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ADMISSIBLE MODULES AND A CHARACTERIZATION
OF REDUCED LEFT ARTINIAN RINGS

GUENTER R. KRAUSE

A unitary left R-module M over a left noetherian ring R
with identity is called admissible if every prime ideal of R,
which is the left annihilator of all nonzero submodules of a
submodule N of M, is also the left annihilator of all nonzero
elements of N, The object of this paper is to study left
noetherian rings R whose category of unitary left R-modules
consists of admissible modules, A ring R in this class of
rings is characterized by the fact that every injective left R-
module is a direct sum of injective and indecomposable modules
of the form FER(R/P), where P denotes a prime ideal of R
and Er(R/P) the injective hull of the left R-module R/P,

Lesieur and Croisot have defined the heart C(E) of an in-
jective module £ to be the intersection of the kernels of all endo-
morphisms in the Jacobson radical of Homy (¥, E), and the heart
of any module M to be the submodule C(M) = Mn C(E(M)).
Although the socle is always contained in the heart, the two sub-
modules are not equal in general, a simple example being a tor-
sion-free abelian group. This suggests the study of rings with
the property that heart and socle coincide in every one of their
modules., In §3 the discussion is restricted to left artinian
rings, whose left modules are admissible, and it is shown that
the class of these rings is the class of all reduced left artinian
rings, a ring being reduced if it is a direct sum of division
rings modulo its Jacobson radical. A ring R in this class has
the interesting property that for every prime ideal P the
heart of the left R-module E/P is equal to its socle. But,
although these modules form an injective decomposition basis
for the category of all unitary left R-modules, socle and heart
can be different for some objects in this category. In §4,
however, it is shown that socle and heart coincide in every
module over a reduced left artinian ring R if and only if R
is a direct sum of finitely many local left artinian rings. This
result admits two interesting corollaries:

1. A commutative noetherian ring with identity is artinian
if and only if heart and socle are equal for every left R-
module,

2, A left noetherian ring with identity whose modules
are admissible and have coinciding heart and socle has the
Artin-Rees property for left ideals,

1. Preliminaries. Throughout this paper each ring R will be a
(not necessarily commutative) ring with identity element 1, and each
module M will be a unitary left R-module in the sense that 1m = m
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for all me M. The category of all left R-modules is denoted by ..
a module M is called a cogenerator in p_# if every module of . 7
is isomorphic to a submodule of a direct product of copies of M. If
Me ,_#, then E(M) or E.(M) denotes the injective hull of M. It is
well-known (see [15]) that an injective module E over a left noetherian
ring R is a direct sum of injective and (directly) indecomposable left
R-modules. Furthermore, the direct summands appearing in such a
decomposition are unique up to an automorphism of E. Thus, the
set of all isomorphism classes of indecomposable injective submodules
of the injective hull E(M) of a module M is an invariant of M, and
we denote by w(M) a set of representatives of these classes. A
module M is said to be homogeneous if |7w(M)| =1, E-homogeneous if
(M) = {E}. A left ideal L of R is called homogeneous if the left
R-module R/L is homogeneous.

A submodule N of M is called large in M (denoted by N &’ M),
and M is said to be an essential extension of N if NNX == 0 for
every nonzero submodule X of M. Dually, a submodule N of M is
small in M if X + N = M for all proper submodules X of M. M is
uniform if every nonzero submodule is large in M, a left ideal L is
irreducible if the left R-module R/L is uniform. L is said to be com-
pletely irreducible if the intersection of all left ideals properly con-
taining L is different from L. A left ideal L is an irredundant
intersection of left ideals L,, ie I, if L = Nic; L; but L = Nx; L; for
every jel.

X, =X/(R) ={reR|jrX = 0} denotes the left annihilator in R
of the subset X of M, Y(M) = {meM|Ym = 0} denotes the right
annihilator in M of the subset Y of R. A prime ideal P is called
associated with M, if P= N '/ for all nonzero submodules N’ of some
submodule N of M, it is called strictly associated with M if further-
more P = n, for all 0 = ne N. The set of all prime ideals associated
with M is called the characteristic of M and denoted by ch (M), the
set of all prime ideals P with P 2 M, is denoted by supp (M). A
prime ideal P is said to be completely prime if the ring R/P has no
zero-divisors. An ideal K is called corpoidal if R/K is a division ring.

J = J(R) = Jacobson radical of the ring R.

N = N(R) = Baer lower nil radical of R.
N* = N*(R) = generalized nil radical = intersection of all completely
prime ideals.

T = T(R) = Thierrin radical = intersection of all corpoidal ideals.

@..; M; = (discrete) direct sum of the modules M;, i€ I.

Tl:c: M; = direct product (complete direct sum) of the modules
M, iel.
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S(M) = socle of the module M = sum of all minimal submodules
of M.
Z(M) = singular submodule of M = {me M|m, <’ R}.
C(M) = heart of M = M N[scimompzon, 2o Ker B,
Z = ring of integers.
dim; M = Goldie-dimension of the module M (see [7] and [8]).
The tertiary radical ter L of a left ideal L is the set of all ele-

ments € R such that for every b¢ L there exists an element a ¢ Rb,
a¢ L with *rRa & L. The radical rad L of L is the intersection of
all prime ideals containing (R/L),(R), that is, rad L/(R/L), =
N(R/(R/L),). L is called tertiary if every element which annihilates
a nonzero submodule of R/L belongs to ter L, it is primary, if every
such element belongs to rad L. If L is tertiary, then ter L is a prime
ideal (see [4]). Since rad L is always contained in ter L, primary left
ideals are tertiary, the converse, however, is not true in general.
Furthermore, in general L is neither contained in rad L nor in ter L.
It is well-known that all tertiary left ideals of a left noetherian ring
R are primary if and only if R has the Artin-Rees-property for left
ideals, that is, for every left ideal L, every two-sided ideal I, and
. every nonnegative integer n there exists a nonnegative integer m =
m(L, I, n) such that I"NL & I"L. Finally, we call a ring R local if
it has exactly one maximal left ideal, which is equivalent to the fact
that R/J is a division ring.

