
C centralizes Sβ2, as C centralizes an element of *β2 (namely, U) which
does not map into ψ2. Since C and U commute, and since B and U
have order 1 or 3, it follows that C has order 1 or 3. If C £ ^32, then
Ωi(Cφom$2)) ΓΊ C(£l) is noncyclic, so that £} centralizes an element of
^ * ( 3 ) . Since this is not the case, we conclude that

(8.18) Beψ2.

We will next show that φ 0 = ^
Since B e ^β2, [̂ βo> B] is a subgroup of ^β2 centralized by ®; . Suppose

[φ0, B]£?β2 ( = %5i). Let 5ί be a generator for S5t , A a generator for
§I\ Choose P in φ o so that [P, 5] = δ M & with 6 ^ 0 . Clearly, a Φ 0,
since 4̂.@(<(-B, A » is a 3'-group. Since [̂ β2, £] = SβJ = 35̂ , we may choose
P 2 in φ 2 so that [P2, B] = P r α . Then [PP2, £ ] = A\ which is impossible.
Hence, [φ0, B] = ^32. Hence, [$px, Ŝ2] = 1, by the three subgroups
lemma. Here % = % Γ) C(O). Hence, ^ < @, so % is cyclic, as Q
centralizes no element of ^ * ( 3 ) . If | ^ | > 3, it is easy to verify that
ff'OPi) < <9Γii, 5K;> against the nonsolvability of < ^ , 5R; >. Hence, φ x is
of order 3, so that ^ = SB,. Hence,

(8.19) φ 0 - φ 2 is of order 35 ,

(8.20) φ is of order 36 .

With the preceding information at our disposal, we turn our
attention to 2K = ^ once again. Let 6 be a >S{2j3p-subgroup of M
permutable with ^3. Then @ centralizes ® ,̂ for otherwise 23 3 13
divides A^S>i), forcing nonsolvability of A^D^. Since |O2(SW):S)ί| g
9, @ also centralizes O3(9K)/3V Hence, @ centralizes O3(9K), or equiva-
lently,

(8.21) m is a 2, 3-group .

Let J be a S2-subgroup of % containing O. Since Qf e ^ * ^ ) ,
no element of S* centralizes (3 .̂ Thus,

(8.22) φ0 = cm .

Since 33,^33, it follows that C(S3) g9ΐ, = 9K. By Lemma 7.4,
C(95) I is odd. From (8.21) we conclude that

(8.23) φ = C(S) .

By construction, S)f s φ o. Suppose j 0 is an index such that S i o g ^?0

Then [2),, ® io] ^ 1. In this case, two applications of Lemma 8.5 imply
that I ©, I = I 3)io I = 27 and that [5β, ® io] is of order 3. Hence, [5β, ® io] =
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[S)ί, ® io] so that S i o centralizes Sβo/S)*. This contradicts (8.6) and (8.19).
Hence, no such jQ exists, that is,

(8.24) ® E ^ o .

Our previous information shows that Z(ψ) = 33. Hence, Nffi)
normalizes 33, so permutes the groups 33iV(93&) among themselves, 1 ^
k rg 4. By definition of 2), we get

(8.25) N(φ)SN(D) .

Suppose 3> < 5β. Since ® < 5β, it follows that S) < <5β, 5β >. We
can choose N in JV(2) ) so that ψN = 5β. Hence, 2) * = 2) and 5βσΛΓ =
?β. Let JET = GAT. Then ® - ®* and ϋ e JV(5β). By (8.25), we get
® = ® f f = ®. This conflicts with (8.24), since by construction 2) g^30.
Thus,

(8.26) © <1 5β .

Suppose φ* is a S3-subgroup of 5TC; and that φ * S ^ . Thus,
Z(5β*) S ®i Π ®J - Sί . This is impossible since | St'| = 3, | Z(5β*) | = 9.
We conclude that

(8.27) 9^ Π ft;- contains no S3-subgroup of ® .

Since ® <| φ, (8.20) implies that | ® | £ 34. Suppose | ® | ^ 33.
Then ® 3 S { implies | ® | = 33 and ® = ©<. Thus, for each fc, 1 ^ fc ^ 4,
we have 33 g ®, E S,. If 33 = S)fc, then 9^ normalizes C(33). By (8.23),
we have Sβ <] 9ΐfc, so by (8.25), we have 3lk S iV(S)). Thus, if | ® | - 33,
then φl19 %l2,5R8, % 4 >S JV(®). Since St SZ(5β), it follows that Sί - 33,
for some k. Hence, iV(3ί") S Si*. But 2ί is a subgroup of ©}, so there
is a $3-subgroup φ* of 31; which contains 2ί* in its center. This
violates (8.27). Hence, | 2) | = 34. Since ^ 0 3 2) 3 2)<, we conclude that

(8.28) 2) is elementary of order 34 .

Let (£ be any subgroup of 2); which is of order 3 and is not
contained in φ o Thus, 2); = © x 33} x St . Since 2) £5β, it follows
that 2) £ C^(® •) = © Cφo(2);), and as we have already shown, Cφo(S3;) =
®iS3; (that is, S3;gZ(φ0)). Since 2); does not centralize (^, it follows
that C?po(2)j) - 33- x 33, x §!'. Since 2) <f\ 5p, it follows that iV¥(2) ) =
® ®,. Choose P in φ 0 - N^'). Since

it follows that [P, C]gS)#, where C is a generator for (£. Hence,
IP, C] = iλδ^ with Ei in @, - St and D in 2) Π ̂ 0 Hence, [P, C, C] =

,̂ C] = [^i, C] is a generator for Sl . This is a subtle and important
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bit of information, since it shows that the (£ module ^βo/ψύ has an
indecomposable constituent of dimension 3. Thus,

the indecomposable direct factors of

as ©-modules are of dimensions 1 and 3 .

We note

(8.30) 5β = F(ccy®); Sβ) .

Namely, O does not normalize ®, S)Q = ^30. Since *β = <^0, ® >,
(8.30) holds. This fact has an important consequence. Namely, if
*βg3K* e^€^(%) and 5β <f\ 3ft*, then 9K* satisfies Hypothesis 8.1. If
this were not so, then φ g C ^ O T ) ) 1 * ) . Now (8.23) implies that
5β < 3K*. Thus,

if φ S 3ft* G ^€9^(@), then either 5β < 3K*

or 9K* satisfies Hypothesis 8.1 .

Let 2ft be an element of ^C9^(@) which contains JV(St*) and let
φ0 = O3(5ft). We argue that

(8.32) 5β <| iV(2I ) .

Namely, 5βSiV(2l') Also, JV(2t ) contains a S3-subgroup of 9ΐ . By
(8.27), this implies that N{% ) has more than one £3-subgroup so (8.32)
holds. By (8.31), it follows that | φ01 = 35 and that 2ft = JV(ϊ), where
ΐ is some subgroup of Z(5β) of order 3. Clearly, 9c Φ 33̂ , since JV(St") g
2W. On the other hand, if /is the involution of O, then IeW. Since
St* and 95̂  are the only subgroups of Z(fβ) of order 3 which are
normalized by I, it follows that X = 21 \

Since 2K ^ §ί, so also φ0 ^ φo. Hence, (8.20) implies that φo Π φ0

is of order 34. Now (8.24) implies that S S $ o n $0, so by (8.28), we have

(8.33) 3) = φ 0 n φ 0 .

Since $1 = N(% ), we have S)'SO3(2ft). Hence,

(8.34) $ 0 = <®, ® > .

Since J inverts St , we have /e 2ft. Let O be a S2-subgroup of O3/(Φί)
which is normalized by J. Thus, Q is a quaternion group, and by
(8.22) (with 2ft in the role of 2R), we get that

(8.35) £}</> is a S2-subgroup of 2ft .

Let J be the involution of <Q and set

(8.36) £ = </, J> .
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Thus, § ί s a four-group and φSiVOβ). Since S3< = Z(φ) n C(I), it
follows that £gSft . Hence,

(8.37) 5β < *β£ = Wl n 3K .

Notice that by (8.22), we have 3K = g><J>. Consider Cm(I) = C@(I)<J>.
By (8.5), it follows that £> <| C 6(/). Thus, / normalizes O so that

(8.38) £XV> is a S2-subgroup of 3K .

Let Q be an element of £} of order 4 which normalizes ίg and let
Q be an element of £} of order 4 which normalizes φ. By (8.22), it
follows that Nm(£l)/NsβQ(£l) = GL(2,3). Similarly for 2R. Hence, neither
Q nor Q centralizes £>, that is,

(8.39) <Q, ξ>> and <Q, §> are dihedral groups of order 8 .

We set

(8.40) Ii = JQ, It = IQ .

Thus, Ix and 72 are involutions and

(8.41)
I2JI2 —

Finally, we get

(8.42) SBo =

We next show that Ŝo is complemented in SDΐ. It is clear from
the structure of 3K = % that Cm{I) covers ^/K* = ^i/φ o and that
Cm(I) Π φ 0 = S30. Hence 3K will split over φ o if C^(I) splits over S3ί#

Since 33̂  is an abelian 3-group, this occurs if and only if a S3-subgroup
of Cm(I) splits over 33̂ , hence, if and only if C^(I) is elementary of order
32. Regarding I as an element of 2R, we know from the structure of
this group that C^(I) = Cspo(/). But ^ 0 has exponent 3, by (8.16) and
(8.19). Since the structure of SK implies that | C%(I) \ = 32, we have
proved that

(8.43) SK splits over φ o; §ϊ splits over φ o .

We define

(8.44) £6 - SI , X5 = S3«, X4 = St «, X3 - ϊ | .

Since <ϊ4, ϊ 5 , X6> - 33^ and <ϊ3, ϊ 5 , Ϊ6> = 3 # , (8.28) implies that

(8.45) ® - <X3,3E4> ϊ 5 , Ϊ6> .

We set
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(8.46) 3cx = X?, X2 = X? .

It then follows that

36ί+1 Xe is a subgroup of 3̂ of

order 36~% i = 0, . . . , 5 .

Further, by construction,

(8.48) § normalizes Xίy 1 ^ i ^ 6 .

We now set up a 6 by 2 array whose (i, i) entry is Xf», in case
Xf i C 5β, and is - otherwise.

(8.49)

3E.

ϊ .

ϊ 2

Xβ

We will eventually determine SK and 9JΪ in terms of generators
and relations. To do this, a number of choices must be made, and
some care is required to guarantee that these choices are possible.
We have already chosen the groups Xt , 1 ^ i <£ 6, each of order 3 and
each normalized by φ. Since XigSβo, and since XL centralizes J, we
have Xx S Cm(J) = C^I^XjXβ. Hence, Xx normalizes Q. We therefore
may choose a generator Xx of Xx such that XXQ has order 3. Namely,
let XL be any generator for Xx. Then {X.Qf e <J>, so either (X.Qf = 1
or (XίQf = J . Since Q/ = Q-1, in the second case we get (Xβ-1)* = 1,
or equivalently, (QXr1)3 = 1, or equivalently, (X^QY — 1. Thus, we
may assume that

(8.50) (X.Q)3 = 1 .

For the same reason, we may choose a generator X2 for X2 such that

(8.51) (X2Qf = 1 .

We set X3 = X?, X, = X?, X5 = X?, X6 = X?. Notice that

(8.52) <X,> = Xif 1 ^ i ^ 6 .

It is now convenient to draw up a table listing the action of §
on each Xi# This information is available since we know the action
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of φ on X L and ϊ 2 , and we know the action of Q, Q on φ, and of course
we know the way in which Q, Q permute the ϊ<. The result of this
calculation is given in the following self-explanatory table:

(8.53)
X,
χ3

X*

X,

X,

I

— 1

1

- 1

- 1

1

_ 2

J

1

2

- 1

- 1

- 1

1

Since Q2 = I, Q2 = /, we couple our two tables and determine the action
of Q, Q on 5β0, ^β0 respectively. The result of this calculation is summa-
rized below:

(8.54)
X,

Xs

X,
χ 5

χe

Q

X

XT1

X,

X,

X7ι

Q

X,

X?

X?
Xe

It remains to determine the commutation relations in Sβ. Since ® is
abelian and ®i = Z(5β0), we get

(8.55)
[ X , Xj] = l , S^iJ^Q,

[X, X,] = 1 , 4 =S j ^ 6 .

Since <9e3,365,366> = Z(%), we get

<8.56) [X2, X3] = [X2, X6] = [X2, X6] = 1 .

The three remaining commutation relations can be written as follows:

(8.57) [Xlt X3] = Xξ ,

(8.58) [Xit Xt] = Xe6

/Q rQ\ Γ V" V 1 VcVdVeVf

Here α, 6, c, d, e,feFz. Since φo and φo are non abelian, we see that
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ab Φ 0. It follows from (8.29) that [Xu X2, X2] does not lie in X5, so
d Φ 0. By symmetry, c Φ 0. To determine the values a through /
explicitly, we make use of the following identities:

[AB,C] = [A,C][A,C,B][B,C]

[A, BC] = [A, C][A, B][A, B, C]

[A~\ C] = [A, C, A-Tl[A, C]-1

[A, -B-1] = [A, B, B-TΊA, B}-1

[A~\ B-1] = [A, B~\ A-T'lA, B-1]-1

Since X2Q has order 3, we have

Q-ιXtQ = IQX.Q = IX^Q-'Xr = X^QXς1 .

Using this relation, conjugate (8.59) by Q, to obtain

[Xt, XτιQXrι] = XτcXiXiX7f.

Since X2 and X3 commute, we have

[X3, XT'QXΪ1] = [X» QXϊ1] .

By the preceding identities, [Xs, QXς1] = [X3, Q][X3, Q, XΓ1]- NOW

[X,, Q] = XτιQ-ιX3Q = XϊιXτι,

so that

[Xs,

Since £2 and 363 commute, we have [Xir'Zr1, Xϊ1] — [Xτ\ Xl1]. Now
by the preceding identities, we have

x ([X19 X2, XrT'lXi, X2V1)-1 .

Since [X19 X2J X^1] e &i9 it follows t h a t

[[Xlf x2, XτTι\x., X2V1, XTT1 = l[Xi, x2]-\ XTT1 .

We get that [Xγ\ XT1] - XίcXZX?X£Xl+hd. Since XiιXτι = XτιX^Xτ%
we see that [Xi9 X^QX^1] = XrlX^X^aJracX,cX,dXiX/+bd. This gives
us the following equations: c = 1, d = —/, / + bd = d. Conjugating
(8.59) successively by /, J, IJ and using the fact that d Φ 0 yield the
values δ = — 1, a = e, d = —f. No more information is forthcoming
from Tl9 so we conjugate (8.59) by Q and work in 2J?. We state the
result of these calculations:
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(8.60) a= - 1 , b= - 1 , c = 1, d = - 1 , e = - 1 , / = 1 .

Let 9ΐ* = <Ί£2, 3̂ > and note that 3ΐ* = C<$(I). By construction,

§ and X3gZ(O3(3JΪ)). Hence,

so that I ξβ: Gp(9t*) | = 9. With 3Ϊ* in the role of 21 in Lemma 7.6 (c),
it follows that 9ΐ* centralizes every abelian subgroup of M(3ΐ*;2).

Since O3'(2W) Π C(/) = 3ΐ*O, it follows that Q is normalized by 3ΐ*
but is not centralized by 9ΐ*. Let £* be a S2,3-subgroup of C(I) which
contains 3ΐ*D. Then £* contains an element ^ ( 2 ) . Let X2 be a S2-
subgroup of £* which contains Q. By Lemma 7.5, there is an element
SKX of ^C9^(@) such that (3Ϊ*, S*, S2, β = 0,(3^,), 2K0 satisfies all parts
of Lemma 7.5 with 3ΐ* in the role of 33, & in the role of ξ>, SKi in the
role of m. Since by (e) of Lemma 7.5, G S S, it follows that 3KX = C(I).
Hence, Je SKX.

The next task is shown that

(8.61) iV(2))SJV0P)

By our preceding results, ® <] Sβ. It is straightforward to verify that
JVsreί®) S JV ί̂SP). Let 3K* e ^C9^(@) with iV(®) S 3K* If Sβ <3 SK*,
we have our desired containment. Otherwise, 3K* satisfies Hypothesis
8.1. Hence, iV(®) = NW(®)QNW(^)QN(^), as desired.

We next show that

(8.62) if Xe ϊf, Ye ϊ j , then | C(XΓ) |3 - 34 .

Let Z = XY. Let X* = X«, F * = F 5 , ^ * = X * Γ * . Then X* e ϊ 4 ,
F * G X3, so it suffices to show that S is a S3-subgroup of C(Z*).
Suppose false. Let S be a S3-subgroup of C(ϊ*) which contains S),
and let ® g ® * g ® , with | ® * : ® | = 3. Then ®* SJV(®) SJV(5β), so
S * g $ . However, ® = Cφ(Z*). Notice that we have shown that
® Δ C(Z*). Namely, ® is a S3-subgroup of C(Z*), and since ® e &
we have OZ,{C(Z*)) - 1 so that

(8.63) ® is a normal S3-subgroup of C(Z*) .

Retaining the preceding notation we will show that <T> =
Suppose false. Since <I> = C^(9ΐ*), it follows that 1 Φ [C^(Z), 3ΐ*].
This violates the fact that C(Z) is 3-closed by (8.63).

We next observe that 3c2 - ϊ 6 so that | C(X2) |2 = | C(Xδ) |2 = 8. These
equalities together with the preceding paragraph show that & is extra
special of width 2 and that

& is the central product of quaternion groups
{8.64)

O, £ι19 where O = C (̂3c5), £X = C^(ϊ2)
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This choice of notation conforms with our previous definition of Q.
Since 3ΐ* maps onto a S3-subgroup of SC@(3£), it follows that

9ΐ*$ <\ m,. Let

(8.65) £ = Nmβt*) ,

so that Sflf i = </>, and 23^ = ffiβ. S acts as a permutation group
on the subgroups of 3ΐ* of order 3. By the previous arguments, ϊ 2

and X5 are permuted among themselves. Let

(8.66) S* - N2(l2) = JVgfo)

so that I S: 8* | ^ 2. Also, if L e £* and L centralizes X6, then L e 9t*<7>.
Hence, S* = 9ΐ*£, and | ίΰt,: $8* | ^ 2. Let S2 be a S2-subgroup of £
which contains φ. Thus, | S21 = 4 or 8.

We must now show that

(8.67) S = S* .

Suppose false. Since 3ΐ*^ = <3£3,3£4>, it follows that S^ normalizes
<X3, ϊ 4>. From (8.63), we conclude that ® char C(3E3X4). Hence, iV(3£33e4) £
iV(®). Now by (8.61), we have JV(SB) giV(^). Thus 8 ? normalizes *β.

It is a straightforward consequence of (8.55) through (8.60) that
φ o U Φo is the set of elements of Sβ of order at most 3. Hence, 5β
contains exactly 36 - 2 35 + 34 = 4.34 elements of order 9. Thus, some
involution IQ of S? centralizes an element P of $ of order 9. It is
clear from (8.53) that Io ί §.

If XeWM, we will show that C(X)SN(^). Suppose false. Let
2 K * G ^ ^ ( © ) with C(X)^2K*. We may apply all the preceding
results to 9K* in place of 2W and conclude that 03(9W*) is of exponent
3 and order 35. However, ^β0 and φ 0 are the only subgroups of β̂
meeting these conditions, so C(X) C 3K or C(X) C 501, from which the
desired containment is obvious. In particular,

(8.68) C(P3)QN($) .

Let % be a S2-subgroup of JV(φ) which contains £!?. By (8.23)
9ΐ2 is faithfully represented on 83 = Z(Sβ) = <3c5, 3£6>. It is clear that
Aut (Sβ) is a 2, 3-group, so we conclude that

(8.69)

It now follows from (8.68), (8.69), and (8.53) that

(8.70) C(P3) -

By hypothesis, C(/o) is solvable. Let g = O2(C(/0))- Suppose <P>
acts faithfully on g. Then m(g) ̂  6, since P has order 9. But Wlk
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contains a £2-subgroup of ©, and since S2-subgroups of 23^ are ex-
tensions of $ by a 4 group, it follows that every 2-subgroup of © is
generated by 4-elements (naturally, this uses the action of the 4-group
on B). Hence, P3 centralizes g. By (8.70), we get g = </0>.

By Lemma 5.38 (a)(ii), C(I0) contains an element II of <g (̂2). Since
O2(C(I0)) = </0>, we get that 02}2,(C(Io)) = </0> x OV(C(I<>)), so that by
Lemma 7.1, U centralizes O2)2,(C(I0)) But C(I0) is solvable, so that
02,2/(C(/o)) contains its centralizer. Thus, tt£02>2,(C(io))> an absurdity.
This contradiction establishes (8.67). Notice that (8.67) is equivalent to

(8.71) m, = $3ΐ*<J> .

Since J inverts 91*, it follows that £ χ j > and £ιL<(jy are both
isomorphic to £2-subgroups of GL(2, 3). This implies that

(8.72) CmSJ) i s elementary of order 8 .

The hard work is now completed. We may now determine the
Weyl group. Recall that IL = JQ, I2 = IQ, so that Ix and I2 are invo-
lutions. Let W — /i/2. Thus W3 centralizes ξ>. Since W centralizes
no element of £>*, W3 is not in £>#. Since Ws e O(φ) S 2)ϊi> and since
the structure of C^J) is given in (8.72), it follows that PF6 = 1, so
that W is of order 3 or 6.

From (8.49), we get that χγ9 = ϊf* ^ 3£lf and conclude that TΓ is
of order 6. Thus,

(8.73) Wo = Ws is an involution in the center of </x, /2> - 2B0 .

We argue that

(8.74) «β Π Ψv° = 1 .

Since 3̂ π Ψv° is normalized by $ and by TΓ0, (8.53) implies that if
r - $ Π ΦVo, then

φ* = (ξβ* n <*,, x6»(φ* n <x2,3e5»(ί5* n <Ϊ», X 4» .

