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ADMISSIBLE MODULES AND A CHARACTERIZATION
OF REDUCED LEFT ARTINIAN RINGS

GϋENTER R. KRAUSE

A unitary left i?-module M over a left noetherian ring R
with identity is called admissible if every prime ideal of R,
which is the left annihilator of all nonzero submodules of a
submodule N of M, is also the left annihilator of all nonzero
elements of N. The object of this paper is to study left
noetherian rings R whose category of unitary left i?-modules
consists of admissible modules. A ring R in this class of
rings is characterized by the fact that every injective left R-
module is a direct sum of injective and indecomposable modules
of the form ER(R/P), where P denotes a prime ideal of R
and ER(R/P) the injective hull of the left î -module R/P.

Lesieur and Croisot have defined the heart C(E) of an in-
jective module E to be the intersection of the kernels of all endo-
morphisms in the Jacobson radical of HomR (E, E), and the heart
of any module M to be the submodule C{M) = MnC(E(M)).
Although the socle is always contained in the heart, the two sub-
modules are not equal in general, a simple example being a tor-
sion-free abelian group. This suggests the study of rings with
the property that heart and socle coincide in every one of their
modules. In §3 the discussion is restricted to left artinian
rings, whose left modules are admissible, and it is shown that
the class of these rings is the class of all reduced left artinian
rings, a ring being reduced if it is a direct sum of division
rings modulo its Jacobson radical. A ring R in this class has
the interesting property that for every prime ideal P the
heart of the left ϋNmodule R/P is equal to its socle. But,
although these modules form an injective decomposition basis
for the category of all unitary left ϋNmodules, socle and heart
can be different for some objects in this category. In §4,
however, it is shown that socle and heart coincide in every
module over a reduced left artinian ring R if and only if R
is a direct sum of finitely many local left artinian rings. This
result admits two interesting corollaries:

1. A commutative noetherian ring with identity is artinian
if and only if heart and socle are equal for every left R-
module.

2. A left noetherian ring with identity whose modules
are admissible and have coinciding heart and socle has the
Artin-Rees property for left ideals.

1* Preliminaries* Throughout this paper each ring R will be a
(not necessarily commutative) ring with identity element 1, and each
module M will be a unitary left i2-module in the sense that lm — m
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for all meM. The category of all left ϋί-modules is denoted by R

a module M is called a cogenerator in B^f if every module of R

is isomorphic to a submodule of a direct product of copies of M. If
MeR^f, then E(M) or ER{M) denotes the in jective hull of M. It is
well-known (see [15]) that an in jective module E over a left noetherian
ring R is a direct sum of injective and (directly) indecomposable left
lϋ-modules. Furthermore, the direct summands appearing in such a
decomposition are unique up to an automorphism of E. Thus, the
set of all isomorphism classes of indecomposable injective submodules
of the injective hull E(M) of a module M is an invariant of M, and
we denote by π(M) a, set of representatives of these classes. A
module M is said to be homogeneous if \π{M)\ =1, i?-homogeneous if
π(M) = {E}. A left ideal L of R is called homogeneous if the left
iϋ-module R/L is homogeneous.

A submodule N of M is called large in M (denoted by N ξi' M),
and M is said to be an essential extension of N if Nf}X Φ 0 for
every nonzero submodule X of M. Dually, a submodule N of M is
small in M if X + N Φ M for all proper submodules X of M. M is
uniform if every nonzero submodule is large in ikf, a left ideal L is
irreducible if the left jR-module R/L is uniform. L is said to be com-
pletely irreducible if the intersection of all left ideals properly con-
taining L is different from L. A left ideal L is an irredundant
intersection of left ideals Li9 iel, if L = Π»e/-kί but L Φ f}ί¥:j Li for
every j e I.

X/ = X/(R) = {reR\rX = 0} denotes the left annihilator in R
of the subset X of M, Yr(M) = {meM\ Ym = 0} denotes the right
annihilator in Λf of the subset Y of R. A prime ideal P is called
associated with M, if P = iSΓ̂  for all nonzero submodules iV' of some
submodule iV of ikί, it is called strictly associated with M if further-
more P = ?v f° r aU 0 Φ neN. The set of all prime ideals associated
with ikf is called the characteristic of M and denoted by ch (M), the
set of all prime ideals P with P Ξ2 M/ is denoted by supp (M). A
prime ideal P is said to be completely prime if the ring R/P has no
zero-divisors. An ideal K is called corpoidal if R/K is a division ring.

J = J(R) = Jacobson radical of the ring R.
N — N(R) — Baer lower nil radical of R.

jV* = N*(R) — generalized nil radical = intersection of all completely
prime ideals.

T = T(R) — Thierrin radical = intersection of all corpoidal ideals.
φieiMi = (discrete) direct sum of the modules M{, iel.
ΐ[ieiMi = direct product (complete direct sum) of the modules

Miy iel.
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S(M) = socle of the module M = sum of all minimal submodules

of M.
Z(M) = singular submodule of M = {meM\m/^fR).
C(M) = heart of M = ϋίnΠ^jtHo^w^u/))) ker/3.

Z = ring of integers.
ikf= Goldie-dimension of the module M (see [7] and [8]).

The tertiary radical terL of a left ideal L is the set of all ele-
ments r e R such that for every b $ L there exists an element a e Rb,
a£ L with rRa Sϊ L. The radical rad L of L is the intersection of
all prime ideals containing (R/L)^(R)f that is, rad L/(R/L)s =
N(R/(R/L)/). L is called tertiary if every element which annihilates
a nonzero submodule of R/L belongs to terL, it is primary, if every
such element belongs to rad L. If L is tertiary, then ter L is a prime
ideal (see [4]). Since rad L is always contained in terL, primary left
ideals are tertiary, the converse, however, is not true in general.
Furthermore, in general L is neither contained in rad L nor in ter L.
It is well-known that all tertiary left ideals of a left noetherian ring
R are primary if and only if R has the Artin-Rees-property for left
ideals, that is, for every left ideal L, every two-sided ideal J, and
every nonnegative integer n there exists a nonnegative integer m =
m(L, I, n) such that ImπL g InL. Finally, we call a ring R local if
it has exactly one maximal left ideal, which is equivalent to the fact
that R/J is a division ring.