2. Admissible and strictly admissible modules. In [11] it was
shown that submodules, injective hulls and direct sums of admissible
modules over a left noetherian ring are admissible. In general, how-
ever, epimorphic images of admissible modules are not necessarily
admissible. This follows from [11, Folgerung 2.8] and [12, Example
10.1].

DEFINITION 2.1. A module M is strictly admissible if M and its
homomorphic images are admissible.

An ascending series of submodules of the module M is a set of
submodules {N,|a e A} with the following properties: (1) N, = 0 and
Ng = M for some ScA. (2) N, = N,;, for ‘each « < &. (3) N, =
U.<: N, for limit ordinals .

PrOPOSITION 2.2. The following properties of the module M over
the left noetherian ring R are equivalent:

1) M 1is strictly admissible.

(2) If N is a homomorphic image of M, then there exists an
ascending series {N, |« e A} of submodules of N and a set {P,|a e A}
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of completely prime ideals of R such that N,.,/N,= R/P, for all
ace A.

(3) Ewvery momzero homomorphic image of M has a mnonzero
admissible submodule.

Proof. (1) —(2): Let N be a homomorphic image of M, and let
N, = 0. If @>0 is not a limit ordinal and N,_,« N, then ch(N/N,_)+ @&
by [11, Lemma 1.9]. Since M is strictly admissible, there exists a
completely prime ideal P, , of R such that P, , = (Rr%), = (rZ), for
an element 0 = 2 N/N,_, and all »¢Z, (see [11, Satz 2.6]). If T =
¢+ N,_,, define N,=N,_, + Rx, whence N,/N,,~ RZ~R|T, =
R/P,_,. If A is a limit ordinal, we define N, = U.,<: N,. Then there
exists an index & such that Ng = Ng.,, whence ch (N/Ng) = @, and
thus N = Ng since R is left noetherian.

(2) — (3): If N is a nonzero homomorphic image of N and {N,|«a € A}
an ascending series of submodules of N of the type described in (2),
let N,, denote the first nonzero element of this series. It is clear
that @, is not a limit ordinal, and hence N, _,=0. Thus N, =
N, /N, .~R|P,_,, and since P, _, is completely prime, N, is admissible.

(3) — (1): Let N be a nonzero homomorphic image of M, and let
K Dbe a maximal nonzero admissible submodule of N. The existence
of K is guaranteed by (3) and Zorn’s lemma. If K = N, then there
exists a nonzero admissible submodule L/K of N/K. If K &' L, then
E(K) = E(L), so L is admissible by [11, Satz 2.6], a contradiction to
the maximality of K. If H S L with HNK = 0, then H ~ (K} H)/
K< L/K, so K@ H is admissible by [11, Lemma 2.5], which also
contradicts the maximality of K. Hence K = N, and N is admissible.

REMARK 2.3. If M has an ascending series of the type described
in 2.2, then ch (M) S {P,|ac A} < supp (M). The first inclusion fol-
lows from the fact that for every Pech (M) there exists a smallest
index « such that Pech(N,. Since « is not a limit ordinal,
Pech (N,/N,_,)uch(N,_,), whence Pech(N,/N,.)={P.}. The
second inclusion follows from (N,.,/N,), 2 M, for all € A.

In general, however, ch (M) = {P,|ac A} == supp (M). If, for
example p; denotes the i-th prime number and (p;) the ideal of Z
generated by p;,, then M = @Z/(p;) is a strictly admissible Z-module
with ascending series N, = @*., Z/(p;) and N, = Uz, N, = M. Since
M, =0,{p);1=1,2, ---} % supp (M). On the other hand, the left
Z-module Z has the ascending series 0C2Zc Z with factors Z/(2) and
Z/(0), whereas ch (Z) = {(0)}. In general, however, the following is
true:
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PROPOSITION 2.4. The following properties of the module M over
the left noetherian ring R are equivalent:
(a) M s strictly admissible.
(b) If {N,|aec A} is an ascending series of submodules of

1) M and {P,|lacA} a set of prime ideals of R such
l that N,,,/N, =~ R/P, for every ac A, then {P,|ac A} =
\ ch (M).

@) {(a) M is admissible.

(b) w(M/NYNT(M) = @ for all submodules N of M.
3) {(a) M 1is admissible.

(b) w(M/N) < n(M) for all submodules N of M.
@) {(a) M s strictly admaissible.

(b) ch (M/N) < ch (M) for all submodules N of M.

Proof. The equivalence of (3) and (4) is an immediate consequence
of [11, Folgerung 2.8].

(1) — (2): Since a submodule N of a strictly admissible module M
is strictly admissible, there exists an ascending series of submodules
{N,|laae A} of N and a set {Q. ac A} of prime ideals such that
N,../N, = R/Q, for all a«c A. Similarly, there exists an ascending
series {K;/N|B e B} of submodules of M/N and a set {P; | € B} of prime
ideals such that K, /K, =~ R/P, for all 8e B. Thus, the series 0 =
N,cNc-..cN,cN,,,c---cN=KcKc---cK;cK;.,.Cc---CM
is an ascending series of submodules of M whose factors are isomorphic
to R/Q. and R/P;, respectively. Since {Q.|a e A}U{P;|B € B} = ch (M)
by assumption, it follows in particular that P, = (K,/N), < ch (M).
Thus M and M/N both contain a submodule isomorphic to R/P,,
whence T(M/N)Nn(M) = @.