If X e X53& we know that C(X) S JV(©). This fact, coupled with (8.49)
implies that φ * = 1, so that (8.74) holds.

Let 35 = β̂£>. (No confusion with previous notation is to be feared.)
We then get that Tt = S3 U S3US3, m = S3 U 93I233. Hence, (8.49) implies
that conditions (i') and (iv) of Theoreme 1 of [40] are satisfied. Hence,
S32δo33 = @o is a group and if we let 93X be the largest subset of 33
such that 33f s φ * \ it follows easily from (8.74) that each element of
@o has a unique representation of the shape BXBX, £ G 33, Xe SB0,
Bx e 33X. Thus, | ©01 = | ^(3) |, by an easy calculation. Hence, (8.41),
(8.50), (8.51), (8.53), (8.54), (8.57), (8.58), (8.59), (8.60), (8.73) determine
the multiplication table of @0. Thus, if ©* is any group which satisfies
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the hypothesis of Theorem 8.1 and also satisfies Hypothesis 8.1, it
follows that ©* contains a subgroup isomorphic to ©0. Since we may
take ©* = JS72(3), it follows that @0 ~ E2(S), and so ί(©0) = 1. Clearly,
@0 contains SKX, so that ®0 contains the centralizer of each of its
involutions. Hence, i((&>) = 1, by Lemma 5.35.

Since E2(3) does not satisfy E7tl3 (by Sylow's theorem), it follows
from Lemma 5.35 that ®0 = © = E2(3).

The remaining lemmas are proved under the following hypothesis:

HYPOTHESIS 8.2. Whenever 5β g 2K e ^ ^ ( © ) and S3 -
then

We must derive a contradiction from this hypothesis. When this
is done, the proof of Theorem 8.1 will be complete.

LEMMA 8.7. If X is a 2, S-subgroup o/@ and X3 is a S3-subgroup
of X, then F(ccy®); £3) < £ .

Proof. We assume without loss of generality that Xz g Sβ. First,
suppose £ 3 = 5β. Let X g 2ft e ^ ^ ( @ ) , and let X* be a S2,3-subgroup
of Tl containing X. Let 53 - fl^ZOP))^, £ = Cm(%>). As K < 2K, © Π X*
is a S2)3-subgroup of K. By Hypothesis 8.2, 53* g K n X*, where 53* =
53(ccϊ@(®); ^ ) . Since 55 g S3, Lemmas 7.4 and 5.38 imply that | (£ n S* |
is odd. Hence, (£ n 2* < S* implies 53* = F(ccί@(®); © Π S*)<] X*.

We may now assume that Xs c ^5. We proceed by induction on
I φ I/I SE31. Let 53* = F(cc^(S); XB). As 53* is generated by conjugates
of S3, it follows that 53* centralizes O2(X). Hence, if 53* Φ 1, then
O2(X) = 1, so that O2^(X) = O3(2;). If 53* = 1, the lemma is trivial, so
suppose 53* Φ 1. In particular, O3(X) Φ 1. If £ 3 is not a S3-subgroup
of N(OB(X)), let X* be a S2)3-subgroup of JV(O3(S:)) containing X, and let
£* be a S3~subgroup of X* which contains £ 3 . Then F(ccί@(®); 2*) <
£*. In particular, [53*, S] is a 3-group, so 53* <] 2 . Hence, we may
assume that £ 3 is a S3-subgroup of N(OB(X)).

Let 5S0 = ΩάZiO^X))), so that 53eSS0. Since | CΓ(S5B0) I is odd, it
follows that OZ(X) = CX(SSO). Suppose 53*gO2(2). Choose G in © so
that ® G g53* but S G g 0 3 ( ϊ ) , and for any subset @ of @, let @ = (S0.

It is a straightforward consequence of Hypothesis 8.2 that 3)' = 1.

As ®* acts nontrivially on QB(X), we let Q be a ©'-invariant

subgroup of Q\(X) minimal subject to [® , D] Φ 1. Let ®ό = CΦ (O),

so that I ® : S)j I = 3. Thus, f̂fi0 = CBO(®O) is invariant under ® and O.
Let JV = {i 11 ^ i ^ 4, 53- g ®0 , ® g ®0 }. If 53- g ®ό, then it is

obvious that N Φ 0 . If 53* g ® ; , then no ®^ is contained in S);, 1 <Ξ
ΐ ^ 4. Since 5B# π ®o* is of order 3 in this case, we again conclude
that N Φ 0 . Choose ieN. Thus, ® = <®ό, ® > and | ® •: 3); Π 3)0 =
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3. Since £} is faithfully represented on 2S0, it follows that [®;, SB0] Φ 1.
By Lemma 8.5, [Q, 2B0] is of order 9 and is not centralized by ® .
Since S3 Q 2δ0, so also 33 g 2δ0. Hence, £1 centralizes some £ of 33*,
so if £l = &*/Cχ(%!>o), then <© , Q*>gC(5) . By the preceding argu-
ment, [D*, ©"] is a 3-group, violating the nontrivial action of S) on
Q. Thus, S3* C O3(£), and so S3* < £, completing the proof of this
lemma.

For the remainder of this section, we let

LEMMA 8.8. ( i ) 9ΐ contains no element of j^~(2). (See Definition
2.9.)

(ii) // %0 is any 2-subgroup of -ϊi, then A^(X0) does not contain
a subgroup of type (3, 3).

(iii) If (£ is any subgroup of Z(33) of type (3, 3), then (SI, (£) e ^K
for all §1 6^(2) . (See Definition 7.2).

(iv) //£i is α% abelian 2-subgroup of%l, the Λ^Zj) is a Z'-group.

Proof. We first prove (iii). We invoke Lemma 7.4, so that (iii)
will hold if we can show that (£ centralizes every element of M((£; 2).
Suppose £L G M((£; 2) is minimal subject to [O, (£] ^ 1. Let (£0 = Cg(£i) 9̂
1. Let £ be a S2,3-subgroup of C(K0) containing (£Q. Since C(K0) 2 S3,
it follows that if £ 0 is a £2,3~subgroup of C(K0) containing 33, then
33gO3(£0). By Lemma 0.7.5, we have (£gO 3(£), so that [£>,(£]£
£l n O3(3;) = 1. (iii) is proved.

Let ϊ G y ( 2 ) , £ ϋ 9 ΐ . We may assume that ϊ is a noncyclic
abelian group of order 8. Since 33gZ(33), Z(33) is noncyclic. Hence,
X contains an involution I such that C(I) Π Z(33) is noncyclic. Thus,
C(I) contains an element of ^ ( 2 ) and also a subgroup K of Z(33) of
type (3, 3). By hypothesis, C(I) is solvable, in violation of (iii). (i)
is proved.

(ii) is a straightforward consequence of (i).
To prove (iv), let 2^ be an abelian 2-subgroup of -ft minimal subject

to 3 I ! A^Zi) |. Thus, Zx is a four-group, and the involutions of £ x are
all 9^-conjugate. Thus, (iii) implies that C(I) Π Z(%$) is cyclic for all
I e %i. This implies that | Ω^Z^β)) \ ̂  33. Since the reverse inequality
holds by (5), we find that Z(φ) f] Z(33) is cyclic. This is not the case,
since 33 gZ(^5) Π Z(33). (iv) is proved.

LEMMA 8.9. If Z is a 2, S-subgroup of © and X contains a
conjugate of 33, then X is contained in conjugate of 9ΐ.

Proof. We assume without loss of generality that S is a maximal
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2, 3-subgroup of ©, and that 33 g ϊ . Since 33 centralizes 02{X), it
follows that O2(2;) = 1, and so OB(X) Φ 1. Let £ 3 be a S3-subgroup of
X. By maximality of X, £ 3 is a S3-subgroup of JV(O3(£)). We assume
without loss of generality that £ 3 S 5β. This implies that 33 S Z(O3(2:)).

If £ contains a conjugate of ®, we are done by Lemma 8.7. We
therefore suppose that for each G in ©, ®G §£ SL

Suppose 1 <Z i ^ 4, and 3^ n O3(S) = ^ n X*. We conclude that
®ίϋO 3 (£) . Since ®§££3, we may choose i with l ^ i ^ 4 such that
®4 Π O8(S) c ^ f l £ 8 . Set g = ®, n O3(£), g* = ®< Π £ 8 . The index ΐ
is fixed in the following discussion. We note that g and g* are
normal elementary subgroups of XB.

Let Q be a g*-invariant subgroup of Q3(£) minimal subject to
[§*, £1] =7̂  1. Thus, §* acts irreducibly on the Frattini quotient group
of O. We remark that Q is available, since O2(ίE) = 1.

Let 3S0 = ΩάZiO^X))), so that 33g3S0.
Choose Q e D - D'. We will show that 33ρ Π C(®i) = 1. Suppose

false, and that B in 33* satisfies BQ e Cφi). Hence, for D in g* (S©<),
we have 5 ρ z ) = £ Q , or JS^ 0 ^ 1 = J5. Hence, QDQ~ιD~ι centralizes B
for each D in g*. This implies that D centralizes JB. Apply Lemma
8.7 to C(B) and conclude that if O = O>*/03(X), then [£}*, g*] is a
3-group. As this violates the nontrivial action of g* on Q, the as-
sertion follows.

Since 33 ρ e0 3 (£) g ^ i ^ we have 33QgiV(®,). Since ®, is 3-
reducible in iV(® )̂, it follows that 33ρ is faithfully represented o n S =
OUN(^>i)/C(^>i)). On the other hand, if B e 33*, then [C{B)Q, 33ρ, W] = 1.
This implies that 33ρ centralizes every 2'-subgroup of 8 which 33ρ

normalizes. Thus, there is a 2-subgroup Xo of iV(®i) such that Aw^iXo)
contains a subgroup of type (3, 3). This violates Lemma 8.8 by D2>z

in JV(S5i). The proof is complete.

LEMMA 8.10. // (£ is any subgroup of © of type (3, 3), then (£
centralizes every abelian subgroup in M((£; 2).

Proof. Suppose Ω is a four-group in M((£; 2) with [O, (£] Φ 1.
Let (£0 = Cg(O). Let S be a >S2,3-subgroup of C(K0) which contains @£i.
By Lemma 8.9, S G ^ 9 ΐ for some G in ©. Lemma 8.8 (iv) is violated.

LEMMA 8.11. Hypothesis 7.2 is satisfied with p = 2. Further-
more, 39ΐ Λαs £fce following properties:

( i ) S3-subgroups of Wl are noncyclic.
(ii) W is a 2, 3-group.
(iii) Hft contains no elementary subgroup of order 27.
(iv) m(3K0) ^ 2 for every 3-subgroup 3K0 o/ 2K
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Proof. Let Z be a 2, 3-subgroup of ® which contains elements
of J7~(2) and J?~(3); Z is available by hypothesis (vii) of Theorem 8.1.
We assume without loss of generality that Z is a maximal 2, 3-subgroup
of ©. By Lemma 8.8 (i), Z is contained in no conjugate of 9ΐ. By
Lemma 8.9, Z contains no conjugate of S3. This fact together with
maximality of Z implies that O3(Z) = 1.

Let K be a subgroup of Z of type (3, 3) and let £ 3 be a S3-subgroup
of Z containing (£. By Lemma 8.10, © centralizes Z(O2(Z)). Hence,

centralizes Z(O2(Z)). By Lemma 8.9, each S2,3-subgroup of
^) is contained in a conjugate of 9ΐ. Hence, Z2 centralizes

Z{O2{Z)) by Lemma 8.8 (iv). By hypothesis (iv) of Theorem 8.1,
Z-C(Z(O2(Z)) is solvable, so by maximality of Z, we conclude that Z
is a S2>3~subgroup of ZC(Z(O2(Z))). Hence, we can choose a S2-subgroup
φ 2 of © such that ^32 Π Z = Z2 is a £2-subgroup of Z, and be guaranteed
that Z(φ 2 )gZ(O 2 (ϊ)) . Hence, SgC(Z(*β2)), so by maximality of £,
we have £ 2 = φ 2 .

By Lemma 7.4, Ω^ZiO^Z))) = Ω^ZiZ,)) is of order 2 and

By construction, £3<Ξ3K, so (i) is satisfied. By Lemma 7.5, O2(3K) = £>
is of symplectic type with w ^ 4. (ii) is an easy consequence of this
fact together with (i).

Suppose Of is an elementary subgroup of Wl of order 27. Clearly,
the width of $ is at least 3. By Lemma 7.5, no element of @# central-
izes any four-subgroup of £>. This is obviously impossible.

It remains to prove (iv). By Lemma 7.5 (c), 23ΐ0 is isomorphic to
a subgroup 90̂  of (Z3 $ Zz) x Zz. By Lemma 8.11 (iii), the intersec-
tion of (Mί with the normal abelian subgroup 2ί such that m(2t) = 4
in (Z3 — Z3) x ^3, is of order at most 32. It follows that 2K0 is either
trivial, abelian of type (3), (3, 3) or (32, 3), or non abelian of order 33.
In all cases, m(SK0) ^ 2. The proof is complete.

Let K be a subgroup of SK of type (3, 3), let Z3 be a S3-subgroup
of Wl containing K, and let & = [^, ©], where φ = O2(SK). Let I be
the involution of £>'. Choose C in (£* so that C^iC) = O is not
centralized by (£. We may assume that C^(C)^9ΐ, since replacing
SDΪ by a suitable conjugate guarantees this. Let 8 be a S2,3-subgroup
of 9ΐ containing (££}. This notation is fixed throughout the concluding
argument.

LEMMA 8.12. ( i ) £ι is a quaternion group.
(ii) 9Ϊ is α 2, S-group.
(iii) 9 ίlG^C9;?(©) <md 9̂  is ίΛe only element of ^Z9*((§>) which

contains $β.
(iv) 9ΐ is the only element of ^€C9^(©) which contains (£.
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Proof. Since φi is extra special, so is Q. Since Q g O 3 ' ^ ) ,
Lemma 8.8 and Lemma 5.27 imply (i)

By (i) and Lemma 8.8, Q is a S2-subgroup of O3'(9i). Clearly,
since 3K is a 2, 3-group, iV (̂Q) is a 2, 3-group. Since (£DS03'(9ΐ), it
follows that Q£O3'(9Ϊ)'. Hence, Q. has a normal complement & in
O3'($ft)'. To prove (ii), it suffices to show that $ is a 3-group. Let
$ 0 be a £3/-subgroup of ® normalized by Q. Then I inverts ί£0 since
^ is a 2, 3-group. Choose g char O8(ί£) with ker (B -> Aut (g)) a 3-
group, and with § of exponent 3. Such an g *s available by Lemma
5.18 and 0.3.6. As £} is nonabelian, $0 is noncyclic. It follows readily
that /centralizes a subgroup of %/D(%) of order 27. This implies that
Cg(I) contains an elementary subgroup of order 27, in violation of
Lemma 8.11. (ii) is proved.

Let φ g J ί ^ ^fS*(®). By Hypothesis 8.2, it suffices to show that
C^)S% where §8 = ^(Z^))**. Since CKl(S) g i V ^ Z ^ ) ) ) , and
since l e iV($β) giV^^Z^β))), we may replace 9^ by an element of
^€9^(©) which contains NiΩ^Ziψ))) and so assume that Ie%.

Let S be a SB,-subgroup of % which contains /. By Lemma 8.8 (i)
and Lemma 8.9, it follows that S has a normal 2-complement St. Since
3K is a 2, 3-group, I inverts B. Suppose by way of contradiction that
& Φ 1. Since O3/(%) = 1, $</> is faithfully represented as automorphisms
of OsiSSlj). By Lemma 8.11 (iv), the only possibility is that | $ | = 5 ,
that C(St) Π OB(%) 3 D(O2(%)) and that 0M/C(B) ΓΊ O3(%) is elementary
of order 34. Since $1 is an S-subgroup of %, it follows that SlOδ,(%)/
O6/(5Xii) is a chief factor of 5βlβ Hence, /g5Ji[. This implies that
O8(5Wi) = 5β, so that % s iV(SS) - SR. Hence, 9Ϊ, = SW. This is absurd
since IeW. This contradiction forces & = 1, that is, 9^ is a 2, 3-group.

Since | C ^ Z ^ ) ) ) | is odd, it follows that C^ffi = C^Q^Q^fl.
Thus, (iii) holds.

We turn to (iv). Let &* = {̂ 01 (i) φo is a 3-subgroup of N, (ii) ̂ 0 3
SBV for some iNΓ in •?£, (iii) β̂0 is contained in a solvable subgroup of ©
which is not contained in •?£.}. Suppose by way of contradiction that
^ Φ 0. Choose ^30 in & with | ̂ 501 maximal. We assume without
loss of generality that Ŝo ϋ Sβ. Let S be a solvable subgroup of ©
which contains ^30 and is minimal subject to ίϊgSft. Since 3̂ £ < \̂ it
follows that φ o c φ , so maximality of | *β01 forces N^($o)£^. In
particular, N(%) S 5ft. This implies that β̂0 is a Sp-subgroup of Sϊ.
Minimality of ^ yields that β = φô i> where $x is a g-group for some
prime g ^ 3.

Since W^^Q for some N in Sft, it follows that OA^)S% as
O3,(^) is generated by its subgroups O3,(ίϊ) ΓΊ C(B), 5 G (95̂ )*.

Suppose q = 2. Then by Lemma 8.9, ®^%cG for some G in ©.
Hence φo c 9ΪG. Let Sβ* be a ^-subgroup of 9ΐ n 9ϊσ which contains 5β0.
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Maximality of 15β01 forces φ o = ψ. But then since N(φ0) S$l, we get
that % is a S3-subgroup of W. This is absurd. Hence, q Φ 2.

It is a consequence of [43] that ί£ = Ov(^)^L^l29 where

SR. This

1, = Cft(Z(5β0)), §I2 = ΛΓft(J(5β0))

Maximality of 15β01 forces N(Z(%)) g 5TC, JV(J(5β0)) S ^ so S
establishes (iv).

We may now complete the proof of Theorem 8.1. Choose Cι in (£*.
Then C f Q i S , so that C ΐ Q S ^ Hence, %Q% in violation of
Lemma 8.8 (ii).

9* A characterization of £4(3),

THEOREM 9.1. S4(3) is the only simple group © with the following
properties:

( i ) © contains an elementary subgroup of order 27.
( ii ) If ^ is a SB-subgroup of ® and Sle^« 3(5β), then M(2ί) is

(i i i) TΛe center of a S3-subgroup of © is cyclic.
(iv ) TΛβ normalizer of every nonidentity Z-subgroup of © is

solvable.
( v ) S2-subgroups of © contain normal elementary subgroups of

order 8.
( vi) If X is a S2-subgroup of © and S3e^~8(ίE), £/*<ew M(35) is

(vii) T/̂ e centralizer of every involution of © is solvable.
(viii) 2 - 3 . (See Definition 2.9.).

After careful translation, it can be shown that Dickson [12] lists
several properties of S4(3). Namely, A(4, 3) is Dickson's notation for
S4(3) (pp. 89-100). Now in § 194 (pp. 109-191), Dickson sets F0(m, pn) =
O[(m, pn) (for m odd), so by § 189 (pp. 179-183), A(4, 3) = FO(5, 3) =
S4(3). Thus, by §270 (pp. 292-293), S4(3) has a subgroup of index 27
which is a split extension of an elementary group of order 16 by A5.
So S4(3) is not an JV-group. That S4(3) satisfies the hypothesis of
Theorem 9.1 is left as an exercise. We remark that (viii) holds for
S4(3), the centralizers of suitable involutions exhibiting 2 — 3.

Throughout most of this section the following notation is used:
5β is a S3-subgroup of ©,

By hypothesis (iii), | £ | = 3, and by hypothesis (ii), O3,(9£) = 1. By
hypothesis (iv), 5tt is solvable, so by Lemma 1.2.3 of [26], CM) = Z{&).
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Clearly, C^)
We remark that © satisfies Hypothesis 7.4 and also satisfies Hy-

pothesis 7.1 for p = 2 and for p = 3.

HYPOTHESIS 9.1. Q is the central product of a cyclic group and a
nonabelian group of order 27 and exponent 3.

LEMMA 9.1. Assume that Hypothesis 9.1 is satisfied. Then
( i ) | ? β : $ | = 3.
(ii) | £ | = 2 7 .
(iii) O3'(Ώ)/£ = SL(2, 3).

Proof. We remark that GL(2, 3) contains no noncyclic abelian
subgroup of order 8.

As 9ί/£> is faithfully represented on β1(ξ>)/Z>(β1(φ)), it follows that
•Jϊ is a 2, 3-group, and 9t/φ is isomorphic to a subgroup of GL(2, 3).
As $ contains no elementary subgroup of order 27 and Sβ does, (i)
holds.

Let §1 be a normal elementary subgroup of Sβ of order 27. Since
• 15β: £ I = 3, it follows that O3'(%)/£ = SL(2, 3), yielding (iii). Let Q
be a S2-subgroup of O3'(!K) so that O is a quaternion group. Let 2I0 =
Sί Π § . Let / be the involution of £}. As J inverts every element of
^i(Φ)/3> it folllows that 7 normalizes 2I0. Since I also normalizes Sβ,
it follows that / normalizes Gg(2I0) = <(2ί> ̂ (^))> Hence, J normalizes
fli(Cφ(Sto)) - 2ί. Since I centralizes the factor O3'(5R)/O3/(%)^ = ?β/$,
it follows that 21 — §I0 contains an element Aλ such that A{ = Aλ. Since
/ also centralizes 3^ it follows that C^(I) = ζA^ x 3 = 2li Also,
Cφ(/) = 2ti3i, where Si = Z(fQ), and it is clear that C^(I) is a S3-
subgroup of C^I).

Suppose I 3i I > 3. Thus, | 3̂ | > 34, so Lemma 7.6 is at our disposal.
If G e © and 3? g 5β, then ^(3?) centralizes φ, and so ^(3?) = Ω^) =
3, so that G 6 % 3? = 3 : . We may therefore apply Theorem 14.4.2
of [21] and conclude that Sβgϋft'. Since Aut (30 is abelian, this implies
that 3i — ^(Φ) We may therefore appeal to Lemma 7.6 (d) and con-
clude that if §1* is any subgroup of §1 of type (3, 3), then 31* centralizes
every element of H(2ί*;2). Taking 3ί* = 3^, Lemma 7.4 is violated.
This completes the proof of (ii).