2* Admissible and strictly admissible modules* In [11] it was
shown that submodules, injective hulls and direct sums of admissible
modules over a left noetherian ring are admissible. In general, how-
ever, epimorphic images of admissible modules are not necessarily
admissible. This follows from [11, Folgerung 2.8] and [12, Example
10.1].

DEFINITION 2.1. A module M is strictly admissible if M and its
homomorphic images are admissible.

An ascending series of submodules of the module M is a set of
submodules {Na \ a e A} with the following properties: (1) No = 0 and
JVg = M for some &eA. (2) Na C Na+1 for each a < @. (3) Nλ =
\Ja<λ Na for limit ordinals λ.

PROPOSITION 2.2. The following properties of the module M over
the left noetherian ring R are equivalent:

(1) M is strictly admissible.
(2) If N is a homomorphic image of M, then there exists an

ascending series {Na \ a e A} of submodules of N and a set {Pa\ae A}
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of completely prime ideals of R such that Na+1/Na = R/Pa for all
aeA.

(3) Every nonzero homomorphic image of M has a nonzero
admissible submodule.

Proof. (1)—»(2): Let N be a homomorphic image of M, and let
No = 0. If a>0 is not a limit ordinal and N^ΦN, then eh(N/Na^)^0
by [11, Lemma 1.9]. Since M is strictly admissible, there exists a
completely prime ideal Pa_γ of R such that Pa__t = {Rrx)/ = (rx)/ for
an element 0 Φ xeN/Na^ and all r$x/ (see [11, Satz 2.6]). If x —
x + Na_19 define Na = Na_λ + Rx, whence NJN^ ~ Rx ~ Rjx/ =
R/Pa-!. If λ is a limit ordinal, we define Nλ = (J«<^ ATa.

 τ h e n there
exists an index @ such that JV@ = iV@+1, whence ch (N/N^) = 0 , and
thus N = iV6 since iϋ is left noetherian.

(2) —* (3): If ΛΓ is a nonzero homomorphic image of N and {ΛΓα | a e A}
an ascending series of submodules of N of the type described in (2),
let NaQ denote the first nonzero element of this series. It is clear
that a0 is not a limit ordinal, and hence Nao_t = 0. Thus Nao =
NaJNa^czR/Pa^, and since PaQ-ι is completely prime, Nao is admissible.

(3)—>(1): Let N be a nonzero homomorphic image of M, and let
K be a maximal nonzero admissible submodule of N. The existence
of K is guaranteed by (3) and Zorn's lemma. If Kφ N, then there
exists a nonzero admissible submodule L/K of N/K. If K £ ' L, then
^(if) = JE'(L), SO 1/ is admissible by [11, Satz 2.6], a contradiction to
the maximality of K. If H C £ with ifn if = 0, then i ϊ - {K@H)I
K ξΞ: L/K, so K@H is admissible by [11, Lemma 2.5], which also
contradicts the maximality of K. Hence K = N, and N is admissible.

REMARK 2.3. If M has an ascending series of the type described
in 2.2, then ch (M) S {Pa I a e A} S supp (M). The first inclusion fol-
lows from the fact that for every P e ch (M) there exists a smallest
index a such that Pech(Na). Since a is not a limit ordinal,
P e ch (NJNa^) U ch (Na^)f whence P e ch (Na/Na^) = {Pa_J. The
second inclusion follows from (Na+1/Na)s 2 Λί/ f° r aU aeA.

In general, however, ch (ikf) ^ {Pα | α G A} ^ supp (M). If, for
example j)t denotes the i-th prime number and (pj the ideal of Z
generated by pi9 then M = φZ/(Pi) is a strictly admissible Z-module
with ascending series Nk = φ j = 1 2/(Pi) and Nω = \Jΐ=1 Nk = M. Since
M/ = 0, {(Pi); i = 1, 2, •} ̂  supp (M). On the other hand, the left
^-module Z has the ascending series 0cz2ZaZ with factors Z/(2) and
2/(0), whereas ch (Z) = {(0)}. In general, however, the following is
true:



ADMISSIBLE MODULES AND A CHARACTERIZATION 295

PROPOSITION 2.4. The following properties of the module M over
the left noetherian ring R are equivalent:

I(a) M is strictly admissible.
(b) // {Na I a e A} is an ascending series of submodules of

M and {Pa | a e A} a set of prime ideals of R such
I that Na+1/Na ~ RIP a for every ae A, then {Pa \ a e A} =
[ ch (M).
ί(a) M is admissible.

* ' t(b) π(M/N) n π(M) Φ 0 for all submodules N of M.
ί(a) M is admissible.

{ } l(b) π(M/N) £ π(M) for all submodules N of M.
Γ(a) M is strictly admissible.(4) {
(b) ch (M/N) S ch (M) for all submodules N of M.

Proof. The equivalence of (3) and (4) is an immediate consequence
of [11, Folgerung 2.8].

(1) —>(2): Since a submodule N of a strictly admissible module M
is strictly admissible, there exists an ascending series of submodules
{Na I a e A} of N and a set [Qa \ a e A} of prime ideals such that
Na+1/Na ^ R/Qa for all a e A. Similarly, there exists an ascending
series {Kβ/N\β e B} of submodules of M/N and a set {Pβ \ β e B) of prime
ideals such that Kβ+ί/Kβ ~ R/Pβ for all βeB. Thus, the series 0 =
JVQCJVΊC czNa(zNa+1c: aN = KQCIK^ aKβaKβ+ι(Z c l
is an ascending series of submodules of M whose factors are isomorphic
to R/Qa and R/Pβ, respectively. Since {Qa \ a e A} U {Pβ \ β e B) - ch (M)
by assumption, it follows in particular that Po = (KJN)/e ch (M).
Thus M and M/iV both contain a submodule isomorphic to R/Po,
whence π(MJN) Π π(M) Φ 0 .