(2) — (4): Let N & M and define N, = N. If a > 0 is not a limit
ordinal, let X e #(M/N,_)Nw(M), and let E be a submodule of E(M/N,_,)
isomorphic to X. Since M is admissible, it follows from [11, Satz 2.6]
that F = E.(R/P,_,) for some P, ,ech(M)Nnch(M/N,_,). Since E is
admissible, and since ch (M/N,_.NE) = {P,_,}, M/N,_,NE possesses a
submodule N,/N,_, which is isomorphic to R/P,_,. If N, = U.« N,
for limit ordinals X\, it follows that the factors of the ascending series

0=N/NcN,/Nc-.-.--cN,/NCN,.,/NcC---CcM/N

are isomorphic to modules R/P,, where every P, is associated with M
and hence completely prime. Thus, M is strictly admissible and it
follows from the construction that ch (M/N) & {P,|ac A} < ch (M).

4)—@Q): If {N,|ae A} is an ascending series of submodules of
M with factors R/P,, it follows that P,ech (M/N,) = ch (M) for every
aeA. Together with 2.3 this implies (1b).
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COROLLARY 2.5. If M is a module with the properties (1) to (4)
wmn 2.4, then S(M) = C(M) = @P,(M), where P runs through the set

of maximal elements of ch (M).

Proof. Since S(M) is the intersection of all large submodules of
M (see [17, p. 23]), S(M) = C(M). Since n(M/N) < n(M) for all
submodules N of M, it follows from [11, Satz 3.1] that C(M) = S(M).
By [11, Lemma 3.5], P.(M) S C(M) for every maximal element P of
ch (M). Conversely, if Rx is a minimal submodule of M, then P =
(Rx), € ch (M), whence P = x, by the admissibility of M. Thus, P
is a maximal element of ch (M). Since Rx & (Rx),(M) = P.(M), and
since S(M) is the sum of all minimal submodules of M, the second
equation thus follows from the first.

REMARK 2.6. The author does not know whether a strictly ad-
missible module M with S(M) = C(M) also has property 2.4 (1b). If,
however, all left R-modules M over the left noetherian ring R are
admissible and satisfy S(M) = C(M), then ch (M) = supp (M) for all
M, which implies 2.4 (1b). This is shown in §4.

THEOREM 2.7. The following properties of the left noetherian
ring R are equivalent:

1) Every left R-module is admissible.

(2) R/N 1is a strictly admissible left R-module.

(8) Ewvery injective indecomposable left R-module E is isomorphic
to Er(R/P) for some prime ideal P.

(4) R/ter L is R-isomorphic to a submodule of R/L for every
wrreducible left ideal L.

(5) Ewvery tertiary left ideal L is E(R/ter L)-homogeneous.

Proof. Trivially, (2) follows from (1). Assume (2), and let E be
an injective indecomposable left R-module with ch (E) = {P}. Then
P = (Rrx), for some element 0 == v ¢ E and every r¢ 2, Since Rx ~
R/x, = (R/N)/(x,/N), Rx is admissible. Thus, E is admissible by [11,
Hilfssatz 2.4], whence P = x, which implies E = E(Rx) =~ E,(R[z,/) =
E.(R|P). '

(3) — (4): Since EL(R/L) is injective and indecomposable for every
irreducible left ideal L, it follows from (3) that Er(R/L) ~ E,(R/P)
for some prime ideal P. Since R/P is a left noetherian left uniform
prime ring, P is completely prime by [7, Lemma 3.3 and Lemma 3.8].
This implies the admissibility of R/L by [11, Hilfssatz 2.4]. Since L
is irreducible, L is tertiary, and since ch (R/L) = {P}, it follows that
ter L = P. Since P = x, for some element 0 == xc R/L by the ad-
missibility of R/L, it follows that R/ter L = R/P = R/x, =~ Rx & R/L.
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(4) — (5): Let L be tertiary, L = N, L; with irreducible left
ideals L;, none of which is superfluous. It follows from [15, Th. 2.3]
that E(R/L) = @1, E(R/L;), and since each L, is ter L-tertiary by
[12, Th. 8.3], it follows that E(R/L;) ~ E(R/ter L) for each 1.

(5) — (1): Let E be injective and indecomposable with ch (E) = {P},
and let © = 0 be an element of E. Since z, is a tertiary left ideal
with terxz, = P, it follows from (5) that E = E(Rx) = E(Rx,) =
E.(R/P). Since R/P has no zero-divisors by [7, Lemma 3.3 and 3.8],
FE is admissible. Since R is left noetherian, every injective left R-
module is a direct sum of indecomposable injective modules (see [15,
Th. 2.5]), and since direct sums of admissible modules are admissible
(see [11, Lemma 2.5]), it follows that every left R-module is admissible.

REMARK 2.8. In 2.7 (5) one cannot simply demand the homogeneity
of all tertiary left ideals. By [12, Propriété 10.40] every left artinian
ring has this property, but not every module over a left Artinian
ring is admissible (see [11, Hilfssatz 4.1]).

3. A characterization of reduced left artinian rings. Following
[2], we call a ring R reduced if R/J is a direct sum of division rings.
These rings deserve some interest, since the problem of constructing
all rings with minimum condition on left ideals can be reduced com-
pletely to that of constructing all reduced rings with minimum condi-
tion on left ideals (see [2] and [9]). The purpose of this section is
to give a characterization of reduced left artinian rings by certain
properties of the category of their unitary left modules.

PropPoOSITION 3.1. The following properties of a prime ideal P
of the left noetherian ring R are equivalent:

(1) P is a completely irreducible left ideal.

(2) Every left R-module M with ch (M) = {P} is admissible and
has nonzero socle.

(3) P is a maximal left ideal.

@) {(a) P is completely prime.
(b) Si(R/P)=0 .