LEMMA 9.2. Assume that Hypothesis 9.1 is satisfied. Let
21 G ιS^U3(Sβ) and let I be an involution of 5JΪ'. Then

( i ) S2-subgroups of 31 are quaternion.
(ii) 1/2I0 = C^(J), then

( a ) I Sto I = 9.
( b) 2I0 contains a subgroup 2^ of order 3 such that (7(210 §S 9ΐ.
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(iii) IfWt = C(I), then O2(SK) is extra special of width 2, O2,(SDΪ) =
1, and I Wl: O2(SK) |2 = 2.

(iv) AQW)9ZΣ<.

Proof. Let G be a S2-subgroup of O3'(5tt). By Lemma 9.1 (i), G
is a quaternion group. It clearly suffices to prove the lemma on the
assumption that I is the involution of G.

By Lemma 9.1 and hypothesis (i) of Theorem 9.1, the group β̂ is
Zz $ Z%. Hence, 2ί char φ . Since I normalizes φ, it therefore normal-
izes 31. This implies (ii)(a), since I centralizes Z(Q) and O3/(9^)/O3'($ft)\

Clearly, Tt contains an element of ^ ( 2 ) . It is equally clear from
(B) and Lemma 9.1 that

if X is any noncyclic subgroup of 2ί, then X
( * )

centralizes every abelian subgroup of H(X; 2) .

Let X be a S2,3-subgroup of SJΪ which contains <(2I0, Q>. Let X2

be a S2-subgroup of £ which contains O. We may apply Lemma 7.5
with 3ί0 in the role of S3. Thus, there is an element 9K of ^tS^(®)
satisfying the conclusions of Lemma 7.5. By Lemma 7.5 (e), we get
Q g O 2 ( i ) , Hence, </> < §ί, so Wl = C(I) = SK. Since </> is a S2-
subgroup of C(3ί0), it follows that

(9.1) O2(9K) is extra special of width w = 2, 3, or 4 .

Thus, (ii)(b) holds.
Again, let X be a noncyclic subgroup of 21. Suppose that

I C(X) n N(Ά) I is even. Then of course | X | = 9, as §1 is a self-central-
izing subgroup of @. Let J be an involution of C(X) Π iV(2I). Then
(*) and Lemma 7.5 yield that J and / are conjugate in ©. Since X
is faithfully represented on O2(C(J)), we can choose a subgroup 2) of
X of order 3 such that

(9.2) X does not centralize C(W Π O2(C(J)) .

Thus, C(W is not 3-closed. Thus, 21 is not a S3-subgroup of C(2}) This
implies that

(9.3) C(D) contains a S3-subgroup of © .

Let φ be a S3-subgroup of C(2)) which contains 2t. Thus <φ, J > g
C(2)). Thus, / normalizes both 21 and O8(C(?)))> so J normalizes
<2I, O3(C(2)))> Thus, Lemma 9.1 yields that

if X is any noncyclic subgroup of 2ί, then each involution
(9.4)

of C(X) (Ί JV(3t) normalizes some S3-subgroup of iV(2t) .
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By (9.3) with the pair (2tlf 2t0) in the role of (2), X), we conclude
that (7(210 contains a S3-subgroup Ψ of ® with 2 I c ^ * . Hence, iV(2C)
is not 3-closed, since β̂ and ^3* are distinct S3-subgroups of JV(St).

Set & - JV(2I). Clearly,

a = Osφ) = (7(21), 1 - Ovφ), left.

Suppose 13 | | ! f t | . Since left, it follows that I centralizes a S13-
subgroup of ft, since the nonidentity 13-elements of GL(3, 3) are nonreal.
However, 13 | |2W|, since 4 :> w. Hence, ft is a 2, 3-group.

Let 2:0 be a S2-subgroup of 08>2(!ft), and let $t = iV^(£0). Thus,
•ft = 21$, 2C Π $ = 1, so that $ = ^@(2ί). Suppose J is an involution
of Xo and 2t Π C(J) = ϊ is noncyclic. Thus, |X| = 9. By (9.4), J
normalizes some £3-subgroup ψ of -ft. Since Sβ z> 2ί, ^ (Ί $ is of order 3.
Hence, [$ f] ίδ, J ] g £ 0 n Φ = 1, so that f n S centralizes J. Hence,
$βn$ normalizes X, that is, X<]5β. Hence, Xe ^ ( 3 ) . Thus, J centralizes
elements of ^ ( 3 ) and ^ ( 2 ) . This violates the solvability of C(J).
Hence,

(9.5) no element of 5E§ centralizes a noncyclic subgroup of 2C.

Since | Z{?§) \ = 3, β̂ Π ̂  is indecomposable on 21. Hence, ίE0 acts
on SI as a multiple of the sum of the ^-conjugates of a fixed F3-
irreducible representation p. If %Q is nonabelian, then 2 divides deg p.
Hence, 2 divides 3 = m(SI), a contradiction. Hence, £ 0 is abelian. If
XQ is not elementary, then deg p Φ 1 or 3. So deg p = 2, which again
gives a contradiction. Hence, £ 0 is elementary. Now (9.5) implies
that I Xo I <̂  4, so we must have equality, since £ 0 = O2(ίE) and | 3̂ n & =
3. Since JeSR n iV(Sβ), it follows that & = Σ4, which establishes (iv)
and also (i).

It remains to show that w = 2 and that | 3K: O2(Wl) |2 = 2, since
by (9.1) we know that as O2(SK) is extra special.

Suppose 21 is any subgroup of 21 of order 3 which is conjugate
to 3, 2C*g 3 . We contend that 2 1 * ^ 3 . Namely, let φ* be a S3-
subgroup of (7(21*) which contains 21. Then $β and 5β* both normalize
21, since | φ * : 2 l | = 3. We may thus choose N in JV(St) such that
φ*^ = sβ; since 3 = -ZΓ(̂ β), we necessarily have Wί*N = 3> as desired.

Since β̂<(/]> normalizes 3? we obtain all iV(2I)-conjugates of 3 by
transformation with elements of £ 0 . We will show that 3 a n d 2Xi are
the only iV(2C)-conjugates of 3 which are in 2I0. If Ke XI and 3 * S 2C0,
then since no element of XI normalizes 3> we conclude that K normalizes
2I0. It is clear that Xo does not normalize 2ί0, so our assertion follows.

It is an immediate consequence of the preceding paragraph that
w = 2. That is, only 3 and 2IX centralize elements of O2(SK) — <T>.
Since JV(St0) S JV(SΪ), we have | 2K: O2(3K) |2 - 2, and the proof is complete.
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We now change notation somewhat in order to conform with more
standard notation. Let SBX = N(8), 332 = JV(St), and let S3 = *£</>, § =
</>. Let £}x be a S2-subgroup of S5X which contains I, and let O2 be
a £2-subgroup of S32 which contains I. Thus, Ox is a quaternion group
and O 2 is a dihedral group of order 8. Let £ 2 = O2 π O3'(332), so that
SΓ2 is a four-group.

Let (£2 = iVi32(S2). Thus, (£2 is a complement to §1 in 932 and (£2 ^
Σ±. Let Xi = β̂ Π &2, so that Xx is of order 3 and is inverted by I.
Since Og^) contains all elements of $β which are inverted by I, we
have ϊiSOaίSSi). Since £X permutes transitively the subgroups of
Oβ(S5i)/3 of order 3, we may choose ζ) in D,t so that 9c2 = 36? lies in 21.
Thus, I inverts X2, since Q centralizes I. Let <(J> = Z2 Π C(/), that
is, let J be a generator for Z(£ί2). Since 21 Π C(I) is of order 9, ϊ 2 is
the only subgroup of 2t of order 3 which is inverted by J, so that
Til = 9c2. Let X4 = $ and set ϊ 3 = X{. We may now draw up the
following table:

Q

Let

x 2

X,

Q be a generator for Xi? so that we have the following table:

/

X,

X,

X,

Xτι

Xs

Let $1 = <J, Q>. Since S^gSK, the structure of 5i may be easily
determined. Let Ox, Of be the quaternion subgroups of O3(2K), QL

being as above. As J normalizes <(3£3,3£4> and <Xj, Ϊ4> is a S3-subgroup
of 2K, it follows that Of = Of. Hence, (JQ)2 = JQJQ is an involution
distinct from /. This means that %1/ζiy is a dihedral group of order
8 with involutory generators J</>, Q</>.

Finally, notice that SB - φ</> = JV(«β).
Since (JZΊ)3 = 1 and since (OX3)

3 e </>, it is straightforward to
deduce from the first table that 353̂ 33 = ®1 is a group. We will
determine the multiplication table of (Sx. First, we assume without
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loss of generality that (QX3)
3 = 1, since replacement of Q by Q-1 = QI

will achieve this if (QX3)
3 = /. Since / inverts Xx and centralizes X3,

it follows easily that I neither inverts nor centralizes [X19 X3]. Thus,
we may choose X2, X4 as generators for X2, X4 respectively such that

(9.6) [Xlf X3] = X2X4 .

By construction, X4 = 3 = Z(Sβ), so to complete the determination of
33, we must compute [Xlf X2\. Conjugation of (9.6) by / yields
[Xr1, X3] = XτιX» from which we find easily that [X19 X2] = X4.

Let X^ = X2\ Since (QX3)
3 = 1, an easy calculation (conjugation

of (9.6) by Q) shows that a = + 1 . Since J e £ 2 <j (£2, it follows that
C%(J) has order 3. Since J normalizes but does not invert <(X3, X>,
it follows that C%(J) S <X3, X4> Hence, Xί - Xr1. Let X^ - XΛ
Since (XJf = 1, an easy calculation (conjugation of (9.6) by J ) shows
that b = - 1 .

Set Wo = (JQ2). We argue that

(9.7) φ n Ψv° = 1 .

Suppose by way contradiction that 9.7 is false. Since Wo is an invo-
lution, ® = φ Π ̂ w° is normalized by Wo. Since T^oeZ(9ΐ), it follows
that φ = </> also normalizes ®. Since Cφ(/) = <X3, X4> and since
Wo e SK, it follows from the construction of Sft that / inverts ®. Thus,
® c OaίSO, since 0,(33^ contains all the elements of Sβ which are inverted
by /. As ® is abelian, and as / centralizes X4 = Z(O$bj)), it follows
that I ® I = 3. There are exactly 4 subgroups of Oβdj) of order 3
which are inverted by /; they are all of the shape Hf for some Q*
in Ox. Since J normalizes ϊ 2 and since £1, = <Q> U <QX3> U <QX^>,
we may assume that ® = 3£f, where Q* is one of 1, Q, XT'QXB, X3QX3"1.
Since T70 normalizes ®, we get that Q* I^Q*""1 e iV(9£2). Since Q* e 9?ί
and T70 e O2(9K), we get that Q* WoQ*-1 e JV(ϊ2) Π O2(2K) = S, say. Since
/ inverts X2, it follows that Ig/>(S). Thus, 8 is elementary. But
1 and ζiy are the only elementary subgroups of O2(2K) which admit
<X3, X4>, so Q* TF0Q*-1 = </>. This is not the case, since Q* e 93ΐ,
JeZ(2R), and / ^ WQ. This proves (9.7).

Set 2S = {1, Q, /, QJ, JQ, QJQ, JQJ, WQ}, a set of representatives
for the cosets of $ in 91. For each W in SB, let 33^ = <ϊ< | 1 ^ i ^ 4,
ϊ^-igsp^o>. i t follows that condition (iii) of Theoreme I of [36] is
satisfied, so by that theorem, so is condition (ii), that is, if W19 W2 e 2β
and BWJ5 — BW2B, then W1 = W2. In view of our preceding infor-
mation, we conclude that each element of ®1 has a normal form of
the shape PHWP', where Pe % He £, We SB, P ' e ^8W. Furthermore,
it is clear that the normal forms for PHWP'J and PHWP'Q are
determined by our information. This implies immediately that if @*
is any group which satisfies the hypothesis of Theorem 9.1 and Hy-
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pothesis 9.1, then ©* contains a subgroup ©? isomorphic to @lβ Taking
©* = £4(3), a comparison of orders yields © : = S4(S). In particular,
i(@i) = 2 and I, T70 are representatives for the two classes of involutions
of ©!. Since Wl = ζQly J, X3, X4>, we have 2Pΐ g ®,. We will show that
C(TΓo)S®i. Let S = (MC©^ TFo)). Then $ is elementary of order 24

and 5£ is characteristic in a S2-subgroup of C^CWQ). Thus, it suffices
to show that N($i) — N^St). Since N^St) is an extension of $ by
A5 and since $ = C(5B), it follows that A^) is a subgroup of Aut (SB) =
L4(2) which contains a subgroup isomorphic to Aδ and has S2-subgroups
of order 4. Hence, A^(S) = ^4©^^) = Aδ. Hence, ©x contains the
centralizer of each of its involutions. By Lemma 5.35, © = ©lβ Thus,
Theorem 9.1 is proved in case Hypothesis 9.1 is satisfied.

We now revert to our previous notation.

HYPOTHESIS 9.2. φ is of symplectic type and width w ^ 2.

HYPOTHESIS 9.3. ( i ) £> is extra special of order 35.

( ϋ ) | ? P I = 3 6 .
(iii) ,3 is not weakly closed in £>.

Lemmas 9.3 through 9.10 are all proved under Hypothesis 9.2.
[Notice that Hypothesis 9.3 trivially implies Hypothesis 9.2.

LEMMA 9.3. ( i ) C(3) d°es n°t contain a four-group.
(ii) If £l is any abelian 2-subgroup of 5X2:, then A^c(£i) is a 2-

group.
(iii) If 31 is any subgroup of $ of type (3, 3) which contains 3>

then I C(Sί) | is odd.
(iv) // 21 is any subgroup of ίg of type (3, 3) which contains 3,

then Si e g 7 (3).

Proof. Clearly, (i) implies (ii), and (iii) implies (i). Suppose (iv)
holds, but / is an involution in C(2ί). By Lemma 5.37, C(I) contains
an element of ^ ( 2 ) . By Lemma 7.4, C(I) is nonsolvable. Hence, (iv)
implies (iii). To complete the proof of the lemma, it suffices to prove
<iv). However, (iv) is a consequence of Lemma 7.2.

LEMMA 9.4. Suppose BeΩ^lQ) - 3 and φ 0 = C§(B). Then

x

Proof. Since 3 c $0, it follows that C(ξ>0) = C^(φo) Since a S3,-
subgroup of 9̂  is faithfully represented on φ, it follows that C(φ0) is
a 3-group. It suffices to show that C(φo)Cφ. Suppose false and
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C e C(£o), C$$. We may assume that C 3 e §. In this case, <C>/<C8>
is faithfully represented on QJflft) and by Lemma 5.30, it follows that
[Qlffi)f (Cy\ = O is a quaternion group. Let Q b e a subgroup of 9ί
incident with O. Clearly, § = C^ (£})[£}, £>] and Cg(£i) commutes ele-
ment wise with [Q, φ]. By Lemma 9.3 (iii), Q' centralizes no noncyclic
subgroup of Q. It follows that C^(Q) = Z(φ) is cyclic. However,
w i> 2 and C centralizes £>0.

LEMMA 9.5. Hypothesis 9.3 is woί satisfied.

Proof. Suppose false.

Let 3T = {3i\ Si S & 3i ~ 3, Si =* 3} By Hypothesis 9.3 (iii),
% Φ 0 . Since § < 9ΐ, %: is invariant in $β. Choose & e ^ such
that Cφ(3i) is a S3-subgroup of C^(3i) Let ^ 0 = Cφ(3i).

If ^β0 = Cφ(3i)» then 3 char Sβ0. This is impossible since φ 0 is
not a S3-subgroup of C(3i) Hence, | $β01 = 35.

Let ® = <3, 3X>, so that S g Z ( φ f l ) . If S c Z ( f t ) , then choose
ZeZ(%) — φ, so that Z centralizes a 3-dimensional subspace of §/£>'.
This implies that some involution of O3'(9i) has a noncyclic fixed point
set on § , in violation of Lemma 9.3 (iii). Hence, ® = 2Γ(φ0).

Let φ* be a S3-subgroup of C(3i) which contains Sβ0. Thus,.
<5β, ί?*>SiV(φo)giV(®), so O3'(A@(®)) = SL(2, 3).

By Lemma 9.3, | C(®) | is odd. Since % is a S3-subgroup of C(SD>
and since O8,(C(®)) = 1, it follows that φ o - C(®). Hence, JV(*β0) =•
JV(S)). Let 2K - JV(S).

Let Q be a S2-subgroup of O3'(9ΐ). Thus, O is a quaternion group-
Let J be the involution of £}. Let O* be a S2-subgroup of O3'(SK).
Thus D* is a quaternion group. Let I be the involution of £}*. Since J
inverts £>/£>', Je-Wl. Since I inverts ®, Ie%l. We assume without
loss of generality that I normalizes £1 and J normalizes Q*.

Since J* neither inverts nor centralizes 35, it is clear that -4@(®) = :

(?L(2, 3) and so </, Q*)> is isomorphic to a S2-subgroup of GL(2, 3)..
Let Q* be an element of Q* of order 4 which is inverted by J.

We will show that <7, D> is isomorphic to a S2-subgroup of GL(2, 3).
Since Ie^fl, we need only prove that / inverts 3̂o/̂ Po Π φ. Suppose
false. Then / centralizes ^βo/^o Π φ. We know that ® C φj, because
3K operates irreducibly on ® and ® contains 3 = (̂ Po Π Φ)'. Since O*
is faithfully represented on ^30, there must be a 2-dimensional subspace
of φo//>(^βo) which I inverts and Q* leaves invariant. Since I central-
izes φo/φo n § and I φ01 = 35, we conclude that ® = ψQ = Z>(^0), and
that φ o n © / ® is the subspace of φo/Φό inverted by J. This forces I
to invert both % n Φ/® and ®, that is, to invert $ o n § . So φ o Π $ is.
abelian, which is false.

Let Q be an element of £1 of order 4 which is inverted by /.
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Set 3£6 = 3 Since J normalizes ® and centralizes ϊ 6 , we can
choose an element X5 of S of order 3 such that Xi — Xr1. Let X5 =
<X5>, 3E4 - 11 X4 = X5

Q. Then we have relations XI = Xj\ Xi = Xj\
Xi = Xt, Xi = ΪΓ 1 - Suppose [X4, X5] ^ 1. The following argument is
designed to exclude this possibility.

Let [X4, X5] = X6 so that X6 is a generator for 366. Since X4 g φ0> it
follows that φ o ίΊ C(J) is of order 3 with generator X3, say. Thus,

[<X3, X4> = Cy(I) is of order 9, so that [X3, X4] = 1. As φ contains all the
elements of $ which are centralized by I, we have X3 e H. Since <X3> =
Cqo(I), it follows that J normalizes <X3>, so that Xg7 = X;r\ as J inverts

Let X2 = X3

ρ Since [X3, X4] - 1, so also [X2, X?] = 1. But X4

ρ =
= XΪ\ so X2 centralizes X5, that is, X2 G φ o . Let X : = X2

ρ*, and
let ϊ i = <3£i>, 1 ^ i ^ 6. We obtain the following data:

Table 1

Xl

Xl

Xs

χ
4

Xs

Xe

J

Xl
y—1

X3-
1

Xe

I

XΓ
1

XΓ
1

X3

X4
γ-1
A
5
Tf-1

Xl

χ
2

X
3

X4

x
5

χ
6

Table 2

Q

—

X2

χ
4

Xe

Xl

Xs

—

γ~-a
Λ
6

γa
Λ
5

Here α2 = 1, and the last two entries in Table 2 are at our disposal
since Q* normalizes <(/, jy and since 3£5, 3£6 are the only subgroups of
® of order 3 which admit <(/, jy. In addition we have the following
commutation relations:

[X{, X6] = 1, 1 ^ i <J 6, [X4, X5] = X6 ,

[X,, X5] - 1, 1 ^ i ^ 3, [X3, X4] - [X2, X4] - 1 .

Furthermore, [X2, X3] = X6\ so by Table 2, we get [X19 X3] = Xf.
Here δ2 = 1, for if δ = 0, we get X3eZ(£>), which is not the case.
The as yet undetermined commutation relations are:

[Xi, X4] = X^X^X^XQ , [Xi> X-n — X$Xb XQ

Use Table 1 and conjugate the second relation by J, obtaining e = be.
Then conjugation by / yields d = abc. Conjugation of the first relation j
by J yields t = xyb + z. Conjugation of the first relation by I yields i
y = c#.

Assume c ^ 0. Then

ςnr / ")Γ JC ~}f \ Γ9iV 5R 1 ^ ^ y^ % Q) 7(^s \

We see that ψ0 is elementary abelian. If Aety0, Be φ0, then (ABf =
J. 3J?^+ A + 1 . But e ^ o ) = 3 and so BA2+A+1 = J53[J5, ^4]3 = 1. Hence,
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there is a map φ of 5βo/̂ βί given by φ(AψQ) = A\
Clearly, φ{X$&) = 1. But Wl operates as GL(2, 3) on ©. Since

1 φ 0 : *βj I = 32, this forces M to operate as GL(2, 3) on φo/φj. In par-
ticular, the four subgroups of 3̂0/̂ K of order 3 are all conjugate under
Wfl. Hence, <p(Aφ0) = 1 for all A in φ 0 and φ o is of exponent 3.

By [21, p. 324], the order of the Burnside group of exponent 3 on
2 generators is 27. Since ^30 must be a homomorphic image of this
group, we get a contradiction, as | 3̂01 = 35 > 27. So c = 0.