(2) -> (4): Let JVgilί and define No = N. If α > 0 is not a limit
ordinal, let XeπiM/N^) n π(M), and let E'be a submodule of E(M/Na^)
isomorphic to X. Since M is admissible, it follows from [11, Satz 2.6]
that E ~ ER(R/Pa^) for some Pα_x e ch (ikf) Π ch {MjN«__,). Since ΐ7 is
admissible, and since ch (M/N^ Γ)E) = {Pα_J, M/Na_, n £7 possesses a
submodule NJN^ which is isomorphic to R/Pa^. If ΛΓ̂  = LL<;> ^
for limit ordinals λ, it follows that the factors of the ascending series

0 = N0/NcNJNc: aNa/N(zNa+JNc: -. cM/N

are isomorphic to modules R/Pai where every Pa is associated with M
and hence completely prime. Thus, M is strictly admissible and it
follows from the construction that ch (M/N) g {Pa\aeA} £ ch (M).

(4)—>(1): If {iVα|αGA} is an ascending series of submodules of
M with factors i?/Pα, it follows that Pa e ch (M/Na) G ch (M) for every
α e i . Together with 2.3 this implies (lb).
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COROLLARY 2.5. If M is a module with the properties (1) to (4)
in 2.4, then S(M) = C(M) = φPr(Λf), where P runs through the set
of maximal elements of ch (Λf).

Proof. Since S(M) is the intersection of all large submodules of
M (see [17, p. 23]), S(M) S C(ikf). Since π(M/N) S π(ikf) for all
submodules iV of Λf, it follows from [11, Satz 3.1] that C(M) = S(M).
By [11, Lemma 3.5], Pr(M) S C(ikf) for every maximal element P of
ch (M). Conversely, if Rx is a minimal submodule of ikf, then P =
(Rx)/ e ch (ikf), whence P = av by the admissibility of M. Thus, P
is a maximal element of ch (M). Since ifcc S (Rx)/r{M) = Pr(M), and
since S(M) is the sum of all minimal submodules of M, the second
equation thus follows from the first.

REMARK 2.6. The author does not know whether a strictly ad-
missible module M with S(M) = C(M) also has property 2.4 (lb). If,
however, all left iϋ-modules M over the left noetherian ring R are
admissible and satisfy S(M) = C(M), then ch (Λf) = supp (M) for all
ikί, which implies 2.4 (lb). This is shown in §4.

THEOREM 2.7. The following properties of the left noetherian
ring R are equivalent:

(1) Every left R-module is admissible.
(2) R/N is a strictly admissible left R-module.
(3) Every injective indecomposable left R-module E is isomorphic

to ER(R/P) for some prime ideal P.
(4) i?/ter L is R-isomorphic to a submodule of R/L for every

irreducible left ideal L.
(5) Every tertiary left ideal L is ER(R/ter L)-homogeneous.

Proof. Trivially, (2) follows from (1). Assume (2), and let E be
an injective indecomposable left iϋ-module with ch (E) = {P}. Then
P = (Rrx)/ for some element 0 Φ X e E and every r $ x/. Since Rx ~
R\x/ en (R/N)/(xs/N), Rx is admissible. Thus, E is admissible by [11,
Hilfssatz 2.4], whence P — x/ which implies E = E(Rx) ~ ER(R\x/) =
ER(R/P).

(3) —> (4): Since ER(R/L) is injective and indecomposable for every
irreducible left ideal L, it follows from (3) that ER(R/L) ~ ER(R/P)
for some prime ideal P. Since R/P is a left noetherian left uniform
prime ring, P is completely prime by [7, Lemma 3.3 and Lemma 3.8].
This implies the admissibility of R/L by [11, Hilfssatz 2.4]. Since L
is irreducible, L is tertiary, and since ch (R/L) — {P}, it follows that
ter L — P. Since P = x/ for some element 0 Φ x e R/L by the ad-
missibility of R/L, it follows that i2/ter L = R/P = R/x/ ~ Rx S R/L.
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(4)—* (5): Let L be tertiary, L = Γ[t=LL{ with irreducible left
ideals L;, none of which is superfluous. It follows from [15, Th. 2.3]
that E(R/L) ~ φ?= 1 E(R/Li), and since each L{ is ter L-tertiary by
[12, Th. 8.3], it follows that E(R/L{) ~ E(R/ter L) for each ί.

(5) —* (1): Let !£ be injective and indecomposable with ch (E) — {P},
and let x Φ 0 be an element of E. Since %/ is a tertiary left ideal
with ter %/ = P, it follows from (5) that E = E{Rx) ~ E{Rx/) ~
ER(R/P). Since R/P has no zero-divisors by [7, Lemma 3.3 and 3.8],
E is admissible. Since R is left noetherian, every injective left R-
module is a direct sum of indecomposable injective modules (see [15,
Th. 2.5]), and since direct sums of admissible modules are admissible
(see [11, Lemma 2.5]), it follows that every left i?-module is admissible.

REMARK 2.8. In 2.7 (5) one cannot simply demand the homogeneity
of all tertiary left ideals. By [12, Propriete 10.40] every left artinian
ring has this property, but not every module over a left Artinian
ring is admissible (see [11, Hilfssatz 4.1]).

3* A characterization of reduced left artinian rings* Following
[2], we call a ring R reduced if R/J is a direct sum of division rings.
These rings deserve some interest, since the problem of constructing
all rings with minimum condition on left ideals can be reduced com-
pletely to that of constructing all reduced rings with minimum condi-
tion on left ideals (see [2] and [9]). The purpose of this section is
to give a characterization of reduced left artinian rings by certain
properties of the category of their unitary left modules.

PROPOSITION 3.1. The following properties of a prime ideal P
of the left noetherian ring R are equivalent:

(1) P is a completely irreducible left ideal.
(2) Every left R-module M with ch (M) — {P} is admissible and

has nonzero socle.
(3) P is a maximal left ideal.

j(a) P is completely prime.
( 4 ) l(b) SR(R/P)Φ0 .