Proof. (1) — (2): Since R/P is uniform, S,(R/P) is the intersec-
tion of all nonzero submodules of R/P and hence nonzerc, since P is
completely irreducible. If M is a left R-module with ch (M) = {P},
then E(M) = @;.; E; with injective indecomposable left R-modules E,
(see [15, Th. 2.5]). By [11, Folgerung 1.11 and 1.13], ch (E;) = {P}
for all e I. Since R is left noetherian, C(E;) # 0 by [13, Propriété
3.3], whence E; =~ E(C(&;)) for every ¢. Hence, there exists a nonzero
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element ze C(E;) such that P = (Rrx), for all »r¢x, Since P =
N,z (r%), and since P is completely irreducible, P = (r.x), for some
r,€ R. By [13, Propriété 38.2], (r), is maximal in the set of all
left annihilators of nonzero elements in E;, so that P = (r&),=
(Rx), < (rx), implies P = (rx), for all r¢x, Thus, C(E;) is ad-
missible, and so is E; by [11, Hilfssatz 2.4]. Therefore M is ad-
missible by [11, Lemma 2.5]. Furthermore, S(M) # 0 since Sp(R/P)#0
and E; = E(Rryx) ~ E(R/(ra),) = E(R/P) for all i1¢ 1.

(2) — (3): Since ch (R/P) = {P}, the left R-module R/P is ad-
missible and has nonzero socle. Hence there exists a nonzero element
x € S(R/P) such that P=x, Since P is completely prime by [11,
Satz 2.6], the ring R/P is a left noetherian ring without zero-divisors
and therefore left uniform by [8, Proposition 4.2]. Thus, S(R/P) =
Rx ~ R/x, = R/P, and since S(R/P) is a simple left R-module, P is
a maximal left ideal.

It is obvious that (4) follows from (3).

(4) — (1): Since P is completely prime, P is an irreducible left
ideal by [8, Proposition 4.2], and hence S(R/P) is the intersection of
all nonzero submodules of R/P. Since S(R/P)+ 0 by assumption, it
follows that P is completely irreducible.

ProrosITION 3.2. If I is a semi-prime tdeal of the ring R with
maximum condition on left ideals, then:

(a) R/ s an irredundant (see [14]) subdirect sum of finitely
many prime rings R, = R/P,, i =1, ---, n.

(b) ch,(R/I)={P, ---, P,} and P, £ P;, if © +J.

() I= n?=1 P,

Proof. By [14, Th. 8.2], R = R/I is the irredundant subdirect
sum of prime rings R, ac A, and the kernels of the projections
R — R, are the maximal annihilator ideals P, of E. The proof of
Theorem 3.2 in [14] shows also that MN,..P,=0. If P, = P,/I for
an ideal P, of R, then every P, is a prime ideal of B. Let P, =
(L/T)/(R) for some left ideal L of R, and let IcL,CL. If ¢ denotes
the canonical epimorphism from R onto R, 0 = (P,/I)-(L,/I) = P,p-L.p=
(P,L)p, whence P, < (L,/I),(R). If aL, & I, then (ap)(L,p) = 0, and
hence ao e (L,/I),(R) = P,/I which implies ac P,, since kerp = I.
Thus, P, = (L,/I),(R), whence P,¢cch, (R/I). Since P, is a maximal
annihilator ideal in R, P, is maximal in ch, (R/I). Since ch, (R/I) is
finite by the maximum condition on left ideals in R, A is finite. Since
I = Nues P, and since every ideal associated with the left R-module
R/I contains I, ch, (R/I) = {P,|a e A}.

DEFINITION 3.3. (See [10, p. 216].) A set ¢ of prime ideals P
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of a semi-prime ring R is a minimal decomposition set for R if
Nres P =0 but Npeyox P+ 0 for all Xeg.

If ¢ denotes the set of all prime ideals of R, then 3.2 yields the
following result:

COROLLARY 3.4. The following properties of the left noetherian
ring R are equivalent:

1) Prime ideals of R are maximal ideals.

(2) The prime ideals of R/N form a minimal decomposition
set for R/N.

3) ¢l = [m(R/N)|

Proof. (1) —(2): Since every left ideal of a left noetherian ring
R contains a product of finitely many prime ideals (see [12, Th. 3.1]),
R has only finitely many prime ideals P, ---, P,. Since they are
maximal, and since their intersection is N, the prime ideals of R/N
form a minimal decomposition set for R/N.

(2) — (3): Since N is the intersection of all prime ideals associated
with the left R-module R/N (see 3.2), and since the prime ideals of
R/N form a minimal decomposition set for R/N, it follows that ¢ =
chy (R/N), whence |¢| = [chp(E/N)| < [n(R/N)| by [11, Hilfssatz 1.15].

3)—(1): By 3.2, N=N~, P, where ch,(R/N)={P, ---, P,}.
Thus, R/N can be imbedded in the module @, R/P,. Since n(R/P;) #
w(R/P;) for ¢ = j, and since for every prime ideal P the left R-module
R/P is homogeneous, it follows that

=n = |ch (R/N)| < 9] .

9 < 7BIN)| = |=(@ RIP)

Together with ¢ 2 ch (R/N) and the finiteness of chy (R/N) this im-
plies ch, (R/N) = ¢, and therefore prime ideals are maximal ideals

by 3.2.

COROLLARY 3.5. The following properties of the left noetherian
ring R are equivalent:

(1) Ewvery prime ideal of R is corpoidal.

2) || =|m(R/T)|.

Proof. (1) implies T = N, and thus |¢| < |[7(R/N)| = |m(RB/T)|
by 3.4. Conversely, |¢| < |n(R/T)| implies the finiteness of ¢, since
dim, (R/T) < . Thus, T is the intersection of a finite number of
corpoidal ideals K,, ---, K, and none of these is superfluous. Thus,
by [15, Th. 2.3], E(R/T) ~ @, E(R/K;), whence
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18] = [7(ER(R/T))]
= [{Ex(R/K)), - -+, Ex(R/K,)}| =n = |[ch (B/T)| = [¢].

Hence ¢ = ch, (R/T), and therefore all prime ideals of R are
corpoidal.