Since c = 0, so also c = d = β = τ/ = 0. Since 2/ = 0, we also have
t — z. Conjugation of the first relation by Q yields [Q~ιXyQ, Xf1] =
Xϊ'XlXl. Now C(J) Π O3'(3l) = <Xn X6, JD>, so C(J) Π O3'(9ΐ) is 2-closed,
that is, X1 normalizes £ϊ. Hence, (QXO3 = Ju, u = 0 or 1. Hence,
Q~ιXxQ = JX~ιQ~ιX~ιJu. The previous commutation relation now yields
& = 0.

Since # — 0, it follows that X4 centralizes ^βo/® Hence, Q* is
forced to centralize ^βo/® This is not the case, since ® £Ξ ^3'. We
conclude that [X4, X5] — 1.

Since I centralizes X4, it follows that <X4, X5, , X6> = © <| 2R.
Namely, ® <] 2W, so we need to show that g/2) <| 2K/S). Since X4

centralizes ®, we have X4 e ^βo Since ^β0/® is of order 27 and admits
£}* as a group of automorphisms, it follows that @/S) = C$po/3)(/) <l 9JZ/S).
Thus, <2K, Q>giV(@). Since <5β, Q> = O3/(K), it follows °that both Wl
and O3'(5ft) are subgroups of JV(@).

Let g* = O8(JV(®)). Thus,

n o8(5Π) = $p0π Φ .

Suppose ©* - φ 0 Π $. Then ,3 - @*' < iV(©), against O3/(9ί) c
Hence, @* c φ o Π £ . Since | © | = 33 and | φ o n Φ I = 34, it follows that
®* = @. Thus, JV(@)/@ is isomorphic to a subgroup of Aut (@) which
(a) is solvable, (b) contains a S3-subgroup of Aut (©), (c) is 3-reduced
There are no such groups. The proof of the lemma is complete.

LEMMA 9.6. Let 33 be a subgroup of φ of type (3, 3). Then
33 e &r. (See Definition 7.3.)

Proof. We first show that if B e S3, then

(9.8) for some N in Sβ, J? centralizes an element of

Let

Suppose I SSo I > 3. Then 3S0 = f8$/D(§i) and every subgroup of SB which
contains />(&) is normal in φ. Let 2^ = SB n C(5) so that | 2B: 2Bι | ^ 3.
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Since | S30 | > 3, so also | 233L | ^ 9. Thus, B centralizes an element of
•ĝ 0β) in this case. We may assume that | 33O1 = 3.

Suppose %1/ίg has a normal subgroup ®/φ — 36 of odd order Φ 1.

Let A: be a field of characteristic 3 which contains all | ϋ | t h roots of 1.

Let 3* = k <g)F3 S3. Thus, S admits 9ty£ and k (g) S30 is the set of all

fixed points of Sβ/φ on $ . Let 58 = ®̂> S3(|θ), where UB(|θ) is the largest

X-submodule of 2$ on which 3£ acts as a multiple of the irreducible

representation p. Since 3$ inherits the non singular symplectic structure

of S3, it follows that p and p* appear with the same multiplicity in

%$, p* denoting the contragredient representation of p. Since | $β | is

odd, %$(p) and %$(p*) are not conjugate under Sβ. Hence, S30 is not 1-

dimensional in this case.
We may now assume that

(9.9) F(2l/$) is a 2-group .

If £ = sβ, then (9.8) is obvious, so suppose £ c *β. Set 9?* =
so that 15ft: 9Ϊ* | ^ 2. By Lemma 9.3 (i), together with (9.9), we con-
clude that -ft is a 2, 3-group, and that a S2 subgroup of 9ΐ* is quaternion.
Hence, | ψ. £ | = 3. Since | S501 = 3, we get that the width of £ is 1,
against Hypothesis 9.2. Thus, (9.8) holds.

Suppose 35 £ £gf. Then M(3B; 2) contains a four-group Q which is
not centralized by SB. Hence, [SB, D] = £}, and S30 = Csg(O) is of order 3.

Let K = C(SB0), φ0 = C§(SB0). By Lemma 7.2 applied to <SB0, 3>, it
follows that 3 centralizes O3/(S). Hence, [O3,((£), § 0 ] g § ί l O3,(6:) = 1.
This implies that O3/((£) = 1 by Lemma 9.4.

Let φ o be a £3-subgroup of © containing £>0 and let φ* be a Sz-
subgroup of © containing φ 0 . Then φ* = φG, so that with 3* = 3G,
it follows that 3* S-ZΓ(O8(e)). Let 3B - 3 * e , so that 2δ is 3-reducible
in (£. Set Kx = Cg(2δ). We argue that (£,0 0 = 1. If not, then
Q S C(SS), as O is an irreducible SB-module. Hence, O S C(3*), against
Lemma 9.3 (i). Hence,

(9.10) (^ Π Q = 1 .

By (5), elements of SB - SB0 have minimal polynomial (x - I)3 on SB.
We next argue that 3 S £ i If not, then £>0 contains an extra special

subgroup of width w — 1 disjoint from G .̂ We get that m(2B) ^ 2 3W~1.
Since m(SS Π §G) ^ w + 1, we have m(3S/SB n $G) ^ 2 3W-1 - w - 1.
By [32], it follows that w2 ^ 2-3"-1 - w - 1. This is false for w ^ 3,
so w = 2. Thus, C(3)/ίQ is isomorphic to a subgroup of GL(4, 3) which
(a) is solvable, (b) is 3-reduced, (c) has an elementary subgroup of
order 27. There are no such groups. We conclude that S S K i -

Since 3 e E l f we have 2δ e 9ϊ, so that [SB, SB, SB] E 3 . Hence by (J5),
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(9.11) [SSB, 33, 33] = 3 .

Since S B g Z ^ ) , we get

(9.12) 3 £ ^ ( < £ i ) ,

which implies that

(9.13) (S^eSK.

By (9.13), we get [&!, 33, 33] g 3, and in particular,

(9.14) [0.(0, 33, 33] - 3 ,

equality holding by (9.11) and the obvious containment 3Sg
Now (9.14) and (9.11) yield

(9.15) 08((E) = SBi x 3B2 ,

where

(9.16) 3 c 2 S x = [O, 08((£)], and 2BX is elementary of order 27 ,

(9.17) 3B2 = C(O) Π 08((E) .

Let <£2 = Oβ^emodeO, <E8 = &2Z(£). Thus, (S^Z^) contains a S8-
subgroup of S3. Thus, Z(!Q) is normal in a S3-subgroup of (£3. By
Lemma 5.22, we get Z(£) £ O3(E3). Hence, Z(£) £ 03((£). From (9.16),
we conclude that Z(§) = 3> that is,

(9.18) ξ> is extra special .

We argue that O3,3,((£) does not centralize Z(03((£)). If it does,
then since 3 S Z(03((£)), it follows that O3,3,(&) S 5R, so [O3>3,((£), @0] S ©,
which implies that ^ S O ^ E ) , which in turn gives Q = [33, D ] S 0 3 ( E ) .
Since 330gZ((£), it follows that

[Z(08(K)), O8f8,(<£:)] and C(O3),(K)) n Z(03(K))

are disjoint nontrivial normal abelian subgroups of (£. In particular,
if φ o is a S3-subgroup of (£ containing § 0 , then Z(^β0) is not cyclic.
By Lemma 9.4, we get that i31(Z(^β0)) = 330 x 3, and in particular,

Since φ 0 S9ΐ, we get that [«p0> 33, 33] c 3 Thus, if B G 3 3 , the
minimal polynomial of I? on the Frattini quotient group of O3,3,,3((£)/
O8f3,((£) divides (a? - I)2. By (5), it follows that Q centralizes O3,3S3((£)/
08>8,(<E), and so JQeO8>8,(e).

Let Sΐ = <O, § o > ^ £ , let $ 0 = CS(O3(K)) and for any subset @ of

S, let @ = @ 0̂/ 0̂.

We argue that O £ 0 3 , ( i ) . Namely, O £ O3f3,(6:), andsoQgO3,3,(ffi),
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Thus, it suffices to show that [O8(ίϊ), £>]S$ 0 . But

[O8(«), o ] s θβ(Λ) n ow(&) £ o3(«) n o8(<£),

and so

[O3(«), o ] - [O8(ίϊ), Q, o ] s [os(Λ) n o8(e), o ] c [O8(e>, n ]

whence [O8(Λ), £1] S Λ Π

Case 1. <Q, £}*> is abelian for all He

Since [O^°, S3] admits the abelian group |>0, and since D g [ Q § 0 , 35],

it ίfollows that [0^,83] = £ΪS>. Since 3B2 = C(Q) Π 08((E) admits the

abelian group £^°, (5) implies that O^° centralizes SB2. Hence, O^° is

isomorphic to an elementary 2-subgroup of Aut (SΣSX). Since [£$°, S3] =

£}φo, we get that £ϊ = £$°, so that Q is a S2-subgroup of $.
Let ®! = O 3($mod$ 0). Thus, ^ Π φ 0 is of index 3 in £ 0 and

<βx n ξ>o> S3> = §o Since | ^ 01 is odd, it follows that D is a S2-subgroup
of fl. Let S = ^ A ί K ) and let S3 be a S3-subgroup of S which contains
$! Π ̂ >o and is normalized by ^>0. Since | 8 | is odd, it follows that S2-
subgroups of JV(S3) n S S are four-groups. If 3g/>(8 3 ), then by (B),
£2-subgroups of iV(S3) Π 8 $ centralize 83. This is not the case, as £}
does not centralize 2Sle Hence, 3 g/>(83). In particular, 3 ^ ΰ f t Π ©0)
But ^i Π §o is of index 3 in φ 0. Since @ is extra special, it follows
that w — 2. Clearly, § c $ , since 03((£) contains an elementary subgroup
of order 34. On the other hand, Lemma 9.3 implies that | Sβ: φ | <£ 3.
Hence, | Sβ: φ | = 3, and | Sβ | = 36. Since 330 is obviously not conjugate
to 3> it follows that O3((£) is elementary of order 34 and ^ 0 = 03(&)£>o>
I §o Π O3(E) I = 27. Clearly, O3((£) char Sβ0, sinceO3((£) is the only ele-
mentary subgroup of its order in ^β0.

Let 3K = N(Oa(&)) so that SK contains a S3-subgroup φ of © with
f 3 φ 0 . Since Q = Z(Sβ0) Π φ; char φo, we have 3 < φ. In particular,
4? c 2K. We therefore assume without loss of generality that φ = 5β.

It is clear that O3(S) = O3(2W) and that 33Ϊ is a 2, 3-group. It is
equally clear that k(m) = 2, so that Og03,2(9K). Hence, 35 is a S3-
subgroup of iV(Q) Π SK, so we can choose a subgroup S3X of S3 of order
3 such that S3 = S30 x S3X and such that 33X normalizes some S2-subgroup
Zo of O3f2(2R). Let 3ί = iV(20) n φ. Thus, Si is elementary of order 9,
S3, c 21 and φ = 9ίO3(3K), 21 Π O3(2K) = 1. Since O3(2K) Π C ^ ) is of
order 9, it follows that 0(330 n ^ is of order 34. Hence, (7(23,) n $ =
(7(330 Π φ; since 21 is elementary we get 21 c -ξ>.

We now choose 2^ of order 3 in 21 so that 21 does not centralize
CXQ(%). Let Sx = [(7^(210, 21]. Thus, Z, is faithfully represented on
(7(2ίi) Π O3(9K) = 31. It is straightforward to verify that | 3ΐ | - 9 and
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that Z, is a quaternion group. Hence, 3ΐ = [O9(fDl), 2IJ, so 3 ΐ S £ .
Since 3 c 3ΐ, it follows that 3 is n ° t weakly closed in φ. As this
violates Lemma 9.5, we conclude that Case 1 does not hold.

Case 2. There is an element H of £>0

 s u c h that
nonabelian.

Set 2B = <SB1, SB?>, so that <£>, Q*> normalizes 2B and centralizes
O3((£)/2B. Since SB, n €> => 3 , it follows that | SB, n W\ ^ 9. Clearly,
2Bi =£ 2Bf > since <£}, QΛ> is nonabelian. Hence, SB is elementary of
order 34. Since <Q, Q ΰ > is injected into Aut (SB) under the restriction
map, it follows readily that <£},' £}*> is the central product of two
quaternion groups, each of which necessarily admits S3. In particular,
<£}, £}*>' is of order 2 and inverts ^ Π φ Since no involution of ©
centralizes 2^ n €>, it follows that Q^o is extra special of order 32.
Hence, [O^°, O8(S)] is elementary of order 34. This implies that O3((£)
contains [Q^°, O3(E)] x 330> an elementary subgroup of order 35. Hence,
w 2̂  3.

Write O3((£) = ϊ x | ) , where

ϊ - [O8(e), O^o] and 2) = O8(K) Π

Thus, ^o normalizes both X and 2). Suppose Fe2) Π §• Then

[ Γ , φ o l C 3 Π ? ) = l , so

Hence, 2) Π φ - S30. Since [S, Φ J S φ , it follows that [?), £O]£33O.
Since O^° is absolutely irreducible on 36, it follows that

]ss3o, so

since O3((£) = O3(K mod 33O).

Clearly, | >̂0̂  C^,0(D^0) | = 3α, α = 1 or 2, since Q&° is extra special
of order 32. If a = 1, then ξ>0 Π O3(S) is of index 9 in φ, so is
nonabelian since w ^ 3. This is impossible, since 3 §£Z>(03((£)).

Suppose α = 2. Set 21 = £>0 Π O8(K). Since 21 is abelian, w = 3.
Thus, 21 G .$£»(£). Let ^ = ϊ Π 21, so that 27 ^ | 2^ | ^ 9. Suppose
2ti I = 9. Let 2I2 be a complement to 2IL in ϊ , so that | % \ = 9 , and

3t2 Π £ = l Since 2I2 centralizes 2ί, we get [£, 2I2] C § Π C(2ί) = 21,
so that [§, 2C2, 2I2] = 1. Thus, [Ql(2l), 2ί2] is a 2-group on which 2I2 is
faithfully represented. This violates Lemma 9.3. Hence, 2IL is of
order 33, so that 21 = 2ίL x S30. Suppose 330 c 2). Let 2)! be a subgroup
of 2) of order 9 which contains S50 Then X2X is abelian of order 36,
and [§, ϊ ^ J S ^ n C(2ί) = 21, so that [£, ϊ ^ , ϊ2)J = 1. It follows that
[Ql(W), ϊDi] is a 2-group on which X2)1/2I is faithfully represented. This
again violates Lemma 9.3, so 2) = 330.
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Since 2) = 930 and a = 2, O3((£) is elementary of order 35 and
15βo I = 37. Lemma 5.2 implies that if U is any element of (£/O3((£) of
order 3, then C(U) Π O3((£) is of order at most 33.

Suppose by way of contradiction that U is an elementary subgroup
of ^β0 of order 35 which is distinct from O3((£). By the previous
paragraph, we conclude that IX f] OZ(C) is of order 33, and that if
UeU- O3((£), then O3((£) n C(U) = O3(<£) Π IX. Let 1XO be a complement
to U Π O3((£) in IX. Thus, Uo is faithfully represented on Ql(&), the
central product of two quaternion groups. Let 3ΐ be a quaternion
subgroup of Q&St), and let VL, = C(3ΐ) Π Uo. Thus, Ux is of order 3.
By Lemma 3.7 of [20], 3ΐ is faithfully represented on O3((£) Π CQ1,).
This is absurd, since 1XO centralizes O3((£) Π CXUJ. We conclude that
O3(&) is the only elementary subgroup of its order in %.

Since | ^β01 = I €> I = 37 and since Ŝo is obviously not extra special
it follows that φ 0 is not a S3-subgroup of ©. Hence, ^30 is not a S3-
subgroup of JV(O3((E)) Hence, ^4@(O3(&)) is a solvable subgroup of
GL(5, 3) with S3-subgroups of order at least 27 and with no nonidentity
normal 3-subgroups. There are no such groups. The proof of Lemma
9.6 is complete.

LEMMA 9.7. Every involution in 9ΐ centralizes 3

Proof. Suppose false. Let £>L = Ωλ(^), so that φi is extra special
of exponent 3 and width w ;> 2. Let ξ>0 = C^(I) and let φ 2 be the
set of elements of £>L inverted by I. Here I is an involution of 9ΐ
which does not centralize 3 Since 3 = €>2> it follows that ξ>0 is abelian.
Since I centralizes [H, Hr] for all H, H' in ^>2, it follows that <£>2)> is
abelian. Hence, £>2 = <φ2>. As is well known, & = ξ>0£2 and §0 0^2 =
1. Hence, £>2 is elementary of order 3W + 1 and >̂0 is elementary of
order 3™.

By Lemmas 7.5 and 9.6, there is a subgroup 2K in ^C9^(@) with
^ 0 S SK such that SK satisfies Hypothesis 7.2 and p = 2. Let i*̂  be
the width of O2(3K). Hence, w ^ ^ ^ 4, the first inequality holding
since £>0 is faithfully represented on O2(9K), the second inequality holding
by Lemma 7.5.

Suppose w ^ 3. Hence, wλ^S. If He £* and C(ίί) Π O2(2Dΐ) con-
tains a four-subgroup 93 containing ^(^(O^Sft))), then by Lemma 7.2,
both (H, 3> and 53 satisfy the hypothesis of Lemma 7.4, so C(H) is
nonsolvable. This is impossible, so H is not available. This implies
that w = 2.

Suppose £> = φ. In this case, if i ί is any element of order 3 in
£>, then 3 char C$(H). This implies immediately that Q is weakly
closed in Sβ, which in turn implies that 3i contains the centralizer of
each of its nonidentity 3-elements. This implies that O2(Tt) g 5Ji, which
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is not the case. Hence £ c Sβ.
Since every 3, 5-subgroup of S4(3) is either a 3-group or a 5-group,

it follows from the preceding paragraph that %l is a 2, 3-group, S4(3)
being a 2, 3, 5-group. By Lemma 9.3, it then follows that O3(9ΐ)/φ ^
SL(2, 3). Furthermore, if J is an involution of O3'(9ί), then Cφ(J) <] SR.
It follows that J inverts φ/Z(φ).

If J centralizes O3'(9ϊ)/O3'(9ϊ)', we conclude that /centralizes
But C(/) a 9K, so in particular, C^(I) a 2ft. Since I centralizes O3'(
it follows that / centralizes a £2-subgroup O of O3'(9ΐ). Hence, £}
normalizes φ0. Hence, G£o is of index 3 in C(I) Π O3'(Sft). Let £}' =
<(/>. By the preceding paragraph, Q is faithfully represented on φ0.
Thus, 3) = C(I) Π iV(O) Π O3'(9?) = SL(2, 3) and ® is faithfully repre-
sented on φ0.

Since φ0 is faithfully represented on O2(2K), so is §0® Since
>̂0 π S) = l, £3-subgroups of >̂0® are of exponent 3. Since the four

subgroups of ξ>0 of order 3 are permuted transitively by O, it follows
that w1 Ξ> 4. Hence, wι = 4 and O2(SK) is extra special. Let ^30 be a
S3-subgroup of ^>0®. We can choose P in φo - £ 0 such that C(P) Π O2(2K)
contains a four-group. Since C^(P) clearly contains an element of
Lemma 7.4 is violated. We conclude that I does not centralize

Since Aut (ίΓ(φ)) is abelian, the preceding paragraph implies that

Since O2(9K) g 5β, we can choose i ϊ in )̂* such that C(H) g 9ΐ.
Let I Z(φ) I = 3α, and suppose a ^ 2. Let f be a S3-subgroup of

C (̂-ff). Thus, Z(@) a Z($), and 3 = σ^ZίΦ)) char φ, whence $ is a
53-subgroup of C(H). By Lemma 7.2 applied to <7ϊ, ,3/N it follows
that 3 centralizes 03,(C(H)), and so

By Lemma 9.4, we have OV(C(H)) = 1. Let $ x = OS(C(H)) a Φ Thus,
Z ( § ) g Z ( | ) , and we get 3 - ^ ( Z ^ ) ) , whence C(H)S$t. This
contradiction forces a = 1, Z(φ) = 3 J Φ I = 36.

Throughout the remainder of this lemma, the following notation
is used: Q is a S2-subgroup of O3'(3i) normalized by /. Since Q is a
quaternion group, our preceding information implies the existence of
an element Q in O of order 4 such that IQI = Q~\ Let J = Q\
Thus, J centralizes 3 a n d inverts £>/3

We argue that © is not 3-normal. Namely, for some H in £>ξ, we
have <£ = C(H)£3l. If | (£ |8 = | © |8, then <ίί> is a conjugate of 3
contained in φ, and we are done. Otherwise, it is clear that (£ Π 3i
contains a S3-subgroup of K and since 3 = ®, O3((£) contains at least
two conjugates of 3 As 03(^)^9^, we again are done.

We next argue that 3 is n o t weakly closed in φ. Choose G in
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© such that & = SG S *β and 3 Φ QL. If & S £, we are done. Other-
wise, let φ 0 = CsβCSi) = 3i x C§(8ι) Since φ o is not a S3-subgroup of
© but *β0 is a S3-subgroup of C ^ ) , it follows that 3 ch/ar *β0. This
implies that φ o is elementary. Clearly, 27 <̂  | φ01 <£ 81, since w = 2.
We assume without loss of generality that φ Π ̂ 3G = $β0- If 3 £ £G,
we are done, so we may assume that 3 §£ § G , which yields ^β0 =
3 x f t Π ®G). In particular, £ n Φ* =* 1; let S3 = £ Γ) £ σ , a group of
order at least 3. Suppose | S3 | = 3. Let 5S = C(B), so that | β n Φ I =
I a Π ̂ βG I = 3\ If I β |3 = 36, we are done, so we may assume that
I $ |3 = 35. In this case, we see that | O8(fl) | = 34, which implies that
I O8(Λ) n § I ̂  27, I O8(Λ) Π φG ! ^ 27. Hence, | φ n Φ* I ̂  9, contrary to
assumption. Thus, we may assume that | S31 = 9. We may also
assume that 33 contains no conjugate of 3 We have $β0 = 8 x & x S3.
We argue that φ o < < β̂, Ψ>. Namely, let ^ c ^ c φ . If φ o char φ x,
then clearly 3̂ normalizes φ o Suppose Sβ0 ch/ar $pie Then 5βx = φ0W>
where Sβ0* is elementary of order 34. Hence, Z^β,) = φ o Π W is of
order 27. This implies that ψL is of order 3. Since ^ Π ̂ > is nonabelian,
we have Sβί = 3 Thus, 3i centralizes (̂ 3X Π €))/-3 This is not the
case, since involutions of O3'(9ΐ) invert φ/3, so that the action of 3i
on φ/3 is given either by J 3 0 J : or by J2 0 J 2. By symmetry, we
have φ 0 < <φ, ψ}. It is easy to verify that O3(JV($β0)) is of order 35,
which implies that | ξ> Π φG | ^ 2 7 , the desired contradiction.

