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ON WITT’S THEOREM FOR UNIMODULAR
QUADRATIC FORMS, II

D. G. JAMES

An integral generalization of Witt’s theorem for unimodular
quadratic forms over the ring of integers in a local field is
established.

1. In the first part of this paper [1] we established a Witt theorem
for unimodular quadratic forms over the rational integers, provided
the signature of the form was sufficiently small. We shall now use
these methods to obtain a similar theorem for arbitrary unimodular
quadratic forms over the ring of integers in a local field in which 2
is a prime. These theorems are important because they enable us to
determine the essentially distinct representations of a quadratic form
by a unimodular form. We hope to expand on this in a later paper.

Let F be a local field in which 2 is a prime, o the ring of in-
tegers in F' and u the group of units in 0. We need only assume that
the residue class field o/2o0 is perfect. We preserve as much of the
notation in [1] as possible, but now the underlying ring will be o and
not the rational integers Z. Thus L will be a free o-module of finite
rank, endowed with a bilinear symmetric unimodular form @: L x L—o.
We denote @(a, B) by a-B. Details on the structure of L are con-
tained in O’Meara [2, 3]. We recall that L is improper if a*< 2o for
all «e L; otherwise L is proper.

A vector acL is called primitive if « = 28, with S¢ L, is im-
possible. As in Wall [5] and our earlier paper [1], the crucial concept
is that of a characteristic vector. We only define these when L is a
proper lattice; in this case L has an orthogonal basis, that is L =
EDP - P&y A vector a = >, ;&€ L is called characteristic
if its orthogonal complement {a>* contains no vectors of unit norm.
If « is primitive, this is equivalent to

aié: = ai&: (mod 2) , 14,755 n.

Hence, in particular, a;cu,1 < ¢ < n, and this reduces to the defini-
tion in [1]. If « is a primitive characteristic vector, we define T(a) ¢
0/20 by T(a) = a2&: (mod 2). This definition is independent of the basis
of L (see also Trojan [4]). If {a)>* is proper, or if L is improper, we
define T(a) = 0; also let T(2°a) = T(«) for s = 0. We shall prove the
following.

THEOREM. Let ¢:J— K be an isometry between the primitive
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sublattices J and K of L. Then ¢ extends to an isometry of L if
and only if T(a) = T(p(a)) for all acd.

When the rank of J is 1, this is the same as Theorem 2.1 of
Trojan [4]. We shall recover this as a special case. For local fields
in which 2 is a unit the theorem remains true, but there is no need
to consider characteristic vectors. Essentially the following proof of
the theorem goes through in a much simpler manner.

2. We first reduce to the case where L has maximal Witt index
(that is, the space F'L is an orthogonal sum of hyperbolic planes).
We adjoin a unimodular lattice U to L so that L' = L@ U has
maximal Witt index. Thus,if L=H D --- DH,PLEOD --- P
where H,, ..., H, are hyperbolic planes, we take U=<{>H --- D
> where (= —¢&, 1<it=<s. Let J/=JQU K' =KPU and
extend @ to J’ by defining o({;) = {;. A similar extension is done if
L is improper, but now U may be taken as an improper lattice (see
the classification of unimodular lattices in O’Meara [3, p. 852]). We
observe that T(a) = T(p()) for all e J’. If L' is improper, this is
trivial. If L is proper (and U == {0}), then no vector aecJ will be
characteristic in L’. However, new characteristic vectors may be
created. Thus, if aeJ is characteristic in L, and T(a) = a (mod 2)
where acu, then &' = a + >5_, w,{;, is characteristic in L’ if u,cu
are chosen such that (= a(mod2). Clearly T(a') = T(pa’)). If
we prove the theorem for lattices of maximal Witt index, it holds
for L'/, and restricting the extension of ¢ back to L gives the general
result.