Proof. (l)->(2): Since R/P is uniform, SR(R/P) is the intersec-
tion of all nonzero submodules of R/P and hence nonzero, since P is
completely irreducible. If M is a left ϋί-module with ch (M) = {P},
then E(M) — ®;e zi?i with injective indecomposable left .β-modules Et

(see [15, Th. 2.5]). By [11, Folgerung 1.11 and 1.13], ch (EJ = {P}
for all iel. Since R is left noetherian, C(Ei) Φ 0 by [13, Propriete
3.3], whence Et ~ E(C(Ei)) for every i. Hence, there exists a nonzero
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element x e C(E^ such that P = (Rrx)/ for all r £ %/. Since P =
C[rBR(rx)s, and since P is completely irreducible, P — {rQx)/ for some
roe22. By [13, Propriete 3.2], (rox)/ is maximal in the set of all
left annihilators of nonzero elements in Eif so that P = (r^x)/ —
(R%)s C (rx)s implies P = (rx)^ for all r g x/. Thus, C(^) is ad-
missible, and so is Et by [11, Hilfssatz 2.4]. Therefore M is ad-
missible by [11, Lemma 2.5]. Furthermore, S(M) Φ 0 since SR(R/P) Φ 0
and Ei = E(Rrox) ~ E{R/(rQx)/) = E(R/P) for all i e 2.

(2)-* (3): Since ch (R/P) = {P}, the left 22-module R/P is ad-
missible and has nonzero socle. Hence there exists a nonzero element
x G S(R/P) such that P = *v Since P is completely prime by [11,
Satz 2.6], the ring R/P is a left noetherian ring without zero-divisors
and therefore left uniform by [8, Proposition 4.2]. Thus, S(R/P) —
Rx ~ R\x/ = RIP, and since S(R/P) is a simple left 22-module, P is
a maximal left ideal.

It is obvious that (4) follows from (3).
(4)—>(1): Since P is completely prime, P is an irreducible left

ideal by [8, Proposition 4.2], and hence S(R/P) is the intersection of
all nonzero submodules of R/P. Since S(R/P) Φ 0 by assumption, it
follows that P is completely irreducible.

PROPOSITION 3.2. If I is a semi-prime ideal of the ring R with
maximum condition on left ideals, then:

(a) R/I is an irredundant (see [14]) subdirect sum of finitely
many prime rings R{ = R/Pif i — 1, •••,%.

(b) ch,, (22//) = {P19 . , Pn) and P, £ P3 , if i Φ j .

Proof. By [14, Th. 3.2], R = R/I is the irredundant subdirect
sum of prime rings Ra, a e A, and the kernels of the projections
R—*Ra are the maximal annihilator ideals Pa of R. The proof of
Theorem 3.2 in [14] shows also that ΓiaeAPa = 0. If Pa = PJI for
an ideal Pa of 22, then every Pa is a prime ideal of R. Let Pa —
(L/I)/(R) for some left ideal L of 22, and let 2 c L 1 e L . If <£> denotes
the canonical epimorphism from 22 onto R, 0 = (PJI) (LJI) = Paφ L1φ =
(PaL^φ, whence Pα S (L1/2)/(22). If α ^ £ 2, then (aφ)(Liφ) = 0, and
hence aφe(LJI)s(R) = PJI which implies aePaf since ker<^ = 2.
Thus, Pα = (LJI)s(R), whence Pa e ch^ (22/2). Since Pα is a maximal
annihilator ideal in R, Pa is maximal in ch^ (22/2). Since ch^ (22/2) is
finite by the maximum condition on left ideals in 22, A is finite. Since
1= ΓϊaeAPa, and since every ideal associated with the left 22-module
22/2 contains 2, ch^ (22/2) = {Pa\ae A).

DEFINITION 3.3. (See [10, p. 216].) A set ψ of prime ideals P
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of a semi-prime ring R is a minimal decomposition set for R if
f}PeφP= 0 but ΠPSΦ-XP^ 0 for all Xeφ.

If φ denotes the set of all prime ideals of R, then 3.2 yields the
following result:

COROLLARY 3.4. The following properties of the left noetherian
ring R are equivalent:

(1) Prime ideals of R are maximal ideals.
(2) The prime ideals of R/N form a minimal decomposition

set for R/N.

(3) \φ\^\π(R/N)\.

Proof. (1)—>(2): Since every left ideal of a left noetherian ring
R contains a product of finitely many prime ideals (see [12, Th. 3.1]),
R has only finitely many prime ideals P19 « , P % . Since they are
maximal, and since their intersection is iNΓ, the prime ideals of R/N
form a minimal decomposition set for R/N.

(2) —•» (3): Since N is the intersection of all prime ideals associated
with the left i?-module R/N (see 3.2), and since the prime ideals of
R/N form a minimal decomposition set for R/N, it follows that φ —
chB(R/N), whence \φ\ = \chB(R/N)\ ^ \π(R/N)\ by [11, Hilfssatz 1.15].

(3) — (1): By 3.2, N = Π?=i Pi, where ch* (R/N) = {Plf • • •, Pn}.
Thus, R/N can be imbedded in the module φ ? = ι R/P{. Since π(R/Pi) Φ
π(R/Pj) for i Φ j , and since for every prime ideal P the left i?-module
R/P is homogeneous, it follows that

^ \τϋ(R/N)\ = n = Ich (R/N) \ £ \ Φ \ .

Together with φ 3 ch^ (R/N) and the finiteness of ch^ (R/N) this im-
plies chΛ (R/N) = φ, and therefore prime ideals are maximal ideals
by 3.2.

COROLLARY 3.5. The following properties of the left noetherian
ring R are equivalent:

(1) Every prime ideal of R is corpoidal.
(2) \φ\^\π(R/T)\.

Proof. (1) implies T = N, and thus \φ\ ̂  \π(R/N)\ = \π(R/T)\
by 3.4. Conversely, \φ\ ̂  \π(R/T)\ implies the finiteness of φ, since
άimR (R/T) < oo. Thus, T is the intersection of a finite number of
corpoidal ideals Kly —-,Kn and none of these is superfluous. Thus,
by [15, Th. 2.3], E(R/T) ~ ®7=iE(R/Ki)f whence
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\φ\^\π(ER(R/T))\

= {{EAR/KJ, ---,ER(R/Kn)}\ = n = |ch(Λ/Γ)| £ |* | .

Hence φ = chR (R/T), and therefore all prime ideals of R are
corpoidal.