Since all parts of Hypothesis 9.3 are satisfied, Lemma 9.5 is
violated. The proof of the lemma is complete.

LEMMA 9.8. 9ΐ is the only element of ^C$^(©) which contains ξ>.

Proof. Suppose false. Choose 5£ e SZs(®) so that φ g 5Ϊ g 5ίl, and
with this restriction, minimize | ^ | . Since M(ξ>) contains only 1,
Lemma 0.7.6 implies that Z3(5ΐ) ^ 2. If ia(^) = 1, then Q <\ B, contrary
to assumption. Hence, lB(B) = 2; and & is a 3, p-group for some prime
p. Furthermore, Q acts irreducibly on O3tP($i)/D(O3,p(Sl mod OB(St))).
Let § 0 = § Π O3(S), S3 = Ω^ZiO^B))). By Lemma 9.4, S3 g §, so | 93 | ^
9. Thus, OS)P(B)/OS(^) is a quaternion group whose involution inverts
93. Since 3 c 3̂> Lemma 9.7 is violated. The proof is complete.

LEMMA 9.9. Every involution I of 31 inverts JQ/Z(!Q).

Proof. By Lemma 9.7, I centralizes 3> so centralizes Z(ίg). If
the lemma is false, then C§(I) contains a subgroup 21 of type (3, 3)
with 21 Z) 3 This violates Lemma 9.3 (iii).

LEMMA 9.10. If 21 e j y (^ϊ), then 31 is the only element of
which contains 21.
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Proof. As in 0, let j ^ = {21 | 21 is a 3-subgroup of % 21 contains
an element of SS&^V&ψ) for some N in 9ΐ, j / w + 1 = {311 21 is a 3-
subgroup of % 21 contains a subgroup 93 of type (3, 3), C^(B) contains
an element of J K for all B in S3}. Among all 21 e j ^ ί which violate
the conclusion of the lemma, maximize |2In£>|> and with this re-
striction, maximize |2I | . By Lemma 9.8, £>§£2I. Let Wl e ^€9*(®)
with 2ISSK, Wl Φ 31. By maximality of |2I | , it follows that 21 is a
S3-subgroup of SK. We can therefore choose a prime q and a g-subgroup
O of SK permutable with 21 such that 8 = 2Id is not contained in 31.
Let £} be minimal with these properties. By Lemma 0.7.6, Z3(S) ^ 2.

We first show that Oq(2) gΞ 5R Suppose 21 Π § is noncyclic. Let
33 be a subgroup of 21 Π § of type (3, 3). It suffices to show that
C(B) s 31 for all 5 6 S3*. Suppose false. Then maximality of | 21 Π £ |
yields | £ : 21 n £ I ̂  3. In this case, H(2I n φ ) = l, so 0,(8) = 1. Thus,
we may assume that 21 n €> is cyclic. Since w ^ 2, it follows that if
P is any element of 3̂ of order 3, then C^(P) is noncyclic. Hence,
every subgroup of 31 of type (3, 3) is in s^. Since 21 contains a
subgroup of type (3, 3), maximality of | 21 Π $ | implies that C(A)^3l
for all elements A of 21 of order 3. Thus, in all cases, we have
0,(8) S5K.

By minimality of O, Offf8(S) = Oq(2) x O8(S). Since 13(2) ^ 2, it
follows that ZS(S) = 2, by maximality of 1211 and the structure of
Offf3(8). Since D(O) is permutable with 21, we get /)(£}) c$Π, by
minimality of Q.

Clearly, 21 is a S3-subgroup of JV(O3(8)). Hence, 3SZ(O 3(S)).
Since O03(8) <] 8, and since 21 is a S3-subgroup of iV(O3(S)), and since
£>§£2I, it follows that φ n 21 acts nontrivially on QJ(S)> but trivially
on every proper 2I-invariant subgroup of QJ(S). Since Z)(O) centralizes
3, it follows that D(£ι) centralizes 2S = 3 s .

If g ^ 5, then maximality of 21 and Theorem 1 of [39] imply that
21 = *β, against Lemma 9.8. Hence, q — 2. We may apply Theorem 1
of [39] once again and conclude that Z>(D) =£ 1. By Lemma 9.9, each
element of Z)(D)* inverts φ/3(Φ) Since Z(φ) is a normal cyclic
subgroup of φ, it follows that 21 Π Z(Q) S O3(8). Since 21 Π ̂  g O3(S),
choose ί ί e S l Π Φ - O3(S). Let / be the element in D(£i)K Then
H1 - jff-1^ with Ho in Z(§). Since Jϊo e 21, it follows that [H, I] is
contained in 21 Π £ Π O3fff(8) S 21 Π O3(S). This violates the fact that
21 Π £g^0 3(8). The proof is complete.

It is now easy to show that Hypothesis 9.2 is not satisfied.
Otherwise, 31 contains a four-subgroup Z. But by Lemma 9.9, each
element of £ # inverts Q/Z(ίQ)m This is not possible, since φ =

k / 1 / -

The remaining lemmas in this section are proved on the hypothesis
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that !Q contains a noncyclic characteristic abelian subgroup.
Among all noncyclic normal elementary subgroups of 31, let @ be

minimal. Thus, (£/& is a chief factor of 31. Let &: @ ID 3 => 1. We
will show that A%(^) = ^((g?7). First, suppose Gc is not 3-reducible
in 31. Let 8 = 0,(31 mod C(®)). Since @/3 is a chief factor of N, we
have [8, Gf] = 3> a n ( i 3 = C@(S). These equalities imply immediately
that 8 maps onto Λ(^). Suppose Gf is 3-reducible in 31. Let 8 =
O3,(9ΐmod C(@)). Then 3 = C@(S) and [8, @] admits JV (̂S) = SR. Since
-AS(G?) is a 3'-group it follows that [8, @] is a normal subgroup of 31
disjoint from 3 Hence, [8, @] = 1, since 3 is the only minimal normal
subgroup of Sβ. Since G? is 3-reducible in 31 and O3,(9ΐmod C(@)), it
follows that @gZ(5Ji). This is absurd since 3 i s the only minimal
normal subgroup of *β. Thus, ^@(<if) = ^(^Sf7).

Throughout the remainder of this section, the following notation
is used: Sβ, 3 J ̂  are as before, and © is a noncyclic normal elementary
subgroup of 31 such that Qr/3 is a chief factor of 31. Also, ^ : G? ID 3 z> 1.

LEMMA 9.11. ( i ) If & is a 2, S-subgroup of © and @ contains
an element 21 o/ i?(3), ίAβ^ O2(@) = 1.

(ii) // 21 e ^(3), ίfeew | C(2I) | is odd.

Proof. ( i ) Suppose / i s an involution in O2(@). Since 3Ϊ central-
izes O2(@), Lemmas 7.4 and 5.38 imply that C(I) is nonsolvable.

(ii) Suppose I is an involution of C(2ί). Then 21 x <T> violates (i).

LEMMA 9.12. ( i ) If I is an involution ofC(3), then I inverts G?/3
(ii) C(3) contains no four-group.
(iii) // X is an abelian 2-subgroup of 9Ϊ, then Λ^(X) is a 2-group.

Proof, (i) is a consequence of Lemmas 9.11 and 7.3, and (ii), (iii)
are consequences of (i).

LEMMA 9.13. 31 does not contain a noncyclic abelian subgroup
of order 8.

Proof. Suppose false. Let O0* be a S2-subgroup of 31 permutable
with φ, and let 3l0 = φ&0*. Let O0 = Qo* ΓΊ O3'(3lQ). Thus, Qo is either
a quaternion group or £}0 = 1. Let Q be a subgroup of £1* which
contains Qo, is permutable with *β, contains a noncyclic abelian subgroup
of order 8, and is minimal with these properties. Let 9^ = ^3Q.
Thus, £1 is abelian of type (2, 4) if and only if every 2, 3-subgroup of
"31 is 3-closed. If Qo Φ 1, then | £ϊ | = 24 and Q is either the direct
product of a group of order 2 and O0 or G is the central product of
a cyclic group of order 4 and Go. Let g/3 be a chief factor of 3lλ
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with g S ® . Let φ o = Os(%), 5βx = C¥ o(g). Since A^(9f) - A(&), so
also AKl(<g%) = A(&Ό) where <^0: g :=> 3 => 1. Hence, ^30/^i is also a
chief factor of % with the same order as g/3 If Q' = 1, then

(9.19) 5β < 3^, £> is of type (4, 2), and | g : 3 I = 9

Suppose O,' Φl. If £1 = D o x Q1 ? where | £X | = 2, then

(9.20) Srix/Sβo = SL(2, 3) x Z2, and | g : 3 | = 9 .

Suppose £} is the central product of O 0 and a cyclic group of order 4.
Then

Sfϊi/βo is the central product of
( 9 ' 2 1 ) SL(2, 3) and Z4, and | g: 3 I = 34 .

By Lemmas 5.41 and 9.12, (9.19), (9.20), (9.21) exhaust all possibilities.
It is clear from Lemma 9.12 that

(9.22) if (9.19) holds, a S2,3-subgroup of 31 is 3-closed .

We next will show that

(9.23) every subgroup of g of order 9 is in &r .

To see this, let g 0 be a subgroup of g of order 9. If 3 a %Q, then
%0 e ^ ( 3 ) S &r. Thus, we may assume that g 0 ΓΊ 3 = l Let % be an
abelian subgroup in M(goi 2) and assume by way of contradiction that
[£> go] ^ l We may assume that % is a four-group. Let gx =
go n C(£), a group of order 3. Let (£ - C(gO 3 <g, 3>. Since m(g) ^ 3
and g 0 φ, there is SI e S^^^VM) with g S 21. Hence, §ί C <£ = C(gx)
implies O3/(S) = 1 by hypothesis (ii) of Theorem 9.1.

By Lemma 5.5, 3gO 3 (K). Let 2B = Ωλ{Z(O^))), and let ψ be
a S3-subgroup of K. Let β̂̂  be a S3-subgroup of © which contains
ψ. Then 3 G c ^ * , so 3 G S3B. By Lemma 9.12 (iii), % is faithfully
represented on SB. Hence, if F e g0 — g Π C(2), then the minimal
polynomial of F on 2S is (E — I)3. On the other hand, Q centralizes
SB. Since @ <\ % the minimal polynomial of ί 7 on SB is a divisor of
(x — I)2. This contradiction establishes (9.23).

Since £} contains an abelian subgroup of type (2, 4), we can choose
an involution / of D such that go = Cg(/) is noncyclic. By Lemmas
7.4 and 5.38, C(I) contains no element of g*(3). Hence, I inverts 3
Thus, in cases (9.19), (9.20) respectively, we have

(9.19)'-(9.20)' g - go x 3 .

In case (9.21), we have

(9.21)' 1^1 = 1(7
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Thus, in case (9.21), we have | C$Q(I) | ^ 34.
Let £ be a S2,3-subgroup of C(I) which contains g0. Since g 0 £ 3f

and since C(I) contains an element of ^ ( 2 ) , there is an element 3K
of HJί@(G) which satisfies all the conclusions of Lemma 7.5, contains %0

and contains a S2-subgroup of S. By Lemma 7.5 (f), IeO2(Tl).
We will show that

(9.24) C ^ ( I ) S S K .

By Lemma 7.5 (f), it suffices to show that 3K contains an S2-
subgroup of C(I). By construction, Wl contains an S2-subgroup of S,
which is an £2,3-subgroup of C(I). This proves (9.24).

Suppose (9.19) holds. In this case, we have (9.22). Also, (9.19)
implies that every element of @ of order 3 centralizes an element of
i?(3). Let gi be a subgroup of %0 of order 3 such that

[O2(2K) n c(&), g j = &*=*= l .

Thus, O* is a quaternion group and a S2,3-subgroup of C(gi) is not 3-
closed. By (9.22), & Φ Q. Since | C^ίgi) |3 = I Φ1/3, it follows that

contains a £3-subgroup of C(f$i). Let φ* be a S3-subgroup of
Since C(^) contains an element of <p^3(^3), it follows that

O8,((E) = 1, where <£ = C(&) Let 3ft = O ^ V & Thus, D*<ί τ> is
faithfully represented on Z(3t) for each ί 7 in g 0 - gi But [ϊt, F ] S
<3> δO>/Si> s o ^ * centralizes a subgroup of O3(9t) of index 9.

Suppose (9.19) holds and O3(K) Π C(/) is noncyclic, where I is the
involution of £}*. In this case, since g 0 centralizes l a n d O3((£) Π So =
gx, it follows that (£ Π SK contains a subgroup of order 27 and exponent
3. Since every element of © of order 3 centralizes an element of if (3),
it follows that a S3-subgroup of SK is nonabelian of order 27 and the
width of O2(Wl) is 3. Since | O8((£): O3(<£) Π C(I) | = 9, it follows that
(O3((£) I ̂  34. Since O3(K) Π C(I) is assumed noncyclic, and since
m(Z(O3((£)) ^ 3, it follows that O3((£) is elementary of order 34. Since
Q * S E , and since </> = O2(SK) Π C(g0), it follows that • 08(<E) is of
index 3 in Sβ*. Hence, |«β| = 36, since φ* is of index 3 in some S3-
subgroup of ®.

Since | φ* | = 35, we have «β* = O3(e)g0.
We argue that C^(F) is of index 9 in φ* for every F in g0 - g1#

This assertion is equivalent to the assertion that O3(K) D CC^7) is of
order 9, since ψ = O s(e)<^>. Now O8(<£) = Ux x U2, where Ux =
C(I) Π O3(E), U2 is inverted by J, and | U, | - | U21 = 9. Since U, < φ*Π*,
i = 1,2, we must show that ί 7 does not centralize either Ux or U2.
It is obvious that F does not centralize U2. If F centralizes Ulf then
<̂ Ui, î >̂ is elementary of order 27 and is contained in 2K, whereas we
already know that S3-subgroups of Wl are nonabelian of order 27. So
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Since Cψ(F) is of index 9 in ^β* for every F in go — Si , it follows
that O3((£)charφ*. Thus, iV(O3((£)) contains a S3-subgroup of © and
S2)3-subgroup of iV(O3((£)) are not 3-closed. This implies that if $J3 is
a S3-subgroup of JV(O3(S)), then O3(K) is not characteristic in Sβ. More
explicitly, JV(O3(K)) Π ̂ V($) does not contain a noncyclic abelian subgroup
of order 8, while N(ψ) does. Let 91 be an elementary subgroup of
φ of order 34 with 91 Φ O8((£). If 21 Π O8((E) is of order 9, then % =
9IO3((£) and Z(Sβ) is not cyclic. Hence, 91 Π O3(&) is of order 27. Hence,
5β = φ*9I, and it follows that JV(O3((£)) Π C(/) contains S3-subgroups of
order 34. Furthermore, every subgroup of $β of order 3 centralizes an
element of gf (3). Since the width of O2(9ft) is 3, it follows that a S3-
subgroup of 3ft is of the shape Zz \ Zz. But we have already shown
that S3-subgroups of 3ft are of order 27.

Suppose (9.19) holds and O3((£) Π C(/) is cyclic. Since S3-subgroups
of 3ft are of exponent 3 or 9, it follows that | O3((£) Π C(/) | = 3 or 9.
Hence, | O3((£) | ^ 34, so O3((£) is abelian. Hence, ψ - O3((£)g0. Since
elements of g0 — gi have quadratic minimal polynomial of O3(K), it
follows that a\Ψ) = σ'iO^)) = ϋι(O,{&) Π C(/)). Hence, σ 1 ^ * ) = 1,
since otherwise ^(Sβ*) is conjugate to g>, against (9.22). Hence, O3((£)
is elementary of order 27.

Since O3((£) | = 27, we get ψ \ = 34, | Sβ | = 35. Since (9.19) holds,
D is of type (4, 2) and £} normalizes φ. Let D = O Π C(3). Thus,
£l is cyclic of order 4, by Lemma 9.12 (ii). Also, the involution Q of
£} inverts g/3> so inverts φ/3 Hence, ^3/3 is elementary of order 34

and is the direct sum of Gc/3 and another irreducible Q-module. This
implies that 3̂ is of exponent 3 and is extra special. Thus, for each
P in Sβ, 3 char Cςn(P)* This implies that 3 is weakly closed in Sβ.
But turning back to (£, it follows that D* does not normalize $, so
3 is not weakly closed in $β. This contradiction shows that (9.19)
does not hold.

Suppose (9.20) holds. By (9.24) it follows that Q g 0 G SK. Hence,
the width of O2(9K) is four. Hence, C%Q(I) = go Thus, 0^(1) contains
a S3-subgroup 5β which is a nonabelian group of order 27 and exponent
3. This is not the case, since C(P) Π O2(2K) contains no four-subgroup
for any element P of φ*.

Suppose (9.21) holds. By (9.24) and (9.21)', it follows that S3-
subgroups of 3ft are of order at least 34. Hence, the width of O2(9ft)
is four, and C(I) Π $β0 contains no subgroup of order 27 and exponent
3, and of course C(I) Π ̂ β0 is of exponent 9. This is absurd, since S3-
subgroups of Aut (O2(Sft)) contain subgroups of index and exponent 3.
This completes the proof of this lemma.

LEMMA 9.14. JV(J($β)) does not contain a noncyclic abelian subgroup
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of order 8.

Proof. First, suppose that J($β) is not elementary. Then SB =
Z(J($)) Π />(J(5β)) =5*1. If SB is cyclic, then fl^SB) - 3 char JV(J(5β)),
so JV(J(5β)) £ 91, and this lemma follows from Lemma 9.13. We may
assume that SB is noncyclic. Let SŜ  be a noncyclic elementary subgroup
of order 9. We will show that SBX e gf (3). Choose G 6 H(SBX; 3'), mini-
mal subject to [Q, 2BJ ^ 1. Let SB0 = (7^(0) so that | SB01 = 3. Let
(£ = C(SB0), and let ^3* be a S3-subgroup of & which contains J($β).
Hence, J(«β) - /(5β*). Let $ - f be a S3-subgroup of © which
contains ^3*.

Since (£ contains an element of *$fU3($β), it follows that O3/((£) = 1.
Since S3δx s Z(J(5β)) - Z(/(5β*)), we have [03(<E), 2BJ SJ(Φ) and [O3(<£),
SSi, 2BJ = 1. It follows that G is a quaternion group. Let S3 = (3G)g.
Thus, 55 is a normal elementary 3-subgroup of (£, and by Lemma 5.10,
'S3 is 3-reducible in (£. It is a straightforward consequence of Lemma 5.2
that 33ej(^*) . Thus, £} centralizes S3, as 2B, centralizes 53. Thus,
it follows that ^ξjίOffi,), where % is a >S'2,3-subgroup of 9ΐG which
contains φG. By Lemma 9.12, 1^:03(9^)1^3. Thus,
This is absurd, since ^ S Z ) ^ ^ ) ) , and J(Sβ) = JT(^*) =

It is an immediate consequence of the preceding argument and
Lemmas 7.4 and 5.38 that if D(J(^)) Φ 1, then this lemma holds.

Assume now that J(^) is elementary. To complete the proof of
the lemma, it suffices to show that each subgroup of J(ψ) of order 9
is in gr(3). Suppose false, and 2Sg J($), | 2B | - 9, 2δ g ^(3). Let 3:
be an element of H(2δ; 3') minimal subject to [2B, 2] Φ 1. Let 3S0 =
•SB Π C(£), so that | 2B01 = 3.

Let e = Cίaΰδo)^^^), S>. Let φ* be a S3-subgroup of (£ which
contains J"(̂ β), and let 5̂G be a S3-subgroup of © which contains ^3*.
Hence, J(«β) - J(φG). Since J ( ^ ) = J(^)G, we get that GeN(J(^)).
Replacing 2B by 3SG-1 and S by XG"\ we assume without loss of gener-
ality that φ* S φ.

Since φ* contains an element of S^'^^Γ^), it follows that O3,(&) =
1. Hence, 3uO 3 (E). Let S3 = 3e> so that S3 is a normal elementary
subgroup of E. Since S3 is 3-reducible in K, it follows that 2$S./0β).
Hence, 2 centralizes S3. In particular, % centralizes 3

Let § = J(5β) n O3(e). Thus, 2 B g § , and J(^)/§ acts faithfully
on O3,A&)/OB(&). Let 5R = [O3)3,(£), J(φ)]Oa(<S). Since

it follows that 31 = 3l/O3(K) is a 2-group, and that J(^>) centralizes
every characteristic abelian subgroup of 31. Since J(Sβ) centralizes S3,
so does 3ΐ. By Lemma 9.12 (ii), 9ϊ contains no four-group. So 9ΐ is a
.quaternion group and J(φ)/§ is of order 3, whence J(Sβ) = §S©, and so SR =
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[O3,3'(&), SB]O8(<£). Since J(5β)0s(<£)/08(<£) is of order 3, it follows that
^ ε O β . U E ) , and so ϊ g θ 8 , r ( l E ) , whence £ s 3 ΐ , and so SI - £O3((£),
and X = 3ΐ is a quaternion group. Note that X is permutable with
5β*, as φ* normalizes [O3,3,((£), J(5β)].