THEOREM 3.6. The following properties of the ring R are equ-
1walent:
(1) Every left R-module can be imbedded im a direct sum of
copies of the left R-module Ey(R/N*).
(a) R 1is left moetherian.
2) {(b) Every left R-module is admissible.
(¢) S(R/P) = C(R/P) for every prime ideal P of R.
(a) R 1is left artinian.
{(b) Every left ideal containing J is two-sided.
(a) E and [[ commute.
{(b) E and P commute.
(¢) ER(R/N*) 1s a cogenerator in the category . .
(a) R 1s left noetherian.
{(b) Prime ideals of R are maximal left ideals.
(a) T = N.
<1 (b) The number of prime ideals of R is finite.
(¢) R has the maximum condition on nil left ideals.
(@) R has the minimum condition on principal left ideals.
(7) {(b) A left ideal is small if and only if it is generated
by finitely many nilpotent elements.
(8) R is a reduced left artinian ring.

Proof. (1) —(2): If d denotes the cardinality of K (R/N*), then
every module is contained in a direct sum of modules generated by
d elements. By [5, Th. 3.3], this implies the maximum condition on
left ideals. Since R/N* is semi-prime, N* is the intersection of the
prime ideals P, ---, P, associated with the left R-module R/N* (see
Proposition 3.2). If P is any prime ideal, then Pech(R/P) <
ch (PE(R/N*)) = ch (R/N*), and so ch (R/N*) is the set of all prime
ideals of R. Therefore, every prime ideal is maximal by Proposition
3.2. Since N* is the intersection of all completely prime ideals, all
prime ideals of R are completely prime. Since completely prime ideals
of a left noetherian ring are irreducible left ideals by [8, Proposition
4.2], it follows from [15, Th. 2.3] that E(R/N*) = @i., E(R/P)).
Since by [11, Hilfssatz 2.4 and Lemma 2.5] admissibility is inherited
by injective hulls and direct sums, it follows that E(R/N*) is ad-
missible, so all left R-modules are admissible by (1). Since prime
ideals are maximal, it follows from [11, Hilfssatz 4.1] that prime ideals
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are maximal left ideals. Thus S(R/P) = R/P = C(R/P) for all prime
ideals P, since the heart of a nonzero module over a left noetherian
ring is nonzero by [13, Propriété 3.3].

2)—(3): If P is a prime ideal, it follows from (2) and [11,
Lemma 3.5] that R/P 2 S(R/P) = C(R/P) = P,(R/P) = R/P. By Pro-
position 2.2, there exists a sequence 0 = L,cL,C --- CL, = R of left
ideals and a set of prime ideals P, P, ---, P,_, such that L, L, , ~
R/P;_, for all 1=1, ---,n. Since S(R/P,) = R/P;, and since R/P; is
left noetherian, each of the modules R/P; possesses a finite composi-
tion series, so R is left artinian. It follows from Proposition 3.1
that every prime ideal is a maximal left ideal. Assume, not every
left ideal containing J is two-sided. Let L be minimal in the set
of all left ideals containing J which are not the intersection of prime
ideals. Since R is left artinian, J = N = N2, P;, where the P, denote
the prime ideals of R. Let M be maximal in the set of all left ideals
containing J and being properly contained in L. Then M = P,.N---NP,
with m < n, and it may be assumed that L £ P,. Since PNL =M
and P, is a maximal left ideal, it follows that

R/L:(P1+L)/L:P1/P10L:P1/M:Pl/Plﬂ ce- NP,
:[P1+(P2n b ﬂPm)]/Pzn ce um:R/sz e um’

whence P,n---NP, =(R/L), < L. Since P,N --- NP, = L by the
choice of L, P,n --- NP, = M < P,, contradicting the maximality of
the prime ideals in R, and proving that every left ideal containing J
must be two-sided.

(3) — (4): Since a left artinian ring with identity is left noetherian,
direct sums of injective modules are injective, proving (4b). Since
prime ideals of R are maximal ideals, it follows from (3b) that they
are maximal left ideals, so in particular completely prime. By 3.4,
R has only finitely many prime ideals P, ---, P,, and therefore N*
is their irredundant intersection. Thus, E(R/N*) ~ @, E(R/P;) by
[8, Proposition 4.2] and [15, Th. 2.3]. If M = Rx #+ 0 is a simple
left R-module, then z, is a maximal left ideal and hence a prime ideal
by (3b). Thus, x, = P; for some ¢, whence E(M) = E(R/x,) < E(R/N*),
which implies (4c) by [18, Lemma 1].

Let {M;|ie I} be a family of left R-modules and let I be well-
ordered. For & = [[;c;@;€ [lic; B(M,), © € [1ic; M, let x; be the first
among the components «; of a& for which «,¢ M, and let L, =
{re Rlra; e M;}. From M; &’ E(M,) it follows that there exists an
element 7, € L, such that 0 = »x; € M;. If, for i > 7, there exists a
component x; of & such that »x;¢ M; and L N (), C{re L,|re; € M},
let ;, be the first such component, and let L, = {re L,|rx; € M,}.
Since L,x;, # 0 and M,, &’ E(M,,), there exists an element r,e L, such
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that 0 # r;e M;,. Continuing in this way, we obtain a strictly
descending chain of left ideals L,,n=1,2,---. Since R is left
artinian, there exists a natural number % > 0 such that for ¢ > 1,
either r,x;e M; or L,N(x;), = {reL,|rx;e M;}. Since M; S’ E(M,),
the second case implies L,x; = 0, whence 7,x; = 0. By construction,
r,@; € M; for all + <4, and r,o; #0, so 0 r,w¢€[[ic; M;. Thus,
Tl:e: M; is a large submodule of [];., E(M,), which implies (4a).