THEOREM 3.6. The following properties of the ring R are equ-
ivalent:

(1) Every left R-module can be imbedded in a direct sum of
copies of the left R-module EB(R/N*).

I(a) R is left noetherian.
(b) Every left R-module is admissible.
(c) S(R/P) = C(R/P) for every prime ideal P of R.

J(a) R is left artinian.
l(b) Every left ideal containing J is two-sided.

I(a) E and J[ commute.
(b) E and 0 commute.
(c) ER(R/N*) is a cogenerator in the category R^f.

ί(a) R is left noetherian.
l(b) Prime ideals of R are maximal left ideals.
Γ(a) T=N.

(6) \ (b) The number of prime ideals of R is finite.
ί(c) R has the maximum condition on nil left ideals.

I(a) R has the minimum condition on principal left ideals.
(b) A left ideal is small if and only if it is generated

by finitely many nilpotent elements.
(8) R is a reduced left artinian ring.

Proof. (1) -> (2): If d denotes the cardinality of ER(R/N*), then
every module is contained in a direct sum of modules generated by
d elements. By [5, Th. 3.3], this implies the maximum condition on
left ideals. Since R/N* is semi-prime, iV* is the intersection of the
prime ideals P19 •••, Pn associated with the left iϋ-module R/N* (see
Proposition 3.2). If P is any prime ideal, then P e ch (R/P) S
ch (®E(R/N*)) = ch(R/N*)9 and so ch (R/N*) is the set of all prime
ideals of R. Therefore, every prime ideal is maximal by Proposition
3.2. Since N* is the intersection of all completely prime ideals, all
prime ideals of R are completely prime. Since completely prime ideals
of a left noetherian ring are irreducible left ideals by [8, Proposition
4.2], it follows from [15, Th. 2.3] that E(R/N*) ~ ®UE{RIPi).
Since by [11, Hilfssatz 2.4 and Lemma 2.5] admissibility is inherited
by injective hulls and direct sums, it follows that E(R/N*) is ad-
missible, so all left iϋ-modules are admissible by (1). Since prime
ideals are maximal, it follows from [11, Hilfssatz 4.1] that prime ideals
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are maximal left ideals. Thus S(R/P) = R/P = C(R/P) for all prime
ideals P, since the heart of a nonzero module over a left noetherian
ring is nonzero by [13, Propriete 3.3].

(2)->(3): If P is a prime ideal, it follows from (2) and [11,
Lemma 3.5] that R/P a S(R/P) = C(R/P) a Pr(R/P) = R/P. By Pro-
position 2.2, there exists a sequence 0 = L o C ^ c cL Λ = R of left
ideals and a set of prime ideals Po, P1? , P Λ - 1 such that A/A-i ~
R/Pi-! for all i = 1, , w. Since SiR/P^ = R/Piy and since jR/P, is
left noetherian, each of the modules R/Pi possesses a finite composi-
tion series, so R is left artinian. It follows from Proposition 3.1
that every prime ideal is a maximal left ideal. Assume, not every
left ideal containing J is two-sided. Let L be minimal in the set
of all left ideals containing J which are not the intersection of prime
ideals. Since R is left artinian, J = N = Π?=ι P%> where the P{ denote
the prime ideals of R. Let M be maximal in the set of all left ideals
containing J and being properly contained in L. Then M = Px Π Π Pm

with m tί n, and it may be assumed that L §£ P1# Since P1ΓiL = M
and Px is a maximal left ideal, it follows that

R/L = (Px + L)/L ~ PJP.ΠL = PJM = PJP.n f)Pm

^ [ p 1 + (p2n ••• nPj]/P 2 π ••

whence P2n f)Pm = (R/L)/ S i-. Since P2n Γ\Pm Φ L by the
choice of L, P 2n ΠPm = M S Pi, contradicting the maximality of
the prime ideals in R, and proving that every left ideal containing J
must be two-sided.

(3) —> (4): Since a left artinian ring with identity is left noetherian,
direct sums of injective modules are injective, proving (4b). Since
prime ideals of R are maximal ideals, it follows from (3b) that they
are maximal left ideals, so in particular completely prime. By 3.4,
R has only finitely many prime ideals Ply •• , P n , and therefore iV*
is their irredundant intersection. Thus, E(R/N*) ~ ®i=iE(RfPi) by
[8, Proposition 4.2] and [15, Th. 2.3]. If M = Rx Φ 0 is a simple
left jβ-module, then x/ is a maximal left ideal and hence a prime ideal
by (3b). Thus, x/ = P { for some i, whence E(M) ~ E(R/x/) £ E(R/N*),
which implies (4c) by [18, Lemma 1].

Let {Mi | i e/ } be a family of left J?-modules and let / be well-
ordered. For x = Πie i^e J\ieIE(Mi), xg ILe/^f;, let χiΣ be the first
among the components x{ of x for which ^ίJl ί j , and let Li =
{reifflra^elfij. From Mh^E(Mh) it follows that there exists an
element τx e A such that 0 ^ r ^ e Λfiχ. If, for i > i1? there exists a
component ^ of a; such that r^ g ikft and Li n (x, )/ c{r e Lx | ro;,- e ΛfJ,
let #ί2 be the first such component, and let L2 — {r e L1 \ rxi% e Mi2\.
Since L2xio Φ 0 and Mh S' E(Mi9), there exists an element r 2 e L2 such
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that 0 Φ r2Xi G Mh. Continuing in this way, we obtain a strictly
descending chain of left ideals Ln, n = 1, 2, . Since R is left
artinian, there exists a natural number n > 0 such that for i > in

either r ^ e Mt or Lw Π (x*)s = {r e LM | r ^ 6 ΛfJ. Since Mi C E(Mi),
the second case implies LnXi = 0, whence rna?f = 0. By construction,
r ^ e J I ί i for all i ^ iΛ and rΛa?<Λ ^ 0, so 0 Φ rnxe Y[ieIMi. Thus,
JJieiMi is a large submodule of i\ieIE{Mi), which implies (4a).