Enlarge φ*£ to a S2,3-subgroup % of 5K, and let 9^ = O3'(9ϊ0)
Thus, % = £ $ , where $ = 5β* for some JSΓ in 91. Since J(5β) = J($p*) =
•/(ΦΓ, replacing Sδjby SB^"1 and £ by 2^~\ we assume without loss
of generality that 5β = 5β is permutable with X.

Let 2BX be a subgroup of 2B of order 3 different from 2B0. Let
5p0 = Os(%). Thus, 5β = ôSK, and SS^ is a complement to φ o in 3^.
Let I be the involution of £, let T be an element of X of order 4,
let ίϊ = J(*β) n %, and let 8 = <β, $*>. Since T2 = I normalizes 5β,
and J(^P) char φ, it follows that T2 normalizes S. Hence, Γ normalizes
S. Of course, ^ also normalizes S, since [fB&19 2] Q & S S. Since
fl < φ 0, it follows that S < φ 0, so S < ^ . Since

centralizes 8'. Since ^ S J(^β), it follows that S centralizes £' .
Hence, Sr g 3> a s otherwise 7 centralizes an element of ^ ( 3 ) .

Clearly, 8 is of exponent 3, being of class at most 2 and being
generated by its elementary subgroups. The definition of J(5β) forces
$ΐ = CS(S). Hence, Z(8) = 3 = 8', so that 8 is extra special, while
® e ^ « ( S ) . The width of 8 is at least 2, since otherwise, Hypothesis
9.1 would be satisfied.

Now I centralizes Q and normalizes $. We argue that I inverts
B/S- Suppose false and % is a subgroup of $ of order 9 which
contains Q and is centralized by 7. Since ^ ( # " ) = A(4t), where
<§f:Sϊz>3z>l, it follows from Lemma 5.5 that gegf(3) . Thus, C(I)
is nonsolvable by Lemmas 7.4 and 5.38. This contradiction shows
that 7 inverts £/3 Hence 7 inverts 8/3

We next show that X centralizes Sβo/S. This is clear, since
[5β0, S B J s ί B ε S , so that SS, centralizes 5βo/8.

Since 7 inverts 8/3, it follows that if 2S is any subgroup of J(φ)

of order 9, and X is any element of M(2B; 3') which is minimal subject

to [SB, X] Φ 1, then S is a quaternion group and 2B Π C(S) ^ 3 In

particular, 2B e ^ .
Let SK be the subgroup given by Lemma 7.5 which contains a

S2-subgroup of C(I) and contains SB. Then Lemma 9.12 (ii) implies
that O2(Wl) is extra special, and that <7> = O2(Wiy. Hence, C^(7) C 2K.

If the width of O2(Wl) is 2, then 2δ = C^(7) is a S3-subgroup of
Cy. (I) so 8 = φ 0 is extra special. Since ^ 0 = O3(9l), it follows that Hypo-
thesis 9.2 is satisfied, an excluded case. Hence, the width of O2(S0ΐ) is
3 or 4. On the other hand, every element of (C(7) Π OS(%))9S of order a
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centralizes an element of g*(3), so CΨci{I) contains no subgroup of
exponent 3 and order 27. Hence, C$o(/) is cyclic of order 3 or 9. If
C«βo(/) — 3, Hypothesis 9.2 is satisfied, an excluded case. Hence, C%0(I)
is cyclic of order 9. This means that if 25̂  is any subgroup of SB of
order 3 such that 0(3^) Π O2(2K) =) </>, then 3^ = <P3> for some P in
9K. This is absurd, since we get that SB <Ξ ί^Oβ) for some S3-subgroup
$ of 2R, while $ is isomorphic to a subgroup of Z3 x (Z3 \ Z3). The
proof is complete.

LEMMA 9.15. I/2ί e if (3) <mc£ 93 is α noncyclίc abelian subgroup
of order 8, ί/^w <2ί, S3> is nonsolvable.

Proof. Suppose false. Let £/* be the set of all 2, 3-subgroups @
of © such that

( i ) @ contains an element of £?(3).
(ii) @/03(@) satisfies the hypothesis of Lemma 5.41.

Thus, ^ ^ 0 .
If @! and @2 are elements of ^ , we say that @x < @2 if and only

if either | @L |3 < | @218 or @, = @2.
Let S be a maximal element of Sf under < . Let &p be a Sp-

subgroup of @, p = 2, 3. Since @ contains an element of ^(3), it
follows from Lemma 9.11 (ii) that 02(@) = 1.

Replacing @ by a conjugate if necessary, we assume that @3 £Ξ ^3.
By Lemma 5.41, @ has 2-length 1. If ©̂  = 1, then

by Theorem 1 of [43]. Since Z(5β)gZ(@3), S2-subgroups of C6(Z(@3))
are cyclic. Thus, C@(Z(@3)) S ^©(©s) S iV@(J(@3)), so J(@3) < @. Maxi-
mality of @ forces @3 = φ, against Lemma 9.14. Hence, @2 Φ l

Suppose @2 is extra special of width at least 2. By Lemma 5.52,
it follows that @ = C@(Z(O3(@)))iV@(J(@3)). Thus, maximality of @
together with Lemmas 9.13 and 9.14 imply that neither C<~(Z(03(Θ)))
nor JV@(J(@3)) contains a noncyclic abelian subgroup of order 8. Let

s 0 - cs(Z(o3m) n @2, s , = JV(J(@8)) n @a.
Since @2 = SQ^! and S€ has no noncyclic abelian subgroup of order

8, the width of @2 is 2, and 4 ^ | S41 g 8, ΐ = 0, 1.
Suppose @3 C8(Z(O3(@))) is 3-closed. Then Zo normalizes @3, so

normalizes J"(@3). This yields S o ^ S ^ which is not the case. Thus,
@3.C@(Z(O3(@))) is not 3-closed. Since So < @2, it follows that 2 0 is
a quaternion group. Suppose N^iJi^)) is 3-closed. Since Z(@3)£
Z(O3(@)), it follows that Z(@3) 0 @. Maximality of | @ |3 forces @3 = Sβ.
This violates Lemma 9.13. Thus, iV@(J(@3)) is not 3-closed. Since
@2£-Λf©(@3)£ JV@(J(@3)), it follows that Si is also a quaternion group.
Since i2(@) = 1, @2 is the central product of Zo and Sx.
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Let $β = $βi, •••, $βr be all the S3-subgroups of © which contain
©a, and let & = &i(Z(^)). Thus, & gZ(O3(@)) for all i, so that £ 0

centralizes each 3< Let <T)> = J o n ϊ i so that Γ is an involution
which centralizes each &• Also, £0SC(,3i) for each i, so for each

Suppose @3 = ty. Since @ί = Z'd centralizes Z(O3(@)), it follows
that 3 = β^ZίOgί®)); otherwise, @J centralizes an element of ^ ( 3 ) .
Hence, 3 <I @> against Lemma 9.13. We conclude that @3c$β.

Enlarge ( S ^ to a S2,3-subgroup of iV(J(@3)) and enlarge this
subgroup to a maximal 2, 3-subgroup So of ©. Let 8 = O3'(S0). Since
1 £ Is > I @ ls> it follows that 8 contains no noncyclic abelian subgroup
of order 8. Since 8 2 O3'(@3£i) = @3£i, it follows that Z, is a S2-
subgroup of 8. Let 83 be a £3-subgroup of 8 which contains @3*
Thus, 8 3 u ^ for some i.

Let 28 be the normal closure of 3< i n S Thus, C£(2B) contains
T. Since S:og C(^), it follows that Cβ(2δ) Π ̂  = <T>, so S2-subgroups
of 4̂S(S33) are four-groups. It follows that J(83) <j 8. Hence, 83 = *βs

and so T centralizes an element of %S(%). Thus, by Lemmas 7.1 (i)
and 7.4, C(T) is nonsolvable. This contradiction shows that @2 is
not extra special of width ^ 2.

Suppose @2 is the central product of a quaternion group and a
cyclic group of order 4. If /(@ 3)g0 3(6), then again @3 = 3̂ and
Lemma 9.14 is violated. Hence, J(@3)g03(@). If @2 centralizes
Z(O3(@)), then we get @ = C@(Z(@3))iV(S(J(@3)), so that either Z(@3) or
J(@3) is normal in @. Both these possibilities are excluded by Lemmas
9.13 and 9.14, so we may assume that [@J, Z(O3(@))] = SB ^ 1. Let 36
be a minimal normal subgroup of @ with 36 S 2S. Thus, @2 is faithfully
represented on X. Since | @3: O3(@) | = 3 and J(@3)g03(@), it follows
that elements of @3 — O3(@) centralize a hyperplane of X. This is not
the case, since 1361 = 3\ Thus, @2 is not the central product of a
quaternion group and a cyclic group of order 4.

By Lemma 5.41 and maximality of @ under < , it follows that &z

is either the direct product of a quaternion group and a group of order
2 or @2 is special with | @21 = 4 . Let 33 = Z(@2), so that in both cases,
93 is a four-group. We will exploit S3 by showing that @3 = Sβ, that
is, by showing that @3 is a S3-subgroup of ©. Suppose by way of
contradiction that @3d^3.

We argue that S3 normalizes J(@3). For if this is not the case,
then 93 centralizes Z(O3(@)), against Lemma 9.12 (ii).

Since 93 normalizes J(@3), we may enlarge Θ393 to a S2,3-subgroup
8 of JV(J(@3)). Since @3 is not a S3-subgroup of 8, 8 does not contain
a noncyclic abelian subgroup of order 8.

Let 8P be a Sp-subgroup of 8, p = 2, 3, with 93g8 2, @ 3c8 3 .
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Case 1. O3(@)a3/O3((S)SZ(@/O3(@)).

Let @3 be a maximal element of HS(2S; 3) with @3 S @3. Suppose
@3c@3. Choose @* in Mβ(SS; 3) so that |@3*:@3| = 3 , and let aso =
C^βί/&3). Hence, [@*, aso] = [@3, a30] is normal in @ and in @*.
Maximality of @ in ^ forces [@3, a30] = 1, against O2(@) = 1. Thus,
@3 is a maximal element of HS(9S; 3). In particular, 8 is not 3-closed.
Hence, 03(8) is of index 3 in 83 and O3(8) S @3. Hence, O3(8) = @3. If
93 = S2, then [SB, @3] <\ 8 so that <@, 8 > e JV([aS, @8]), since [93, @3] =
[3S, O3(@)] =£ 1. This is impossible, so a 3 c 8 2 .

Case la. @2 is special.
Since aSgZ((S2), it follows that @3as is a maximal subgroup of @.

Thus, O3(@)@2/O3(@)aS is a chief factor of @. Let aso be a subgroup
of 93 of order 2 and let @2° = Z(@2 mod aso). Since O3(S)aS0 <\ @, @3@̂  is
a group. Hence, ©̂  = 33 or &2 = <32. If ©̂  = @2, then @ίSSS0, so
that @2/a30 is abelian. This is not the case, since @2 = 33. Hence,
@o _ sg? s o that @2/a30 is extra special of width Ξ> 2. It follows from
the proof of Lemma 5.52 that J(@3) <| @. Maximality of @ in ^
guarantees that @3 is a £3-subgroup of ©, against our assumption
that @ 3 c ? .

Case lb. @2 is the direct product of a quaternion group and a
group of order 2.

Since S2 has no noncyclic abelian subgroup of order 8, it follows
that 33 is a self centralizing subgroup of S2. Hence, S2 is of maximal
class. Let 22 = S2 Π O3,2(£). Thus, S2 has an automorphism of order
3. Being a subgroup of a group of maximal class, S2 is either a
quaternion group or a four-group.

Suppose S2 is a quaternion group. In this case, S/O3(8) = GL(2, 3)
and as normalizes a >S3-subgroup of 8, against our previous argument,
we conclude that £ 2 is a four-group.

If S2 = 33, then [O8(S), S3] < 8. But O3(8) = @3 and [@3, 33] -
[O3(@), 33] < @. Hence, [O3(8), 3S] <] <8, @> against the maximality of
@ in S?. We conclude that £ 2 ^ as, so that 82 is a dihedral group of
order 8 whose two four-subgroups are 3S and S2.

Since £ 2 does not centralize Z(O3(8)), it follows that J(83) < 80.
Hence, J(83) = J(@3), so by construction of 8, we conclude that S3 is
a S3-subgroup of ©. We may therefore assume without loss of gener-
ality that φ = 83. Hence, 15β: @31 = 3.

Let ϊ - ^(Z(@3)). Recalling that @3 = OS(S>), we get ϊ < 8. Since
β2 does not centralize Q, we get 3 c 36. Since Z(φ) is cyclic and
15β: ©31 = 3, we get | X | ^ 27. Hence, | ϊ | = 27 and ϊ is the only
minimal normal subgroup of 8.

Since J(«β) < 8, we get Xo < 8, where 9c0 - Ω^ZiJ^)) Π Λ(J(5β))), if
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Z)(J(Sβ)) Φ 1, and Xo - J(^) if D(J(^)) = 1. If | Xo | > 27, then some
element of S3* centralizes a noncyclic subgroup of Xo. This was shown
to be impossible in the proof of Lemma 9.14. Hence, | ϊ 0 1 ^ 27. This
implies that ϊ 0 = £.

Suppose A, 5 e Xo and A = 5 s for some G in @. Thus, <J($β),
J ( ξ p r l ) > S C ( S ) , and we can choose C in C(B) such that J(W =
Jiψ'1). Hence, CG = NeN(J(φ)) and 4 = 5* = Bc~ιN = 5*. Thus,
elements of 36 are ©-conjugate only if they are iV(£)-conjugate.

Let ϊ = $! x ϊ 2 x X3, where | X41 = 3 and where X< admits 95, ΐ =
1, 2, 3. Let S3, = C(X<) Π S3 = <F*>. Thus, Xx, 3c2, £3 are the only
subgroups of £ of order 3 which admit S3. Let Z be a generator for
3 . Then Z = X,X2XS with X, e X,.

We argue that 3 ^ £» f° r i = -U 2, 3. Namely, if 3 —̂ #;> there
is iVe JV(X) such that X4 = 3*. Let SI - 4®(X). Thus, | 2113 = 3, SI is
solvable, and 3 1 ^ S3 = A2(X) = ΣA. So Si - S3 or §ί - 33 x 3ί0, where
3t0 = ^^> and A inverts X. In neither case are 3 and X< in the same
orbit under SI.

We now return to our study of @. Let @2 = jQ x <F)>, where jQ
is a quaternion group and FeSS. Let <F0)> = £}'. Since Fo does not
centralize Z(O3(@)), there is a minimal normal subgroup 2) of @ such
that Q is represented faithfully on 2). Let S3* = C^(2)) so that | S3* | =
2, @2 - Q x S3*. We see that | 3) | = 9 and that 2)0 = 2) Π Z(@3) is of
order 3 and admits S3. Thus, % c X, so 2)0 = X4 for some ΐ = 1, 2, 3.
Since Xi ^ 3» it follows that @3 is a S3-subgroup of C(2)0). Since
[2), @3] C 2)o, it follows that 2) s O3(C(2)0)). Since D permutes transitively
the subgroups of 2) of order 3, it follows that 2) g O3(C(2)*)) for every
subgroup 2)* of 2) of order 3. This implies that 2) e if (3). Now C(S3*)
contains 2) and also contains an element of ^ ( 2 ) , so C(S3*) is nonsolvable.
This contradiction shows that this case does not arise.

Case 2. O3(@)53/O3(@) gj Z(@/O8(@)).
We conclude that @2 is special and that S3 = @2 Since S3 = Z(@2),

we get that @3S3 is a maximal subgroup of @. That is, O3(@)@2/O3(@)S3
is a chief factor of @.

Let ^β0 be a maximal element of M@(S3; 3) with ^30 c @8. Hence, φ 0

is of index 3 in @3, and all involutions of S3 are fused in @3S3. Also,
[S30, 5β0] = [O8(@), S30] for every subgroup S30 of S3.

Suppose φ o is not a maximal element of M2(S3; 3). Choose $βx in
MS(S3;3) so that | «px: «β01 = 3, and let S30 = C^J%). Then φ, and
@2 both normalize [S30, φ j . Let S* be a S2,3-subgroup of iV([S30, φ j )
which contains 95^, and let 8* be a S^-subgroup of S* with ^gSg*,
9SSS2*. Note that S* contains a conjugate of @2.

By maximality, @3 = JV^ίZίOsί®)))). Hence, 3 c @8, and so 3 S
since O2(@) = 1. If U e ^ O β ) , then [«β,U]S3, and so
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3. Since S3 is a 4-group and does not centralize J2i(Z(03(@))), we
conclude from [*β, U, U] = 1 that tt centralizes S303(@)/03(@). That is,
U e $ o g 8 * . Hence, 8* contains an element of Sf so maximality of
@ guarantees that ^ = 83*, since $βx and @3 are of the same order.

Let 8** = £2* (Ί O3,2(8*). Thus, £** contains a noncyclic abelian
subgroup of order 8, since 8* contains a conjugate of @2.

Suppose every subgroup of £2** which is characteristic and abelian
is also cyclic. Let 8*** be a subgroup of S2** which is minimal subject
to (a) containing a noncyclic abelian subgroup of order 8 and (b) being
permutable with 83*. Then since Z>(8***) gZ)(S2**), it follows that
8*** is not a special group with center of order 4. Since S3*82*** e £f,
our previous reduction excludes this possibility.

Let 2 2 be a noncyclic characteristic abelian subgroup of 82**. If
I jβ21 > 4, then Sβjδ2 contains an element of ^ , against our previous
reduction. We may assume that S2 is a four-group. If 5 2 Π S3 =£ 1,
then O3(8*)£2/03(S*) is centralized by *&, since S3 normalizes 5&. But
in this case, there are maximal elements of S? which do not satisfy
our previous reduction. If £ 2 n S3 = 1, then ^SSS^ contains an element
of @ which also violates our previous reduction. Hence, ^30 is a
maximal element of M2(S3; 3).

Since O3(S) e iV2(S3; 3), we have O3(S) S $β0. Maximality of @ in ^
implies that S contains no noncyclic abelian subgroup of order 8. Since
the involutions of S3 are fused in @3S3, it follows that O3,2(£) = O3(S)33.
Hence, φ o - O3(8) is of index 3 in S3. This violates 1831 > | @31 = 3 | Sβ01.

Thus, in all cases, we have shown that @3 = Sβ.

Suppose that S3 normalizes @3. Let SB be a minimal normal
subgroup of @. Clearly, SS Z) Q. Since S3O3(@)/O3(@) is a central factor
of @, some involution of S3 centralizes SB. But 3S contains an element
of ^(Sβ), so Lemmas 7.4 and 5.38 imply that C(V) is nonsolvable for
some involution V of S3. Thus, S3 does not normalize Sβ. In particular,
@2 is special.

Let φ o be the largest subgroup of 3̂ normalized by S3. Thus,
Sβ: φ01 = 3 and iV (̂@2) permutes transitively the involutions of S3.

Let SB be a minimal normal subgroup of @. Clearly, SB Z) £,, so
S3 is faithfully represented on SB. Hence, @2 is faithfully represented
on SB, so C6(SB) = O3(3B). Let SB = SB, x SB2 x 3B3, where SB, = Cn(^)
and V1? V2, V3 are the involutions of S3. Thus, @2φo normalizes each
SBi, and @ permutes SBX, SB2, 3B3 transitively. Obviously each SB, is an
irreducible ^β0(32-module.

Let Λ4 = C ^ S B ί ) , and @2i = {S e @21 [S, @2] g < F , » , for i = 1, 2, 3.
Then iV@(@2) permutes {@21, @22, @23} transitively, and so one of the
following holds:

( a ) @2i = S3, i = 1, 2, 3,
( b ) @2i => SM = 1, 2, 3.
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If (a) holds, then @2/<̂ F;)> is extra special, and since V3- inverts 2S{

for j Φ i, it follows that ^ n @2 = <F,>, whence ®< = 03(@)<F,>. The
proof of Lemma 5.52 now shows that O3(@) a Ji®*), the desired contra-
diction.

Suppose (b) holds. The group O3(@)@21@22@23 is clearly @3-invariant,
and since O3(@)Θ2/O3((S)33 is a chief factor of @, we have @2 = @21@22@23.
Obviously, [@2ί, @2J ] S<(F;)> Π <F, > = 1 for i ^ j . Because @2 is special,
we conclude that @2ΐ, = <(Fi)> and hence that @2iKFi)> is extra special
for i Φ j . If the width of @2i/<F<> is greater than 1, then since
/(@3)g03(@), and since @2j /<(F^ acts faithfully on 2β<, it follows that
J(@8) centralizes O3(@)@2i/O3(@)<Fί>. But J(@3) < @3, and so J(@3)
centralizes O3(S)@2/O3(@)23, that is, J(@3)g03(@). We may assume
that if i Φ j , then @2</<F<> is of width 1. But then @21@22/<F3> is the
central product of @21/<F3> and @22/<(F3>, so is extra special of width
2, acts faithfully on 2B3, and O3(@)@21@22 admits J(@3). By Lemma 5.52,
J(@3) centralizes O3(@)Θ21@22/O3(@), so again we get the contradiction
J(S 3 )SO 3 (6) . The proof is complete.

LEMMA 9.16. If % is a subgroup of © of type (3, 3) and each
element of 21 centralizes an element of ^ ( 3 ) , then

( i ) St€^r.
(ii) 4 | | C ( 2 ί ) | .

Proof, (i) Suppose false, and % is a four-group normalized but
not centralized by 21. Let 2t0 = C<%{%), so that | 2ΪO | = 3. Let 20 be a
maximal 2, 3-subgroup of © which contains a S2,3-subgroup of C(2ΐ0)
containing 2G£. Let 2 = O3'(S0). Since S contains an element of if (3),
Lemma 9.15 implies that S contains no noncyclic abelian subgroup of
order 8. Hence, X is a S2-subgroup of 2 and 8/O3(δ) = A4. Let 8S

be a S3-subgroup of 2. Since £ does not centralize Z(O3(S)), it follows
that jr(S3) <1 2. Hence, 83 is a S3-subgroup of ©, and we may assume
that 83 = φ.