(4) — (5): It is well-known (see [3, Proposition 4.1]) that (5a)
follows from (4b). By 8.2, N* is the intersection of the prime ideals
Pk =1, ---,7n), associated with the left R-module R/N*, and this
intersection is irredundant. If P is any prime ideal, then R/P C
TIE(R/N*) = E(TIR/N*) by (4b) and (4c), whence Pech (JIR/N*),
and thus P 2 P, for some k. Furthermore, there exists an element
2 = [[x;€ [JR/N* with P = (Rx),, whence P = N(Rx;), & (Rx;), for
all ¢, so P is contained in one of the prime ideals associated with
R/N*. Thus, P= P,, so chy(R/N*) is the set of all prime ideals of
R. Consgequently, all prime ideals are maximal, and it follows from
the definition of N* that they are also completely prime, so E,(R/N*)
is admigsible by [15, Th. 2.8] and [11, Satz 2.6]. By assumption any
module M is isomorphic to a submodule of a direct product of copies of
ER/N*). 1If Pech(M), P= (Rx), for some nonzero element 2z =
ITz;e M C TIE(R/N*). If rex, then r¢ (v;), for at least one com-
ponent »; of x. Since P is a maximal ideal, P = (Rsx,), for all
sé&(x; ), whence P = (sw;), since E(R/N*) is admissible. Thus, in
particular P = (rx;),, whence P = (rx), since (rx;), = P S (rx), =
N(rz;), S (rx;),~ This implies the admissibility of M and therefore
(5b) by [11, Hilfssatz 4.1].

(5) — (6): Since all prime ideals are corpoidal, 7= N follows from
(5b). (6b) follows from (5b) by means of Corollary 3.4, and (6c¢) is
weaker than (5a).

(6)—(7): It is clear that N=J = T, and since R has only
finitely many prime ideals, all prime ideals are corpoidal. If the prime
ideals of R are denoted by P, ---, P,, then the factors of the sequence

J=Pn---NnP,cPNn---NP,_,c.--cPNP,cPCR

are simple left R-modules, so R/J is a semi-simple ring with minimum
condition. Since every left ideal contained in J is nil, it follows from
(6c) that J is a noetherian left R-module, so R is left noetherian.
Thus, J is nilpotent, and therefore in particular T-nilpotent in the
sense of Bass (see [1]). This implies (7a) by [1, Th. P]. By [16,
Hilfssatz 3.5], every small left ideal is contained in J and hence nil.
Thus, a small left ideal is generated by finitely many nilpotent ele-
ments because of (6¢). Conversely, it follows from N = T that every
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nilpotent element is contained in N, and therefore it generates a nil
left ideal. Thus, every left ideal generated by a finite number of
nilpotent elements is small by [16, Satz 3.7].

(7)— (8): By [20, Satz 1], J is nil. Thus, if n is nilpotent
modulo J, » is nilpotent, whence Rn is small and thus contained in
J by [16, Hilfssatz 3.5]. Thus, R/J has no nonzero nilpotent elements,
and since R/J has minimum condition on principal left ideals, it follows
from [6] that R/J is a direct sum of division rings. By [16, Satz
3.7], every left ideal contained in J is small and therefore finitely
generated. Thus, J is a noetherian left R-module, which implies the
maximum condition on left ideals in R, since R/J is semi-simple with
minimum condition by [1, Th. P]. Therefore, J is nilpotent, and since
J[J*! is a noetherian left R-module and a completely reducible left
R/J-module for all posgitive integers 4, the left R-module J has a com-
position series, and is therefore artinian. Together with the minimum
condition in R/J this implies the minimum condition on left ideals in R.

(8) — (1): Since R/J is a direct sum of division rings, T(R/J) = 0
by [21, Th. 5]. If @ denotes the canonical epimorphism of R onto
R/J, then it follows from the radical property of T that (T(R))p &
T(Rp) = T(R/J) = 0, whence T(R)=J. Since R is left artinian,
N = J, and R has only finitely many prime ideals by 3.4, so every
prime ideal is corpoidal. Thus, every left R-module is admissible, and
it follows from 2.7 that every indecomposable injective left R-module
is of the form FKE(R/P), where P denotes some prime ideal of R.
Since N = N* = J = T, it follows from [15, Th. 2.3] that every in-
jective indecomposable left R-module is isomorphic to a submodule of
E(R/N*). Since a left noetherian ring is characterized by the pro-
perty that its injective modules are direct sums of injective and in-
decomposable modules, this implies (1).

REMARK 3.7. In Theorem 3.6 the conditions (1) and (4) can be
replaced by conditions (1*) and (4*) which originate from (1) and (4)
if we replace N* by T. Because of 3.6(5) and N* & T it is clear
that (1*) follows from (1). Likewise (4*b) and (4*c) follow immediately
from (1*) by means of [5, Th. 3.3]. Since the number of prime ideals
of R is less than or equal to the cardinality of n(E(R/T)) by (1*), it
follows from 3.5 that every prime ideal is corpoidal, proving the
minimum condition on left ideals in R by 2.2. The proof from (3) to
(4) in Theorem 3.6 shows that this implies (4*a). The proof from (4*)
to (5) is nearly the same as the proof from (4) to (5) in Theorem 3.6,
and Theorem 3.6 shows that (5) implies again (1).

The question arises whether in (1) and (4) of 3.6 the radical N*
can also be replaced by smaller radicals like J or N. The following
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simple example shows that this is not true in general. If R is semi-
simple with minimum condition, the Jacobson radical .J, the Koethe
radical K, the Levitzky radical L and the lower Baer nil radical N
are all equal to zero, and E(zR) = zR is a cogenerator in the category
of left R-modules, and R satisfies also conditions (4a) and (4b) of 3.6.
In general, however, R is not a direct sum of division rings.

REMARK 3.8. Since C(R/P) = S(R/P) for every prime ideal P of
a reduced left artinian ring R, and since every injective indecomposable
left R-module is of the form E,(R/P) for some prime ideal P, the
question arises, whether S(E) = C(E) for every injective indecom-
posable left R-module E. According to [11, 3.10] this, in turn, would
imply S(M) = C(M) for all left R-modules M. The following example
shows that this is not true in general.