(4)—»(5): It is well-known (see [3, Proposition 4.1]) that (5a)
follows from (4b). By 3.2, iV* is the intersection of the prime ideals
Pk(k = 1, •• ,n), associated with the left i?-module R/N*, and this
intersection is irredundant. If P is any prime ideal, then R/P £
UE(R/N*) = E(Π.R/N*) by (4b) and (4c), whence P e ch (Π^W*),
and thus P Ξ2 Pk for some k. Furthermore, there exists an element
a = UXi€ΪίR/N* with P = (Rx)/y whence P = f)(RXi)s S (Rxύs for
all i, so P is contained in one of the prime ideals associated with
R/N*. Thus, P = Pk, so chR(R/N*) is the set of all prime ideals of
R. Consequently, all prime ideals are maximal, and it follows from
the definition of AT* that they are also completely prime, so ER{R/N*)
is admissible by [15, Th. 2.3] and [11, Satz 2.6]. By assumption any
module M is isomorphic to a submodule of a direct product of copies of
E(R/N*). If Pe ch (M), P = (Rx)/ for some nonzero element x =
Π ^ e f c ΐ[E(R/N*). If rgav, then rg(x ί o)/for at least one com-
ponent xio of x. Since P is a maximal ideal, P = (RsxiQ)^ for all
s g (#i0)/, whence P = (s^ 0)/, since E(R/N*) is admissible. Thus, in
particular P = (raίo)/, whence P = (rα;)/, since (rxi()/ = P g (^^)^ =
Π (rXi)s S (^^io)/ This implies the admissibility of Λf and therefore
(5b) by [11, Hilfssatz 4.1].

(5) —> (6): Since all prime ideals are corpoidal, T = N follows from
(5b). (6b) follows from (5b) by means of Corollary 3.4, and (6c) is
weaker than (5a).

(6) —> (7): It is clear that N = J = T, and since R has only
finitely many prime ideals, all prime ideals are corpoidal. If the prime
ideals of R are denoted by Pl9 , Pn, then the factors of the sequence

are simple left i?-modules, so R/J is a semi-simple ring with minimum
condition. Since every left ideal contained in J is nil, it follows from
(6c) that J is a noetherian left i?-module, so R is left noetherian.
Thus, / is nilpotent, and therefore in particular Γ-nilpotent in the
sense of Bass (see [1]). This implies (7a) by [1, Th. P]. By [16,
Hilfssatz 3.5], every small left ideal is contained in / and hence nil.
Thus, a small left ideal is generated by finitely many nilpotent ele-
ments because of (6c). Conversely, it follows from N = T that every



ADMISSIBLE MODULES AND A CHARACTERIZATION 303

nilpotent element is contained in N, and therefore it generates a nil
left ideal. Thus, every left ideal generated by a finite number of
nilpotent elements is small by [16, Satz 3.7].

(7) — (8): By [20, Satz 1], J is nil. Thus, if n is nilpotent
modulo J, n is nilpotent, whence Rn is small and thus contained in
J by [16, Hilfssatz 3.5]. Thus, R/J has no nonzero nilpotent elements,
and since R/J has minimum condition on principal left ideals, it follows
from [6] that R/J is a direct sum of division rings. By [16, Satz
3.7], every left ideal contained in J is small and therefore finitely
generated. Thus, J is a noetherian left ϋ?-module, which implies the
maximum condition on left ideals in iϋ, since R/J is semi-simple with
minimum condition by [1, Th. P]. Therefore, J is nilpotent, and since
jyjί+1 is a noetherian left jR-module and a completely reducible left
i?/J-module for all positive integers i, the left iϋ-module J has a com-
position series, and is therefore artinian. Together with the minimum
condition in R/J this implies the minimum condition on left ideals in R.

(8) —> (1): Since R/J is a direct sum of division rings, T(R/J) — 0
by [21, Th. 5]. If φ denotes the canonical epimorphism of R onto
R/J, then it follows from the radical property of T that (T(R)) φ S
T(Rφ) = T(R/J) = 0, whence T(R) = J. Since R is left artinian,
N = J, and R has only finitely many prime ideals by 3.4, so every
prime ideal is corpoidal. Thus, every left i?-module is admissible, and
it follows from 2.7 that every indecomposable injective left J?-module
is of the form ER(R/P), where P denotes some prime ideal of R.
Since N = N* = / = Γ, it follows from [15, Th. 2.3] that every in-
jective indecomposable left iϋ-module is isomorphic to a submodule of
ER(R/N*). Since a left noetherian ring is characterized by the pro-
perty that its injective modules are direct sums of injective and in-
decomposable modules, this implies (1).

REMARK 3.7. In Theorem 3.6 the conditions (1) and (4) can be
replaced by conditions (1*) and (4*) which originate from (1) and (4)
if we replace JV* by T. Because of 3.6(5) and ΛΓ* g T it is clear
that (1*) follows from (1). Likewise (4*b) and (4*c) follow immediately
from (1*) by means of [5, Th. 3.3]. Since the number of prime ideals
of R is less than or equal to the cardinality of π(E(R/T)) by (1*), it
follows from 3.5 that every prime ideal is corpoidal, proving the
minimum condition on left ideals in J? by 2.2. The proof from (3) to
(4) in Theorem 3.6 shows that this implies (4*a). The proof from (4*)
to (5) is nearly the same as the proof from (4) to (5) in Theorem 3.6,
and Theorem 3.6 shows that (5) implies again (1).

The question arises whether in (1) and (4) of 3.6 the radical AT*
can also be replaced by smaller radicals like J or N. The following
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simple example shows that this is not true in general. If R is semi-
simple with minimum condition, the Jacobson radical J, the Koethe
radical K, the Levitzky radical L and the lower Baer nil radical N
are all equal to zero, and E(RR) = RR is a cogenerator in the category
of left iϋ-modules, and R satisfies also conditions (4a) and (4b) of 3.6.
In general, however, R is not a direct sum of division rings.

REMARK 3.8. Since C(R/P) = S(R/P) for every prime ideal P of
a reduced left artinian ring R, and since every injective indecomposable
left .B-module is of the form ER(R/P) for some prime ideal P, the
question arises, whether S(E) = C(E) for every injective indecom-
posable left j?-module E. According to [11, 3.10] this, in turn, would
imply S(M) = C(M) for all left iϋ-modules M. The following example
shows that this is not true in general.