Let X be a minimal normal subgroup of S with XgZ(J($)) . Thus,
3E is elementary of order 27 and C^iX) = 1. Choose T in X* so that
Xx = C%(T) is of order 3 and is inverted by the generator of XjζTy.
Hence, <(2I0, £̂ > = 2ί* is elementary of order 9 and is normalized by X,
and every element of 21* centralizes an element of ^(^3).

Let © be a £2,3-subgroup of C(T) which contains 2I*£. By Lemma
5.38, E contains an element of ^ ( 2 ) , so | O3(e) | ^ 3, and O3(K) Π 21* =
1. Hence, 21* is faithfully represented on O2((£). Let (£0 be a charac-
teristic abelian subgroup of 02((£). Suppose 21* does not centralize (£0.
Hence, there is an element A in 21** such that C(A) contains an
elementary subgroup of order 8. This is not the case, so 21* centralizes
Ko If I (£o I > 2, then some element A of 2!** centralizes a noncyclic
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abelian subgroup of O2((£) of order 8. This is not the case, by Lemma
9.15. Hence, O2((£) is extra special of width at least 2 and <T> = O2((£)\
Hence, E contains a S2-subgroup of @.

By Lemma 9.15, no element of 2ί*# centralizes any noncyclic abelian
subgroup of order 8. Hence, <Γ> = O2((£) Π C(2t*). For each A in 2ΐ**,
O2(<£) Π C(A) is either <Γ> or is extra special. Thus, 02(<£) Π C(A) is
either <(T)> or is a quaternion group, so no element of 21** centralizes
any four-subgroup of O2((£). Thus, the width of O2((£) is at most 4.
Since O2((£) Π C(2I0) is centralized by 21*, it follows that O2(S) Π C(2C0) =
<T>, and so the width of O2((£) is at most 3.

Consider C*(X1) — {G e ©, G either centralizes or inverts £J. By
construction, \C%(!1)\3= | ^31/3. Also, ί E S C * ^ ) , and C*(ϊ1) contains
no noncyclic abelian subgroup of order 8. Suppose 2ΐ0 §£O3(fi), where
5 is a S2)3-subgroup of C*(ϊ1) which contains CξidLj). Then £/O3(S)
contains a subgroup isomorphic to 2ΐ0 x X. This is obviously impossible,
since S2-subgroups of β/O3(β) are of maximal class. Hence, 2ΐ0gO3(S).
This implies that 2ί0 centralizes O2(<£) Π C(XX), so the width of O2(<£)
is 2. Hence, 3̂  x 2C0 is a S3-subgroup of C(T), so 36X x 2ΐ0 is a S3-
subgroup of C%(T). By a formula of Wielandt [40],

I o3(S) i - I Os(8) n C(Γ) 171 os(S) n c(a:) |2.

Hence, | 0,(2) \ = 36/32 = 34, so that 03(L) = 2C0 x X. This implies that
Z($β) is noncyclic, since | ^3: 03(&) | = 3. The proof of (i) is complete.

As for (ii), suppose X is a subgroup of C(%) of order 4. Then
C(T) contains an element of ^ ( 2 ) , T being an involution of X. Thus,
by Lemma 7.5, there is a subgroup 2K in ^€9*(®) which contains 21%
and satisfies 02,(W) = 1, while O2(9K) is of symplectic type. Since 2ί
acts faithfully on 02(W) Π C(2), we can therefore choose A in 21* such
that 2£ does not centralize 02((£) Π C(S) n C(5Ϊ). Thus, C(A) contains
a noncyclic abelian subgroup of order 8, against Lemma 9.15. The
proof of (ii) is complete.

LEMMA 9.17. Suppose
( a ) 3ΐ is a maximal 2, S-subgroup of ©.
( b ) 9ΐ contains an element of ϋ ^ .
( c) 3ΐ contains a noncyclic abelian subgroup of order 8.

Then O2(3ΐ) ^ 1.

Proof. Let 3Ϊ,, be a Sp-subgroup of % p = 2, 3. We assume
without loss of generality that 3ΐ3 S Sβ. Suppose by way of contradiction
that O2(3ΐ) = 1. Then O3(3ΐ) ^ 1, so by maximality of 31, 3ΐ3 = iV^(O3(3ΐ)).
Hence, 8^3ΐ 3 . Since O2(3Ϊ) = 1, we get 3SZ(O3(3t)). Hence, 3ΐ3

contains every element of ^(^3). This contradicts Lemma 9.15 and
completes the proof.
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We now begin the construction of the final configuration.
By hypothesis, 2 ~ 3. Let SI be a noncyclic abelian subgroup of

© of order 8 and let 33 be an elementary subgroup of order 9 each of
whose elements centralizes an element of ^ ( 3 ) , chosen so that <3Ϊ, 33>
is solvable. We assume without loss of generality that <3I, 33> is a
2, 3-group. Let S be a maximal 2, 3-subgroup of © which contains
<SI, 33>.

Let 2P be a S^-subgroup oί 2, p = 2, 3, with 33££ 3 . By Lemma
9.17, O2(S) ^ 1.

Let J be an involution in Z(S2) Π O2(S). Since 33 e ^ , by Lemma
9.16, 93 centralizes Z(O2(S)). Hence, C(J) is a solvable subgroup
containing 33, S2, and an element of ^ ( 2 ) .

Since 33 e ^ , we may apply Lemma 7.5. Let ίSJl be an element of
^€9*((8>) which contains 33 and S2 and which satisfies all the conclusions
of Lemma 7.5. Let S be a S2,3-subgroup of 2W and let Bo = O8($).
Since O2,(ίDl) — 1, so also OZ(B) = 1. Since no element of 33* centralizes
any noncyclic abelian subgroup of order 8, it follows that Bo is extra
special of width 2, 3 or 4, and C ô(33) = &Ό = <T>, the last equality
serving to define I. Hence, IE0 = O2(2K). Let $tp be a Sp-subgroup of
Λ, p = 2, 3, with 33S $3. Let &* = ^ 3 Π O2,8(ίB), ®* = JVfi(Λ8*). Thus,
Λ = ^o^* and $ 0 n ^ * = C^o(^3*). Let β* = ^ * n ^ 2 so that ^ * = ®3®*.
We assume without loss of generality that S 3 S^β.

We argue that

(9.25) ftnr = </>.

Namely, choose U in ^(Sβ) and suppose C(U) Π $3* is noncyclic.
Then by Lemma 9.16 (ii), no noncyclic abelian subgroup of C(U) Π S3*
centralizes any subgroup of order 4, so (9.25) is clear. Suppose
C(VL) Π ̂ 3* is cyclic. Hence, 5£3* has a cyclic subgroup of index 3.
Assume that (9.25) does not hold. Then 33g$3*, so the 3-length of
Si is at least 2. Hence, $3* is elementary of order 9 and all elements
of ^3** are fused in ®. But then every element of ^3* centralizes an
element of ^ ( 3 ) , so again (9.25) holds. Thus, (9.25) holds.

LEMMA 9.18. // 3ΐ is any 2, S-subgroup of ® which contains 33, /,
and also contains a noncyclic abelian subgroup of order 8, then 3ΐ £ 3K.

Proof. We may assume that 9t is a maximal 2, 3-subgroup of ©.
By Lemma 9.17, we have O2(3i) =£ 1. Since 33 e &, 33 centralizes Z(O2(9t)).
Since </)> is a S2-subgroup of C(33), by Lemma 9.16 (ii), it follows that
</> - Z(Oa(9ft))f so ϋtQC(I) = Tt.

LEMMA 9.19. $2* contains no noncyclic abelian subgroup of order 8.
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Proof. Suppose false. In this case, $* is a S2,3-subgroup of N(Stf)f

by the preceding paragraph. Hence, the 3-length of $* is at least 2.
But in this case, 3 c $*, so $ 3 contains every element of ^(Sβ), against
Lemma 7.4. The proof is complete.

LEMMA 9.20. If §3 is a S3-subgroup of JV(3δ8), then

Proof. Let (^ = C($3)$3, 9^ - N($tz). Since 33 S β3, it follows that
is a S2-subgroup of (£„ by Lemma 9.16 (ii). Hence, 3ft covers

so Ki contains $3, which is equivalent to our assertion.

LEMMA 9.21.

( a ) If % is any 3-subgroup of 3ft, then no S3-subgroup of N($)
is contained in any conjugate of 3ft.

( b ) If P is an element of 3ft of order 3, ίλew C(P) contains a
subgroup SI* of type (3, 3) sucΛ, that C(A) contains an element of
^ ( 3 ) /or βαc/z, A in 21*.

( c ) If ψ is any nonidentity S-subgroup of 3ft, £fcew iV($β) co^-
ίαms 710 noncyclic abelian group of order 8.

( d ) $ 3 contains no abelian subgroup of order 27.
( e) $ 3 is isomorphic to one of the following groups:

( i ) an elementary group of order 9.
(ii) a nonabelian group of order 27.

Proof. Let φ* be a S3-subgroup of JV($). Suppose φ*g2ft σ .
Since φ ^ φ * , we get %QWlG. Let φ o = ψ~\ 5βx = fβ*0"1. Then φ o

is a 3-subgroup of 3ft and $βx is a S3-subgroup of iV(̂ βo) which is
contained in 3ft. This violates Lemma 9.20, since $ 3 c U3. Hence,
(a) holds.

Since 33g$ 3 , it follows from Lemma 9.16 (ii) that </> is a S2-
subgroup of ^ 3C(^ 3). Thus, $3C($3) has a normal 2-complement. We
assume without loss of generality that I normalizes U8. Let ^ 3 /^ 3 be
a chief factor of ^3</>. Hence, β 8 = $ 3 x S8, where | S81 = 3. This
implies that C^B(P) contains an elementary subgroup of order 27. Let
φ G be a S3-subgroup of © containing ®3, and let U e ^{ψ). Then
C(U) Π Cg3(P) is noncyclic, and any noncyclic subgroup of C(VL) ΓΊ Cg8(P)
of order 9 may play the role of 2ί* in (b).

Let 3t be a maximal 2, 3-subgroup of ® which contains a S2>Γ

subgroup of JV(*β). By (b), 3ΐ contains an element of £&. Assume
that 3ΐ contains a noncyclic abelian subgroup of order 8. Then by
Lemma 9.17, O2(9t) Φ 1. By Lemma 9.16 (ii), we get | Z(O2(3t)) | = 2.
Clearly, 9ΐ is a ίS2,3-subgroup of C(Z(O2(9ΐ))), and so it contains an
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element 25 of & and one of ^ ( 2 ) . Applying Lemma 7.5, we get a
conjugate ΈiG of 2K containing ® and a S2-subgroup of 9ΐ. By Lemma
7.5 (f), Z(O2(3t)) C C(®) Π O2(aKσ). By Lemma 9.16 (ii), the last group
is of order 2, and so equals Z(O2(3ϊ)). Hence, Z(O2(3t)) = Z(O2(SKG)),
and so ?RQWlG. This violates (a).

Suppose @ is an abelian subgroup of $ 3 of order 27. Then there
is an element E in @* of order 3 such that C(E) n O2($) contains a
noncyclic abelian subgroup of order 8. This violates (c) and es-
tablishes (d).

(e) is an immediate consequence of (d).

LEMMA 9.22. B2 — $ 0 contains an involution.

Proof. Suppose false. By a result of Glauberman [16], ί£2 con-
tains an involution J such that J— IG Φ I. Since the lemma is false,
JeB0. Let X = C^o(J). Then X is generated by involutions, and
ZQmG = C(J). Since the lemma is false, ϊ g f t 5 . In particular,
Ie (Sbfy. Hence, ($0

G)' = </> = </>, a contradiction.

LEMMA 9.23. The 3-length of W is 1.

Proof. Suppose false. By Lemma 9.21 (e), it follows that 583* is
elementary of order 9. Consider $*/</>. Since $* Π $ 0 = <7> by
(9.25), it follows that $*</>/</> = F(jί*/</». This implies that J6*/
ζiy contains a quaternion subgroup O/<̂ /)>. Thus, D, is not of maximal
class, since no group of maximal class and order 16 has a quaternion
factor group. Hence, £ι contains a noncyclic abelian subgroup of order
8. This violates Lemma 9.21 (c) with ίί3* in the role of 5β.

LEMMA 9.24. Each involution J of B2 — ίϊ0 normalizes a S3-
subgroup of $.

Proof. Since J £ $tQ, Lemma 5.36 implies that J inverts an element
P of Λ of order 3. Let <£ - C^). Suppose K ί l S 0 = </>. Then
since $35ϊ0 <| S, it follows that (£ is 3-closed. Let E3 be the S3-subgroup
of (£. Thus, C3 is noncyclic. Since iV(K3) Π ̂ 0 = </>, Λ^(S3) contains
a S3-subgroup of ^ as a normal subgroup. Since J e JV(C3), we are done.

We may assume that K Π fflo^^^ Hence, (£ Π ̂ 0 = Q is a qua-
ternion group. Let $ be a S3-subgroup of (E. Thus, $ Q = O3(S)
char e, so <J>$Π is a group. Let $ 0 = O3($Q). Thus, $ $
SL(2, 3), and J stabilizes $Q/$ 0 . If J does not centralize
it follows from Lemma 5.36 that J normalizes a S3-subgroup of
Suppose J centralizes $Q/D^ 0 - Then <J>^O/Q$ 0 is a cyclic group
of order 6, so J centralizes Q/Q'. This implies that | C(J) Π Q | ^ 4,
so that <(/, Q> contains a noncyclic abelian subgroup of order 8. Since
<J, Q > g i V « P » , Lemma 9.21 (c) is violated. We conclude that J
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normalizes a S3-subgroup of SβQ. We assume without loss of generality
that J normalizes 5β. Since N$) Π $ 0 = <i>, it follows that JVs(φ)
contains a S3-subgroup of S as a normal subgroup. The proof is
complete.

LEMMA 9.25. ( a ) If T is an involution of ©, C(T) contains a
noncyclic abelian subgroup of order 8.

( b ) // the width of Bo is 2, then for each involution T of ©,

Proof, (a) By Lemma 5.38, C(T) contains an element U of
If T $ U, then <ΊI, Ty is a noncyclic abelian subgroup of order 8 which
is contained in C(T). Suppose TeU. Since £Z~3(2) Φ 0,C(T) con-
tains an element of <i/^3(2) by Lemma 0.8.9.

Suppose (b) is false, and T is an involution of © with | C(T) |3 ^ 27.
Let @ be a maximal 2, 3-subgroup of © which contains a £2,3-subgroup
of C(T). By Lemma 5.38, @ contains an element IX of ^ ( 2 ) . Let
@p be a Sp-subgroup of @, p = 2, 3. We assume without loss of
generality that @ 2 g$ 2 .

Case 1. O3(@) ^ 1.
Since l i e if (2), U centralizes O3(@). Since U contains a conjugate

of /, it follows that | O3(@) | ^ 9. Suppose | O3(@) | = 9. Then O3(@)
is conjugate to 23, since S3 is a S3-subgroup of 9JΪ. But then Lemma
9.16 (ii) is violated. Hence, | O3(@) | = 3.

Since tl centralizes O3(@), O3(@) is conjugate to a subgroup of S3.
By Lemma 9.21 (b), C(O3(@)) contains an elementary subgroup 21* such
that C(A) contains an element of ^ ( 3 ) for each A in 21*. Since @ is
a S2>3-subgroup of iV(O3(@)), we assume without loss of generality that
21* C @. By Lemma 9.16 (i), 21* e j£r. Now Lemma 9.17 yields O2(@) ^
1. Since 21* S@, Lemma 9.16 (ii) forces | Z(O2(@)) | = 2, and forces
Z(O2(@)) to be a maximal characteristic abelian subgroup of O2(@).
Since | O3(@) | = 3, it follows that | O2(@) | > 2. Hence, O2(@) is extra
special. Thus, O2(@)' is of order 2 and is normalized by every element
of ^ ( ^ 2 ) . Hence, every element of ^ ( ® 2 ) is contained in @2. Thus,
/ centralizes O3(@). Since IeZ(@2), we get IeO2(&), so that </> =
O2(©)'. Hence, @S 2R, against | @ |3 ^ 27 and | SW |3 = 9

Case 2. O3(@) = 1.
Since | @ |3 ^ 27, it follows that m(02(Θ)) ^ 6. Since the width of

Mo is 2, it follows that $ 2 has no elementary subgroup of order 26.
Thus, O2(@) is not elementary.

Now @ is clearly not contained in any conjugate of ffll, since
> 13K |3. Since </> = Z(5ΐ2), it follows that @ is not 2-closed.
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Since | S21 ^ 28, we get | O2(@) | = 27. Hence, | O2(@) | = 27, so that
Z>(02(@)) is a subgroup of order 2 and @2 is of order 28. Hence, @2 = $ 2

and Z>(02(@)) - </>. This shows that @ C 3K. This contradiction com-
pletes the proof.

LEMMA 9.26. If ψ is any subgroup of $ 3 of order 3, then
( a ) Sofl C(Φ) is either <7")> or a quaternion group;
( b ) if $ ^ Z ( ® 3 ) , *Aew $o Π C(ψ) is quaternion.

Proof. ( a ) Suppose $ 0 Π C($) =) </>. Then $ 0 Π C(5β) is extra
special and does not contain a noncyclic abelian subgroup of order 8.
Thus, $o Γl C(ψ) is either dihedral or quaternion. Now C^ffi) contains
an elementary subgroup & of order 9 with Sβ c @. Hence, Bo Π C($β)
admits @. Since no element of @# centralizes a noncyclic abelian
subgroup of $o of order 8, $ 0 n C($) is quaternion.

( b ) Let © = <$, Z(Λ8)>, so that by Lemma 9.21 (e), © is ele-
mentary of order 9 and @ <| $ 3. It follows that the three subgroups
of © of order 3 which are distinct from Z(St9) are conjugate in $ 3 .
We can choose E in & such that $ 0 Π C(E) is not centralized by

By (a), ^o Π C(J5) is a quaternion group; so (b) holds.

LEMMA 9.27. $2* is a four-group.

Proof. Suppose false. By Lemma 9.22, ^ 2 — ®0 contains an invo-
lution J. By Lemma 9.24, J normalizes a S3-subgroup of $. Thus,
we can choose M in SK such that J ^ = To normalizes β 3. Since ^ 3

permutes transitively by conjugation the S2-subgroups of $, we may
choose if in $ 3 such that T = Tf lies in B2. Thus, TeiV(^3) Π S2.

By Lemma 9.23, ^3* = ^ 3 . Thus, Γefif. If <Γ, J> = «*, we are
done, so suppose <T, ])cffi2*. Let g be a subgroup of $2* of order 8
which contains (T,iy. By Lemma 9.19, % is dihedral of order 8.
Let f5o>Si be the four-subgroups in %.

Suppose 36 is a subgroup of $ 3 of order 3 which admits % and
that C(ϊ) Π ̂ o is a quaternion group. Hence, C (̂3Γ) contains a normal
quaternion subgroup and S2-subgroups of N^X) are of order at least
25. Thus, N^(2ί) contains a noncyclic abelian subgroup of order 8.
This is impossible, by Lemma 9.21 (c). Hence, C^ (X) = <7>, by
Lemma 9.26 (a).

By Lemma 9.26 (b) and the preceding paragraph, it follows that
g normalizes no noncentral subgroup of ί£3 of order 3.

Suppose $ 3 is nonabelian. Then g normalizes Ω^^), a group of
exponent 3. Since <7> centralizes &3, it follows that Ω^B^ is super-
solvable. Thus, Ω1(^3)g contains a normal subgroup of order 9, so %
normalizes a noncentral subgroup of $ 3 of order 3. This contradicts
the preceding paragraph, so we conclude that $ 3 is abelian, $ 3 = 35.
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Let g t = <(J, , Γ>, i = 0, 1. If both Jo and JΊ invert $3, then JQJ1

centralizes $3, so Jo/i e <T>. This is not the case, since Gco©i is of
order 8. Thus, we may assume notation is chosen so that Jo centralizes
Xo and inverts ϊ l β Here, | X, | = 3, and ®z = Xo x Xίm Since $ 0 n C(%) =
</>, for i = 0, 1, the width of $ 0 is 2.

Let © be a S2j3-subgroup of N(BS) which contains β2*. Since
fi3c$, we get I $31 = 9 < | © |3. By Lemma 9.16 (ii), | C(®3) |2 = 2. By
Lemma 9.20, we get that © is 3-closed. Let ©3 = O3(Gc) ID $ 3.

Let JP0, JP7!, i*7,, be the three involutions of g0, and set

3^ = | @ 3 Π C ( ^ ) | , ί - 0 , 1,2.

By Lemma 9.25 (b), we have f ^ 2. Since (£3 n C(g0) = *o, a formula
of Wielandt [44] yields

I ©a I = 3/o+/i+/2-2 ^ 34 .

Since the dihedral group % is faithfully represented on ©3/S3, it
follows that I ©a I = 34.

Let © be a S2,3-subgroup of JV(G?S) Let ®p be a 5,,-subgroup of
S), with $ 2 * e ® 2 . By the formula of Wielandt [44] applied to g 0

acting on O3(®), we get O3(®) = @3. If ®3 = ®3, then ©3 is a S3-
subgroup of ©. But the center of @3 contains fi3 = 33 by Lemma 9.20,
and hence is noncyclic. This contradicts hypothesis (iii) of Theorem 9.1.
Therefore ®3 Z) @3 and ® is not 3-closed.

By Lemma 9.25 (b), we get 02(2D) = 1. Since © is quite obviously
contained in no conjugate of 2ft, Lemma 9.18 implies that © contains
no noncyclic abelian subgroups of order 8. Thus, ®2 is of maximal
class. Hence, </> = Z(®2), so ®2 = S2* is of order at most 16. Suppose

©21 = 16. Since O2(®) = 1, and © is not 3-closed, it follows that
Os,2(®) Π ®2 is a quaternion group. But then M covers ®/O3(®). This
is not the case, since Os(®) contains a >S3-subgroup of 27Ϊ, and since
3 | | ® : O 3 ( ® ) | . Hence, ®2 = g is dihedral of order 8. Let ®2 =
O3f2(®) Π ®2 Thus, ®2 is a four-group and ®/O3(®) ~ Σt.