We may now assume that L has the form

L:Hl@"'éBHm@B

where H;, = {\;, #t.>, 1 < i < m, are hyperbolic planes, and B = {¢§, o>
where & =d, &-0=1and p*=0. If L is improper, we may take
d = 0; otherwise d eu.

3. The proof will be by induction on the rank »(J) of J. We
consider now 7(J) = 1. Let J =<a> and p(a) = B K. Let

(1) a =3 (@ + b + ud + vp .
Case 1. If a*cu, then w (and d) are units. Apply the isometry

0, Qv iy D <G 0 — vy 1 + 20 D LE — BNy, 0

where ¢ = a;/u €0. Then



UNIMODULAR QUADRATIC FORMS, II 647

0. (an; + bitt; + ué + vo) = byt + ué + (v + xby)p .

After applying a succession of such isometries we may assume « =
S bt + ué + vp. Then

L =<a, o) D <un, — b0, 1> D « -+ DUy — b0, )

and each <{u\; — b0, ;> is a hyperbolic plane. Doing the same for
B, and cancelling hyperbolic planes ([2, 93:14]), we may reduce to

the case L =<a)@P<a)y =<B>P<B,), where the result is obvious
by considering the determinant of L.

Case 2. Now suppose a’¢u, but that at least one of a,, b;,, 1 <
© < m, is a unit, say a,eu. Then

(2) L=La,pyU
with <a, £t,> a hyperbolic plane. If we can also obtain
(3) L=B,1y®oV

with <8, #> a hyperbolic plane, then U = V, and we are reduced to
considering «, B e H = {\, tp. Write a = ax + by, 8 = o/\ + b't, where
without loss of generality we can take a, a’ cu. «a® = B* implies ab =
a't'.  Apply N, gy —<a'jan, aja’try, to complete the proof.

If L is improper, (3) is clear. If L is proper, (2) shows that «
and hence B are not characteristic vectors. But if all the coefficients
of \; and #; in B are in 20, 8 would be characteristic (see Case 3).
Hence we can obtain the splitting (3).

Case 3. Finally suppose a*¢u and all a,, b; in (1) are nonunits.
We may assume L is proper, w€u and veu.

Ny 11 DG 00 =iy s — 20(§ — dp) + 242\ B <&, o + 2un)
can be used to reduce each coefficient a; of \; in (1) to zero. Then
L = <CY, §> ®<bl(§ - d(o) - v/\u .ulv ] bm(sﬁ - dp) - vxm; /"m> .

Since <a, &) is now isotropic and <{a, >* is improper, it follows that
{a, £* is an orthogonal sum of hyperbolic planes. « and £ are now
characteristic. We therefore have a similar splitting L = {8, £ P U,
with U a sum of hyperbolic planes. Thus we may reduce to the case
L =< 0y with a = 2ué + vo and B = 2u.é + v,p0. T(a) = T(B) im-
plies » = v, (mod 2). If w,/u = 1 (mod 2), put ¢ = w,/u eu and apply

& 0> —<eé + de'd(l — o, '),
sending « into B. If du,/(du + v) = 1 (mod 2), put ¢ = du,/(du + v)
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and apply <§, o) —<cé + 3de'(1 — ¢*)p, 2¢d™'é — cp), sending « into
B. Since a? = £2, we have u’d + uv = ud + w,v,, from which it follows
that one of these two cases must occur. This completes the proof
for »(J) = 1.

4. Using methods similar to those in [1], we now obtain canonical
embeddings of an image of J in L. We only elaborate on the details
that are substantially different. We assume 2r(J) = »(L); if 2r(J) <
r(L) it is clear how to modify the arguments that follow.