EXAMPLE 3.9. Let Q be the field of rationale, and let R be a
Q-algebra whose generators 0, α, 6, c, 1 are multiplied according to the
following table:

0

a

b

c

1

0

0

0

0

0

0

a

0

0

0

a

a

b

0

0

b

b

b

c

0

0

b

c

c

1

0

a

b

c

1.
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Then R has the following left ideals (see [12, Example 9.2b]): {0},
J = [α], B = [6], Ca = [b — c + aa] with a e Q, Da = [6, c — aa] with
aeQ, F = [α, 6 - c], G = [α, 6], fΓ = [α, c - 1], S = [a, b, c], I = [α,
b — c, c — 1] and P — [α, 6, c — 1], where [x, #, 2] denotes the left ζ)-
vector space generated by the elements x, y and z. The lattice of
left ideals has the form shown in the diagram above. R has an identity
and is left artinian, the only left ideals that are not two-sided are the
left ideals Ca and Da for every aeQ. The prime ideals S, T and P are
maximal left ideals. Since PJ= 0 and J — Ra, it follows that P = (Ra)/,
whence P = a/, since P is a maximal left ideal. Thus, J= Ra~ Ra/ =
R/P. Since J is a large i?-submodule of H, ER{J) Φ J. If 0 Φ x e J, it
follows that x/ = P, so #/ is not large in R since P(ΊCα = 0. Hence
ZR{J) = 0, whence C(ER(J)) = ER(J)Z)J = S(J) = S(EB(J)) by [13, Pro-
priete 3.4]. If, however, R is a commutative artinian ring with identity,
then R is reduced, and furthermore R has the property that heart and
socle coincide for every unitary left i?-module. Thus, the question arises,
which additional conditions a noncommutative left artinian reduced
ring must satisfy to permit the same conclusion. An answer to this
problem is given in the following section.

4* Finite direct sums of left artinian local rings*

PROPOSITION 4.1. Let R be a left noetherian ring whose prime
ideals are maximal, E an injective indecomposable left R-module,
ch (E) = {P}. Then Pr(E) = Jr(E).

Proof. As a maximal ideal P is primitive, whence RZDP a J 3 0,
which implies 0aPr(E) £Ξ Jr(E) S E. By [19, Lemma 1], this implies
Jr(E)/Pr(E) ~R Horn, (P/J, E). If 0 Φ <p e Horn* (P/J, E), then it fol-
lows from Pr(E) S ' E that ch ((P/J)φ Π Pr(#)) ^ 0 . Thus there exists
a nonzero element xe (P/J)φΓ\Pr(E) with P = (Rx)/, whence (P\J)/^
{(PjJ)φ)/ £ (ϋte)/=: P. Since, by 3.4, R has only finitely many prime
ideals P, Qλ, •••, Qn, and since they are all primitive by assumption,
it follows that

p/j = p/PnQ.n --nQn-iP + iQ^- nQ ))/QiΠ nQ

whence Qx Π Π Q« = (P/J)/ S P? contradicting the maximality of the
prime ideals of ί?. Thus, Hom^ (P/J, £/) = 0, whence Jr(£7) = Pr(E).

THEOREM 4.2. TΛβ following properties of a ring R are equivalent.
(1) R is a direct sum of finitely many left artinian local rings.

Γ(a) R is a reduced left artinian ring.
(2)

l(b) JP = PJ for every prime ideal P of R.
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R is a reduced left artinian ring.
JP ϋ PJ for all prime ideals P of R.
R is a reduced left artinian ring.
S(M) = C(M) for all left R-modules M.
R is left artinian.
L S ter L for all left ideals L of R.
R is left noetherian.
L S rad L for all left ideals L of R.
Prime ideals of R are maximal ideals.

Proof. (I)-* (2): If R = φ?= 1 R{ with left artinian local rings,
and if J{ denotes the Jacobson radical of Ri9 then J = φ?= 1 J{. Ob-
viously, the prime ideals of R are the ideals of the form

so they are maximal left ideals, since RJJi is a division ring. Thus,
J? is a reduced left artinian ring by Theorem 3.6. Since every Rt

has an identity, it follows that for every prime ideal P of R

(3)

(4)

(5)

(6)

ί(a)
t(b)
ί(a)
t(b)
ί(a)
l(b)

f(a)
(b)
(e)

PJ = RJi © . 0 R^J^ 0 J! 0 Ri+1Ji+1 0 0 RJn

— J\ \B ' ' ' © ê ί-l © e' i 0 e/i + 1 0 ' ' ' © «Λι

— e'l-Kl © " ' ' © Ji-1-ίti-.i 0 e/ ΐ 0 Ji+1Ri + ι 0 * * * 0 JnRn ~

Trivially, (3) follows from (2).
(3)—>(4): Assume i£ is an injective indecomposable left i?-module

with S(E) Φ C(E). If x is a nonzero element in C(E) such that the
submodule Rx of C(E)/S(E) generated by x = a; + S(£r) is minimal,
then Q = α/ is a prime ideal by Theorem 3.6. By Theorem 2.7,
E ~ ER(R/P) for some prime ideal P. By [13, Th. 3.1], %/ is maximal
in the set {e |̂0 =£ eei?}. The admissibility of i? implies that P is
contained in this set, whence x/$L P, since otherwise ay = P and thus
a; G Pr(jE) = S(JS). Since R has an identity, a?̂  is contained in some
maximal left ideal Qγ Φ P of R, which is a prime ideal by 3.6. From
Qx Q S(E) = Pr(E) it follows that PQQx/^Q,, whence Q = Q,.
Since PJx g PQx = 0, (3b) implies that also JPa; = 0, whence Px S
Jr(jδ7) = Pr(£7) by 4.1. Thus, P 2 C Qi, a contradiction. Hence S(£7) =
CίjB) for every injective indecomposable module J?, which implies (4b)
by [11, 3.10].