Since ®/O3(®) ~ Σ4, some chief factor of © is of order 33. Thus,
O3(©) is necessarily elementary, and elements of ®3 — O3(©) induce
automorphisms of O8(©) with minimal polynomial (x — I) 3. Hence,
O3(©) = J(©3) O3(©) = J(©8) char ©8, so ®3 is a S3-subgroup of ©. This
is not the case, since Z(®3) is noncyclic. The proof is complete.

LEMMA 9.28. If the width of $0 exceeds 2, then I is the only
conjugate of I in Bo.

Proof. Suppose T = Γ^I,TeB0. Then C(T) Π®0SC(T) = mG.
By Lemma 9.27, C(T) Π ̂ o Π ®Z is of index at most 2 in C(T) Γ\ Λo
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Since C®o(T) is of index 2 in β0, we get | f l o : C ( Γ ) n ^ n S o

G | ^ 4 .
Since the width of $ 0 is at least 3, it follows that C(T) Π $ 0 Π ®$ is
nonabelian. Hence, <J> = (C(T) Π $ 0 Π &%)' = <T>. This contradiction
completes the proof.

LEMMA 9.29. $ 3 = S3 is o/ order 9.

Proo/. Suppose false. By Lemma 9.21 (e), $ 3 is nonabelian of
order 27. Since B3 is faithfully represented on &Q, the width of Bo is
at least 3. By a result of Glauberman [14], $ 2 contains a conjugate
T of I distinct from I, T = Γ Φ I. By Lemma 9.28, Te&2- ffi0, so
by Lemma 9.24, we may assume that T e $ * . Thus, by Lemma 9.27,
Stf = </, Γ>.

Since St3 is nonabelian, it follows that ϊ x = fi3 Π C(Γ) is of order 3.
By Lemma 1.3 of [17], $ 3 has a subgroup Xo of order 3 which central-
izes ϊ i and is inverted by T. Let X = £0 x Xx and let £2, £3 be the
remaining subgroups of £ of order 3.

Suppose C(X0) (Ί $o => <i>. By Lemma 9.26 (a), C(%>) ΓΊ $ 0 = G is a
quaternion group. Since C(X) ΠSO = <(!)>, it follows that Xx is faithfully
represented on Q. Since Aut (Q) has no element of order 6, T central-
izes £}. But then <Q, Γ ) = Q x < Γ ) contains a noncyclic abelian
subgroup of order 8. This violates Lemma 9.21 (c) with Xo in the role
of «β. Hence, C(X0) Π $ 0 = </>.

Since C(X0) Π $ 0 = <^>, the width of $ 0 is at most 3. By Lemma
9.26 (b), we get Xo = ^(^s). Thus, if we set D* = $ 0 Π C(%), i = 1, 2, 3,
then by Lemma 9.26, it follows that each £}* is quaternion. Hence,
$o is the central product of £ι19 £}2, O3. Since T centralizes %L and
interchanges X2 and X3, it follows that T normalizes O : and inter-
changes Q 2 and O3. Since Xo is faithfully represented on fϋ,19 it follows
that D1X0<?7> ^ GL(2, 3). Thus, we can choose generators AifBi for
Oi such that Af - £ x , A2

Γ = A3, B2

T = B3. It follows that C(T) Π ̂ 0 =
<A2A2, 52JB3, />, an elementary group of order 8. Let g = C(Γ) Π ̂ 2 =
<Γ> x C(Γ) Π Λo. It now follows that I 2 = iV^2(g) = <Q2, O3, A Λ T>,
a group of index 2 in β 2. Since Zφ2) — <J>, it follows that ^ 2 is a
S9-subgroup of N(%).

Now T = IG, so g S SKG. By symmetry, iV(g) Π 3KG contains a
S2-subgroup of N(%). This implies that O2(iV(g)) centralizes both T
and /. Hence, O2(N(%)) = g.

Now ^ 2 permutes transitively the elements of (g Π Λo) Γ, so @ =
{(g Π ̂ o) ϊ7, /} is the set of all the elements of g which are conjugate
to / in ©. Since JV(g) Π SJί̂  normalizes @ but does not centralize J,
it follows that iV(g) permutes @ transitively.

Since JV(g) is transitive on @, it follows that JV(g) = 9 | JV(g) n 3K |.
Since C(g) = C ^ g ) , it follows that g = C(g). Since T centralizes Xx,
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it follows that 3^ normalizes $ 0 n C(T), so normalizes g = <T)> x S o ί l
C(T). But it now follows that 27 | | JV(g) |. Since g is elementary of
order 24, Aut (g) has no subgroup of order 27. This violates the
equality % = C(g), and the proof is complete.

LEMMA 9.30. If T is any involution of @, ίΛew | C(T) |3 ^ 9.

Proof. Since | $ 2 : $01 = 2, Lemma 5.38 implies that every invo-
lution of © is conjugate to an involution of $ 0 . Thus, we may assume
that TeB0. If T ~ I, we are done by Lemma 9.29, so from now on
we suppose T rh I.

Let U e f^(Sδ2), and let Uo = $ 0 n C(U). Thus, ®0 is of index 2 in $ 0 .
Since ί£3 has no fixed points on $ΐo/(iy, Lemma 5.38 implies that for some
X in $s, T x e $ 0 Thus, we assume without loss of generality that T e ®0.

We argue that Cm(T) contains a S2-subgroup of C(T). This is
clear if | SK: Cm(T) |2 = 2, since T Φ I. So suppose | Wl: Cm(T) |2 = 4.
In this case, C®o(T) is a S2-subgroup of C^(T). Since </> = C$Q(Ty
charC^o(T), it follows that C®o(T) is a S2-subgroup of C(T).

Let 3ΐ be a S2,3-subgroup of C(T) which contains C^(T). Suppose
O3(3Ϊ) ^ 1. Since Ug3ΐ, U centralizes O3(3ΐ), so O3(9Ϊ)SSK. Since no
element of $$ centralizes a four-subgroup of ί£0 by Lemma 9.26 (a), we
conclude that Os(Sl) = 1.

Since O3(3l) = 1 and since 9t Π SDΪ contains a S2-subgroup of C(Γ),
it follows that Ie Z(O2(SR)). Suppose X is a 3-element of 9ΐ and X
centralizes /. Then X e C(<Γ, / » , so X = 1 by Lemma 9.26 (a). Thus,
a S3-subgroup % of 3ΐ is faithfully represented on Z(O2(3t)).

Let A(Z(O2(3ΐ))) = 2)i x 2),, where 2)x = Λ1(Z(O2(3l))) n C(3t8), and
2)2 = [^(ZίOaίSH))), 3t8]- Thus, Γ G 2 ) I and % is faithfully represented
on 2)2. Hence, m(Z(O2(3l)) = m{%) + m(2)2) ^ 7. Thus, $ 0 has an
elementary subgroup of order 26, by Lemma 9.27. This is impossible,
since the width of $ 0 is at most 4. The proof is complete.

LEMMA 9.31. | ® | 3 > 34.

Proof. Let 9c be a subgroup of $ 3 of order 3 such that $ 0 Π C(X) =
O is quaternion. Let E be a S2)3-subgroup of C(ϊ) which contains
$ 3 Q. Since ^ 3 = 33 e 3f, it follows that $ 3 centralizes Z(O2((£)). Since
</> is a S2-subgroup of C($3), it follows that O2((£) = 1, by Lemma 9.21(a).

Since O2(K) = 1, O is faithfully represented on O3((£), so is faithfully
represented on O3((£)/3e. Hence, | O3(K): ϊ | ^ 9. Since [β3 Π O3((£), D] S
O3((£) n θ = l, it follows that $ 3 Π O3(£) = ϊ . Hence, | E |3 ^ 34. Sup-
pose the lemma is false. Then K contains a S3-subgroup of ©, and
O3(£) is of order 33, while X ~ 3 . If O8(K) is nonabelian, then Hy-
pothesis 9.1 is satisfied. This is not the case, so O3(K) is elementary.
Hence, O3((£) = 3£ x [O3(K), O]. Hence, the center of a S3-subgroup of
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© is noncyclic. This is not the case. The proof is complete.

LEMMA 9.32. Choose J in $* — <(Γ>. If J inverts $3, then
Am(®*) = Aut (Λ*).

Proof. Let 36 be any four-subgroup of Wfl which contains /. We
will show that

(9.25) \Am(X)\ =2.

This is clear if ϊ g S 0 . If £gΞ$0, then by Lemmas 9.27 and 9.24, we
see that H is conjugate to $2* in 9K. Let 2) be a subgroup of ®3

such that Q = S o n C(2)) is quaternion. Since J inverts Λ3, £} admits
<J)>$3/2) as a group of automorphisms. Hence, J inverts an element Q
of Q of order 4. Then J Q J - Q-\ that is, Q~VQ - JI, so Q e iV^($2*).
Thus, (9.25) holds.

Suppose that $2* — </> contains a conjugate J of J. By (9.25),
we can choose M in 9K n iV($2*) such that Mr^JM = J/. By (9.25)
again, this time applied to the group C(J), we can choose Mo in C(J)
with M^IMQ = /J. Thus, the lemma follows in this case.

We may now assume that

(9.26) / is the only conjugate of I in SB* .

By a result of Glauberman [16], ̂ 2 contains a conjugate T oΐ I with
T Φ I. If the width of $ 0 exceeds 2, then by Lemma 9.28, T $ ®0,
so by Lemma 9.24, (9.26) is violated. So suppose the width of 5£0 is
2. In this case, $ 0 has exactly 18 noncentral involutions and they
are permuted transitively in SW. Since T lies in no SK-conjugate of
S£*, Lemma 9.24 implies that TeB0. Thus, every involution of $ 0 is
conjugate to / in ®. But by Lemma 5.38, every involution of © is
conjugate to an element of ffi0. The proof is complete.

LEMMA 9.33. There is a S3-subgroup of © which contains S)3 and
is normalized by $2*.

Proof. Let $ be a maximal element of N(&%; 3) which contains
$ 3 . Suppose by way of contradiction that |Sβ| < |©| 3 . Let K be a
S2,3-subgroup of N(ψ) which contains S£2*. Let Kp be a iS^-subgroup
of <£, p = 2, 3, with ^ * s K2-

Suppose O2(E) ^ 1. Then since ^ 3 e &r, we get Z(O2(&)) - <I>,
so K is in a conjugate of 201. This is not the case, by Lemma 9.21(a).
Clearly, the maximality of φ forces $ = O3((£). Since O2((£) = 1, the
proof of Lemma 9.17 implies that (£ has no noncyclic abelian subgroup
of order 8. Thus, (£ — K/O3(K) is a 2, 3-group of order divisible by 3



N-GROUPS II 533

such that

(a) O,(g) = l .

(b) (£ contains a four-group.

(c) (£ contains no noncyclic abelian subgroup of order 8.

It is routine to verify that (£ ^ GL(2, 3) or E ^ ί 4 or 1 ^ A4. If

<τZ/(2, 3) = (£, then every four-subgroup of (£ normalizes a S3-subgroup of

<£, against the maximality of ψ. Hence,

/ 8 ( ) = X or A, .

Let Stf = <I, J>.

Case 1. / does not invert $ 3 . Let £ = C(J) π ®3, so that £ =
n ^3 = O3(S) Π C($*) is of order 3. By a formula of Wielandt

[40], together with Lemma 9.30, we get |O3(&)| ^ 34. Since O3((£) =
F((£), it follows from (B) that ra(O3(&)) ^ 3. Hence, O3(&) is elemen-
tary of order 33 or 34. If | O3((£) | = 33, then O3(S) char (£3, and so (£3

is a S3-subgroup of ©, against Lemma 9.31. Hence, O3((£) is elemen-
tary of order 34. This implies that O3((£) char (£3. Hence, (£3 is a
£3-subgroup of @. This is not the case, since 2Γ((£3) is noncyclic.

Case 2. J inverts $ 3 and (£ = ΣA.
Let S3 = (£2 n O3,2(K). Thus, 93 is a four-group. Suppose S3 = ®*.

Let @ = SW n E. Then |@| = 8.9, and ^ 3 Δ @- This is not the case,
since ^2* is a four-group, by Lemma 9.27.

Since S3 Φ &*, it follows that 93 and $2* are the four-subgroups
of (S2 By Lemma 9.32, A^®*) = Aut (Λ2*). Thus, 93 Π ̂ 2* = <F> with
F — 7. Hence, all involutions of 93 are conjugate to I in ($.

Choose V in 93*. Suppose \C(V) Π O3(E)| > 3. Then C(F) Π O3((£)
is a S3-subgroup of C(F), by Lemma 9.29, together with V ~ I. Hence,
| C S ( F ) | = 8.9, and CgίF) is 3-closed. This violates Lemma 9.27 ap-
plied to C(V). Hence, |O3(K) ΓΊ ( F ) | ^ 3.

Since iV(93) π K permutes transitively the involutions of 93, we get
\C(V) Π O3((£)| = 3 for all F in 93#. Hence, |O3(93)| - 27 and 08(<E) =

char K3. But then | S | 3 = |©| 3 , against Lemma 9.31.

Case 3. J inverts $ 3 and (£ = A4.
Let e 0 = O3(K). Then $ 3 = 0^(1) is elementary of order 32 and

inverts by each element of $2* — <7>. Since the involutions of $2* are
fused in (£, we conclude

(a) for each Ke ($*)*, the group C^(K) is elementary of order 3
and is inverted by each element of $2* — ζKy.
It follows that

(b) (£0 contains two chief factors of K, each of order 33.

2
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Suppose that (£0 is abelian. By (a) and (b), it is elementary of
order 36 and each element of (£3 — &0 has minimal polynomial (x — l ) s

on (£0 Hence, (£0 char £ 3 . So K3 is a S3-subgroup of (S. But Z((£8) =
[So, K8, (£3] is not cyclic, against hypothesis (iii) of Theorem 9.1.
Therefore, (£0 is not abelian. So (a) and (b) imply:

(cl) ©o is special of order 36 and exponent 3,
(c2) Z>(<£0) = Z(K0) is a chief factor of <£ of order 33,
(c3) <S,*/D(&0) is a chief factor of £ of order 33,
(c4) every element of (£3 — (£0 has minimal polynomial (.τ — I)3 on

both Z)((£o) and (£o/#(&o),

(cδ) if P e K 8 - (£„, then \C^(P)\ ^ 33.
This implies

(d) (Eo char <£8.
Indeed, if Ŝ  is any subgroup of index 3 in (£8 different from &0, then
Ki Π Ko 3 /)((£<>)• Hence, (c4) implies that the exponent of Ĝ  is 9.
This proves (d), and gives

(e) (£3 is a £3-subgroup of ©.
Now let SI0 be a subgroup of $ 3 of order 3 such that C ô(2Io) =
<7>. Let K3 = Ao x A :. Thus, Q is a quaternion group and

t ^ J > = GL(2, 3). Let 8 be a S2,3-subgroup of C* (2I0) with Q$ 3<J> s L.
Let So = O3(S). Since />(K0)^3 is elementary of order 34 and contains
an element of ^ ( 3 ) , it follows that O3/(S) = 1. Since 8 contains no
noncyclic abelian subgroup of order 8, we get that DM^jy is a com-
plement to 80 in 8. Since I inverts 80/2ί0, it follows that 180: 2I01 = Zu

for some integer d ^ 1. If d = 1, then Z)((£0)$3 is a S3-subgroup of
C(Sί0) and so S3-subgroups of 8 are abelian. This is absurd, so d >̂ 2.
Since |@|3 = 37 by (e), and since | 8 | 3 = 32d+2, we get d = 2.

Let 83 be a S3-subgroup of 8 containing S3. Since 83 is not a
S3-subgroup of ©, and since 2I0 Δ 8, it follows that Z(83) is noncyclic.
In particular, Z(80) ΞΞ>Z(83), so that Z(80) is not cyclic. Hence,
I Z(20) I ̂  33. This implies that if L e 80, then | CSo(L) | ^ 34. Choose
G in © so that 8 3 g ( 5 | , which is possible by (e). By (c5), we get
S0S(£ίf. Hence, 80 = 800 x 8Oi, where 800, 801 admit O, 800 is nonabelian
of exponent 3 and order 33 and 801 is elementary of order 32. Now
Sti £ 83 and | C23(%) ^ 34, so we get that 5IX £ &°. Hence, 83 = 2^ £ £?,
and so 83 = K?. This is impossible, since |Z(83)| = 32, |Z(©0)| = 33.

LEMMA 9.34. Each involution of $t* — ζiy inverts $ 3.

Proof. Let φ* be a S2-subgroup of © which contains S 3 and is
normalized by $2*, set ϊ = ^ 3 n C(ίB2*). Suppose ΊίΦl. Then | ϊ | = 3,
so by a formula of Wielandt [44], |5β*| ^ 34. This contradicts Lemma
9.31. Hence, X = 1. As $* = </, J)> for some involution J, the proof
is complete.
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LEMMA 9.35. (a) IfTίisa subgroup of $ 3 of order 3 and C(X) Π $ 0

is quaternion, then |C(X)|3 = 34.
(b)

Proof, (a) Set O = C(X) Π StQ, and let 2) be a subgroup of $ 3 of
order 3 distinct from X. Let J be an involution of &? — </)>. Thus,
J inverts $ 3 by Lemma 9.34. Also, </>?)£} = GL(2, 3).

Let K be a S2,3-subgroup of JV(X) which contains BZΌM*. Thus,
Q<J> is a S2-subgroup of K and O2((£) = 1. Since

[O8(K) n Λ8, Q] s o8(<£) n o = l ,

it follows that O3((£) n $ 3 = X. Hence, / inverts O3((£)/X. Hence,
O3((£)/X is the direct sum of a certain number, say k, of modules each
isomorphic to the faithful irreducible i^Q-module, so that |O3((£):X =
32fc. Hence, |K|8 = |C(Λ)|8 = 32(fc+1). Suppose fc ^ 2. Then by Lemma
9.33, we get |<£|8 = |© | 3 = 36.

We argue that Z(O3((£)) = X. Suppose false. We get Z(O3(e)) =
(Z(OM)) Π C(/)) x [Z(O8(e)), / ] . Since ^ 3 Π O8(e) = , we get

z(OM)) n C(i) = ae

also [Z(O3(e)), I ] is normalized by 2), so if [Z(O3(e)), /] Φ 1, then a S3-
subgroup of © has a noncyclic center. We conclude that X = Z(O3((£)).
This implies that O3((£) is extra special of width 2. Since £ χ j > is a
S2-subgroup of JV(X), it follows that O3(S) - O3(iV(X)). Thus, Hypothesis
9.2 is satisfied. Since this is not the case, we get k = 1. Thus (a)
holds.

By Lemma 9.20, we have | C($3) |3 ^ 27. Since ^ 3 is not central
in a S3-subgroup of (£, (b) follows.

LEMMA 9.36. Let ^ be a S3-subgroup of ©. Then
(a) |5β| - 3 5 .
(b) Sβ/Z(φ) is o/ maximal class and order 34.

Proof. By Lemma 9.33, there is a conjugate S3 of $2* which nor-
malizes Sβ. By Lemma 9.32, all involutions of S3 are conjugate to
/. Let V19 V2, V3 be the involutions of S3. By Lemma 9.34, (7̂ (23) = 1.
By Lemma 9.29, \C^(Vd\ ^ 9 for i = 1, 2, 3. Then by Wielandt [44],
I φ i ^ 3 6 .

Set 3 = Z($β). Since 3 is cyclic, C(3) Π S3 ̂  1. We may assume
notation is chosen so that V1 is a generator for C(3) Π S3. Thus,
| 3 | = 3. Suppose Vι inverts φ/β. Then, | ^ | ^ 35, so by Lemma 9.31,
| φ | = 35. In this case, since 3̂ is generated by elements of order 3,
we get that 3 = $ ' = #($)• Since OAW8) = 1, so also O8,(3)/3) - 1.
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Hence, 3̂ <| N(S). Thus, Hypothesis 9.2 is satisfied. Since this is not
the case, we conclude that V1 does not invert ^β/3

Let U be a subgroup of CJ^V^ of order 3 distinct from 3 Thus,

By Lemma 9.35(b), we get | C?(3U) | ^ 27. Since iV^tStt) = ί
we have | C^(3U) | = 27. Again, since iV?(3U) = Cφt3ϊt), if follows that
I JVφ/8(<3tt/3) I = 9 T h u s > W 3 is of maximal class, and U3/3 g (33/3)'
Since U3/3 * s the set of fixed points of Vι on ^3/3 > it follows that

has a subgroup ^βo/3 of index 3 which is inverted by SŜ  Since
is generated by elements of order 3, ^βo/3 is elementary. If
^ 34, then *β/3 is not of maximal class. Hence, | φo/31 ^ 27,

so by Lemma 9.31, we have |^βo 3l = 27. This establishes both (a)
and (b).

We may now complete the proof of Theorem 9.1. Let Sβ, ̂ 30> 3>
U, 23, 7 Ί be as above. Thus, | φ01 = 34, φo/3 is elementary of order 27
and is inverted by F x . Being generated by elements of order 3, φ o

is of exponent 3. It follows that Z($β0) is not cyclic. Hence, we can
choose a subgroup 2δ of Z(^βQ) of order 9 which is normal in 3̂33. Set
2) = 2SU. Thus, 2) is of order 27 and 2) admits F x . Thus, 3U Δ ?),
so 2) is abelian, since iV^(3ll) = C^(3U). This implies that 2QcZ(^3),
since β̂ = ^β0U. This contradiction completes the proof of Theorem 9.1.

Theorems 8.1 and 9.1 provide a proof of Theorem ES.

A substantial number of simplifications and corrections have been
supplied by E. C. Dade.
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