ExXAMPLE 3.9. Let @ be the field of rationals, and let R be a
Q-algebra whose generators 0, a, b, ¢, 1 are multiplied according to the
following table:

0 a b ¢ 1
0/{0 0 0 0 O
a{0 0 0 0 a
b|0 0 b b b
c|0 a b ¢ ¢
110 a b ¢ 1.

P
//S T
P
-
”
7
//
’/ F G H
Do~ //
| N -~
| ~ i
N
l P
7 \\
g
! - N B
Ca J
N
~
N
N
N
N
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Then R has the following left ideals (see [12, Example 9.2b]): {0},
J=1]a], B=1b,C,=1[b— ¢+ aa] with ae@, D, = [b, ¢ — aa] with
ace@Q, F=[a,b—¢], G=1a, b, H=[a, ¢ —1], S=a, b, ¢], I = [a,
b—c¢c¢c—1] and P = [a, b, ¢ — 1], where [z, ¥, 2] denotes the left Q-
vector space generated by the elements x,y and z. The lattice of
left ideals has the form shown in the diagram above. R has an identity
and is left artinian, the only left ideals that are not two-sided are the
left ideals C, and D, for every @ € Q. The prime ideals S, T"and P are
maximal left ideals. Since PJ=0 and J = Ra, it follows that P = (Ra),
whence P = a,, since P is a maximal left ideal. Thus, J = Ra ~ Ra,=
R/P. Since J is a large R-submodule of H, Ey(J)#J. If0=xzeld, it
follows that z,= P, so x,is not large in R since PNC, = 0. Hence
Zx(J) = 0, whence C(ER(J)) = Ex(J)DJ = S(J) = S(Ex(J)) by [13, Pro-
priété 3.4]. If, however, R is a commutative artinian ring with identity,
then R is reduced, and furthermore R has the property that heart and
socle coincide for every unitary left R-module. Thus, the question arises,
which additional conditions a noncommutative left artinian reduced
ring must satisfy to permit the same conclusion. An answer to this
problem is given in the following section.

4. Finite direct sums of left artinian local rings.

PROPOSITION 4.1. Let R be a left noetherian ring whose prime
ideals are maximal, E an injective indecomposable left R-module,
ch (E) = {P}. Then P.(E)=J.(E).

Proof. As a maximal ideal P is primitive, whence ROP2J 20,
which implies 0CcP.(F) & J(F) S E. By [19, Lemma 1], this implies
J(E)/P.(F) =~ Hom, (P/J, E). If 0+ @c Hom, (P/J, E), then it fol-
lows from P.(F) &’ E that ch (P/J)pNP(E)) + @. Thus there exists
a nonzero element e (P/J)p N P, (E) with P = (Rx),, whence (P/J),S
((P/))p), S (Rx),= P. Since, by 3.4, R has only finitely many prime
ideals P, @, +-+, @Q,, and since they are all primitive by assumption,
it follows that

P/J=PPNQN---NQ. = (P +(&N---NQ)/Q:N---NQ,
ZR/Q10‘°'ﬂQn ’

whence Q,N---NQ, = (P/J),< P, contradicting the maximality of the
prime ideals of R. Thus, Hom, (P/J, E) = 0, whence J.(F) = P.(E).

THEOREM 4.2. The following properties of a ring R are equivalent.
1) R is a direct sum of finitely many left artinian local rings.
@) {(a) R is a reduced left artinian ring.

(b) JP = PJ for every prime ideal P of R.
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(a) R is a reduced left artinian ring.
(b) JP < PJ for all prime ideals P of R.

® {
{(a) R is a reduced left artintan ring.

“) (b) S(M) = C(M) for all left R-modules M.

(5) (a) R 1is left artinian.
(b) L < ter L for all left ideals L of R.
(a) R s left noetherian.

(6) {(b) L = rad L for all left ideals L of R.
(¢) Prime ideals of R are maximal ideals.

Proof. (1)— (2): If R = @y, R, with left artinian local rings,
and if J; denotes the Jacobson radical of R;, then J = @1, J;,. Ob-
viously, the prime ideals of R are the ideals of the form

Pi:Rl@"'@Ri—l@Ji@Riﬂ@”'@Rn’

so they are maximal left ideals, since R;/J; is a division ring. Thus,
R is a reduced left artinian ring by Theorem 38.6. Since every R;
has an identity, it follows that for every prime ideal P of R

PJ = R1J1@"' @Ri—LJi—L@Jz@Ri«HJH-l@ et @Ran
=J B DS DD D - DI
=JRD--- DS R . DI D2 Rr D - DJR, =JP.

Trivially, (3) follows from (2).

(8) — (4): Assume E is an injective indecomposable left R-module
with S(E) = C(E). If x is a nonzero element in C(E) such that the
submodule RZ of C(E)/S(E) generated by Z = x + S(E) is minimal,
then @ = %, is a prime ideal by Theorem 3.6. By Theorem 2.7,
E ~ E,(R/P) for some prime ideal P. By [13, Th. 3.1], x, is maximal
in the set {¢,|0 = ec F}. The admissibility of E implies that P is
contained in this set, whence 2, & P, since otherwise z,= P and thus
xe P,(E) = S(E). Since R has an identity, #, is contained in some
maximal left ideal @, = P of R, which is a prime ideal by 3.6. From
Qr = S(E) = P(E) it follows that PQ S x,S @,, whence @ = Q..
Since PJx & PQx = 0, (3b) implies that also JPxr = 0, whence Px &
J.(E) = P,(E) by 4.1. Thus, P?* < @,, a contradiction. Hence S(E) =
C(E) for every injective indecomposable module R, which implies (4b)
by [11, 3.10].