(4) —* (5): If L is an irreducible left ideal, then L is tertiary,
and ter L — P is a prime ideal. If K is maximal in the set of P-
tertiary left ideals containing L, then K is irreducible by [12, Th.
8.3]. Assume that there exists a left ideal M of R with KaMaR
and π(R/M) = π(R/K), then the left iϋ-module iί/ilf is homogeneous
because of |π(i2/ίΓ)| = 1. By [12, Propriete 10.11], this implies that
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M is tertiary and hence P-tertiary because of ch (R/M) — ch (R/K),
contradicting the choice of if. Thus, S(R/K) = C(R/K) = R/K by
(4b) and [11, Satz 3.1], implying that K is a maximal left ideal and
hence a prime ideal by Theorem 3.6. Therefore {if} — ch (R/K) =
{ter K) = {P}, whence L a K = P = ter L. If L is any left ideal of
R and if L = Π?=i -k* with irreducible left ideals Lίf then it follows
from [12, Propriete 7.7] and the preceding argument that

L = Π £» S Π ter L< B ter f f) £<) = ter L .

(5) —> (6): It is clear that (6a) and (6c) follow from (5a). Assume
that the set φ of all left ideals L of R with L <£ rad L is nonempty,
and let K be maximal in φ and M minimal in the set of all left ideals
of R which contain K properly. Then K is an irreducible left ideal,
since K = KXΓ\K2 with i f ^ i f and if2=)if would imply K = ^ n ^ S
rad if: n rad if2 = rad if. Thus, if is tertiary and ch (R/K) = {ter K}.
Since ilί/JSΓ is a minimal submodule of R/K, it follows that (M/K)/ =
ter if. Since rad Λf is nil modulo (R/M)/, and since iϋ is left noetherian,
there exists a positive integer n such that (rad M)n C (R/M)/, whence
ter if- (rad Λf )nJS a # and thus ter K- (rad M)n S (Λ/^)^ S rad ϋΓ. If
{Qi> * Qm) is the set of prime ideals different from ter K containing
(R/K)/, then rad M a Q* for i = 1, -, m. Since Jkf a rad M, this
implies

K = Kn ter If a Λf Π ter JSΓ B rad Iff] ter iΓ

B Qι Π n Qm Π ter K = rad if

a contradiction. Thus, 0 is empty, and (6b) is true.
(6) —> (1): Since rad L a ter L, it follows that L a ter L for every

left ideal L. If L is a maximal left ideal, then L = ter L, and since
maximal left ideals are tertiary, L is a prime ideal. Together with
(6b) this implies that prime ideals are maximal left ideals, so R is
reduced and left artinian by Theorem 3.6. Assume that the set φ of
all left ideals L with rad L Φ ter L is nonempty, and let K be maximal
in φ. K is an irreducible left ideal since otherwise K — Π?=i K% with
Pi-tertiary left ideals Kίt where none of the Ki is superfluous and
Pi Φ Pj for i Φ j. But then, by [12, Th. 8.3] and [12, Corollaire

8.4], ter K = Π?=i ter K{ = Π?=i r a c l Ki = r a ( i (Π?=i ^ ) = r a d ^ a c o n ~
tradiction. If N is minimal in the set of left ideals which contain
K properly, then either K — Nf]mdK or N = iNΓΠradiΓ, since i ί g
rad iΓ. The first case yields K — rad K by the irreducibility of K,
so rad iΓ is a prime ideal. Since rad K a ter if and prime ideals are
maximal, this yields a contradiction. Thus, iV = Nf]r&dK a rad if,
whence rad JV a rad rad if = rad if. Since KaN implies rad K a rad JV,
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this implies rad K = rad N = ter N £ ter K by the maximality of K
in 0.

If E is an injective and indecomposable left iϋ-module and if x
is a nonzero element of C(E), then C(#x) = Rx Π C(E(Rx)) = Rxf] C{E) =
i?#, so there exists no submodule NaRx with π(Rx/N) = π(Rx) by
[11, Satz 3.1]. Since every left ϋϊ-module is admissible, it follows
from [11, Folgerung 2.8] that there exists no left ideal L of R with
x/c:L(zR and ch (i2/L) = ch (R/x/), whence no ter x/-tertiary left
ideal contains x/ properly. Thus x/ is a maximal ter ^-tertiary left
ideal, whence x/ — terx/. Thus, x/ is a maximal left ideal, which
implies xeS(E) and thus S(E) = C(E). By [11, 3.10], this implies
S(M) = C(Λί) for every module ilί. Consequently, in particular
C(R/K) — S(R/K) = N/K, where the second equation follows from
the irreducibility of K and the choice of N. By [11, Satz 3.1],
C(R/K) is the intersection of all submodules 0 Φ M/K g R/K with
π(R/M) = π(R/K). Since JB is left artinian, C(R/K) = JV/iΓ is already
the intersection of finitely many of these submodules, whence π(R/N) =
π(R/K) by [12, Propriete 10.13], so that ch (R/N) = ch (R/K) =
{ter if}. Since teriV is the intersection of all prime ideals associated
with the left iϋ-module R/N, it follows that ter N = ter K, so that
rad K = ter K by the equation in the previous paragraph, a contradic-
tion to the choice of K. Thus, ter L = rad L for all left ideals L.
Therefore tertiary left ideals are primary, and since prime ideals of
R are maximal left ideals, this implies (1) by [11, Satz 4.2], Since
a commutative artinian ring is a direct sum of local rings, we get:

COROLLARY 4.3. A commutative noetherίan ring R is artinian
if and only if S(M) = C(M) for every left R-module M.

Furthermore, the last part of the theorem shows that the follow-
ing is true:

COROLLARY 4.4. If R is a left noetherian ring whose left R-
modules are admissible and have coinciding heart and socle, then R
has the Artin-Rees-property for left ideals.

In fact, Theorem 4.2 is an extension of Satz 4.2 in [11], Thus,
if a ring R has properties (l)-(6) of Theorem 4.2, ch (M) = supp (M)
for every left i?~module M, which gives a partial answer to the ques-
tion raised in 2.6.

It would be interesting to know, whether the inclusion in con-
dition (3) of 4.2 can be replaced by the reverse inclusion. Considering
the manner how this inclusion was used in the proof of 4.2, this does
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not seem to be true, we have, however, not been able to find a
counter-example.
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