(4) — (6): If L is an irreducible left ideal, then L is tertiary,
and ter L = P is a prime ideal. If K is maximal in the set of P-
tertiary left ideals containing L, then K is irreducible by [12, Th.
8.3]. Assume that there exists a left ideal M of R with Kc McCR
and 7(R/M) = n(R/K), then the left R-module R/M is homogeneous
because of |7(R/K)| = 1. By [12, Propriété 10.11], this implies that
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M is tertiary and hence P-tertiary because of ch (R/M) = ch (R/K),
contradicting the choice of K. Thus, S(R/K)= C(R/K) = R/K by
(4b) and [11, Satz 3.1], implying that K is a maximal left ideal and
hence a prime ideal by Theorem 3.6. Therefore {K} = ch (R/K) =
{ter K} = {P}, whence LS K = P =ter L. If L is any left ideal of
R and if L = N7, L; with irreducible left ideals L, then it follows
from [12, Propriété 7.7] and the preceding argument that

L = ﬁ]Lig[ﬁterLigter(éLO = ter L.

(6) — (6): It is clear that (6a) and (6¢) follow from (5a). Assume
that the set ¢ of all left ideals L of R with L & rad L is nonempty,
and let K be maximal in ¢ and M minimal in the set of all left ideals
of R which contain K properly. Then K is an irreducible left ideal,
since K = K,NK, with K,DK and K,DK would imply K = K,NK, &
rad K,Nrad K, = rad K. Thus, K is tertiary and ch (R/K) = {ter K}.
Since M/K is a minimal submodule of R/K, it follows that (M/K), =
ter K. Since rad M is nil modulo (R/M),, and since R is left noetherian,
there exists a positive integer n such that (rad M)” = (R/M),, whence
ter K-(rad M)"R = K and thus ter K-(rad M)" = (R/K), < rad K. If
{Q,, +--, Q.} is the set of prime ideals different from ter K containing
(R/K),, then rad M & Q, for 1 =1, ---, m. Since M & rad M, this
implies

K=KnterK < Mnter K< rad MNter K
SRN---NQ.Nter K =rad K

a contradiction. Thus, ¢ is empty, and (6b) is true.

(6) — (1): Since rad L < ter L, it follows that L = ter L for every
left ideal L. If L is a maximal left ideal, then L = ter L, and since
maximal left ideals are tertiary, L is a prime ideal. Together with
(6b) this implies that prime ideals are maximal left ideals, so R is
reduced and left artinian by Theorem 3.6. Assume that the set ¢ of
all left ideals L with rad L = ter L is nonempty, and let K be maximal
in ¢. K is an irreducible left ideal since otherwise K = N, K; with
P.-tertiary left ideals K;, where none of the K, is superfluous and
P; =+ P; for ¢+ j. But then, by [12, Th. 8.3] and [12, Corollaire
8.4], ter K = N, ter K; = N, rad K; = rad (N, K;) = rad K, a con-
tradiction. If N is minimal in the set of left ideals which contain
K properly, then either K = NNrad K or N = NNrad K, since K &
rad K. The first case yields K = rad K by the irreducibility of K,
so rad K is a prime ideal. Since rad K < ter K and prime ideals are
maximal, this yields a contradiction. Thus, N = NNrad K < rad K,
whence rad N & radrad K = rad K. Since Kc N implies rad K Srad N,
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this implies rad K = rad N = ter N < ter K by the maximality of K
in ¢.

If F is an injective and indecomposable left R-module and if x
is a nonzero element of C(¥), then C(Rx) = RxN C(E(Rzx)) = ReNC(E)=
Rz, so there exists no submodule NcRx with w(Rx/N) = n(Rx) by
[11, Satz 3.1]. Since every left R-module is admissible, it follows
from [11, Folgerung 2.8] that there exists no left ideal L of R with
x,CLCR and ch(R/L) = ch (R/x,), whence no terxz, -tertiary left
ideal contains z, properly. Thus x, is a maximal ter z-tertiary left
ideal, whence x, = terz,. Thus, z, is a maximal left ideal, which
implies € S(&) and thus S(E) = C(E). By [11, 3.10], this implies
S(M) = C(M) for every module M. Consequently, in particular
C(R/K) = S(R/K) = N/K, where the second equation follows from
the irreducibility of K and the choice of N. By [11, Satz 3.1},
C(R/K) is the intersection of all submodules 0 = M/K = R/K with
n(R/M) = m#(R/K). Since R is left artinian, C(R/K) = N/K is already
the intersection of finitely many of these submodules, whence 7(R/N) =
w(R/K) by [12, Propriété 10.13], so that ch(R/N) = ch(R/K) =
{ter K}. Since ter N is the intersection of all prime ideals associated
with the left R-module R/N, it follows that ter N = ter K, so that
rad K = ter K by the equation in the previous paragraph, a contradic-
tion to the choice of K. Thus, ter L = rad L for all left ideals L.
Therefore tertiary left ideals are primary, and since prime ideals of
R are maximal left ideals, this implies (1) by [11, Satz 4.2]. Since
a commutative artinian ring is a direct sum of local rings, we get:

COROLLARY 4.3. A commutative moetherian ring R 1s artinian
if and only if S(M) = C(M) for every left R-module M.

Furthermore, the last part of the theorem shows that the follow-
ing is true:

COROLLARY 4.4. If R s a left moetherian ring whose left R-
modules are admaissible and have coinciding heart and socle, then R
has the Artin-Rees-property for left ideals.

In fact, Theorem 4.2 is an extension of Satz 4.2 in [11]. Thus,
if a ring R has properties (1)-(6) of Theorem 4.2, ch (M) = supp (M)
for every left R-module M, which gives a partial answer to the ques-
tion raised in 2.6.

It would be interesting to know, whether the inclusion in con-
dition (3) of 4.2 can be replaced by the reverse inclusion. Considering
the manner how this inclusion was used in the proof of 4.2, this does
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not seem to be true, we have, however, not been able to find a
counter-example.
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