Let J = {a,, ---a,> where, by eliminating the coefficients of ¢ and
0, we may assume a! = 2¢; with ¢;eo for 1 <7 <m, and none of
the a;, 1 <7 < m — 1, are characteristic vectors. As in [1], we may
apply isometries to L, and again writing the image of J as

J = <(X1, ety as>7
obtain

o, =N+ oy

Ay = Qpy_yyy #1 + oo + am—l,m—Z#m—Z + )"m——l + Cm—-uam—L

where a;-a; = a,; for ¢ > j. Eliminating the coefficients of A, «+«, X,
we may assume

where (e H,, @ B. If { is not primitive, at least one «a,; is a unit,
say a,,<€u. We now apply the isometry

0,: <7ka #k> &b <)‘*k:—u #k+1> D---P <)\’m—19 #m-1> B <, o> —

Qv+ ey e — 00 D vy + Qs 105 M) D -+

@<7\’m-—1 + Q105 #m—1> P<E— ety + N — QM

. am—lk#m—l + Ckloy {0> .
This leaves fixed each «;, 1 <7< m — 1, but

0400) = 3 Gpifts = a0 + 0:0) -

Use the a;, 1 <47 < m — 1, to eliminate any \;, 1 <7 < m — 1, occurr-
ing in 6,(«,) and obtain a new vector of the form (4), but now ( is
primitive.

There are now two cases to consider.

Case 1. «a, not characteristic and a2, €20. It is possible that ¢
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is characteristic in H, @ B. If this is the case, at least one a,; is a
unit, and another isometry of the form 4,, but with <{&, o> replaced
by {\my My, Will introduce a term a,t, into {. We may therefore
assume ( is not characteristic, and «,, has the form

am = 2 ami#i + A’m _'_ cm/’lm
=1
(after applying an isometry to H, @ B). We may now take

m
Ay = Z;. a’m—\-li#i + U/E + ’U‘O .
i=

As above (with {), we may arrange that w& + vo is primitive. First,
assume that « is a unit. Then, changing the basis of (¢, p> to {us,
u~'0>, we may assume u = 1. This gives us the canonical embeddiug
of e, -+, @+, we desire; all the coefficients a;;, ¢; and v are uni-
quely determined by «;-a; and a?, 1 < 4,5 = m + 1. If now 2r(J) >
(L), we eliminate the \; and ¢ terms in «,., so that it takes the
form

Aoy = ﬁl b;tt; + bp .

Hence o, = 0. If b,cu, say, then {a,, a,> is a hyperbolic plane
splitting L and J. Its image under ¢ will be a hyperbolic plane
splitting L and K. Cancelling these hyperbolic planes reduces the
rank of J and we are finished by induction. (The invariants of vectors
in the new J and K will still correspond.) If b,€20 and becu, then
«,., 1s characteristic. Also a4, @, ., €u. In this case {a,4;y Qpio)™ =
H & ... ¢ H, (since it is improper with maximal Witt index). We
may now cancel {a,,,, @,,,> Wwith its image and we are again finished

by induction.
Now assume % €20 and hence a?_, €20. Then changing the basis

of (&, p> to {v™'& vo), we may assume
Koy = ﬁ: W13 + 2ué + o.

Notice that a?,., € 4o, so that if any a,,.,; i a unit, say a,.., € u, then
{ayy Qpeny is a hyperbolic plane. In this case we can cancel and re-
duce the rank of J. Thus we may assume all a, ., €20, so that if L
is proper, «,., is characteristic. This gives our canonical embedding
of {a,, +++, @psyy. If now 2r(J) > r(L), we eliminate the A\; and p
terms in &, So that it takes the form

Koy = i bit; + bs .
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If beu, then @, @, €u. <&, A,y is isotropic since we obtain an
isotropic vector by eliminating the & term between «,., and «,.,.
Since «,,., is characteristic, it follows that

<am+1) am+2>l = Hl @ et @ Hm .

We may therefore cancel <{a,,., «,.,»> with its image under ¢ and
finish by induction. If b¢u, then a?,,c40. If now b, €,

<ak! Uiy = H,

and may be cancelled with its image. This completes this case.

In summary; we need only consider 2»(J) = (L) and

J = <a1’ cc Y am+l>
where

a =N + el
&, = a’ml#l + oeee + amm——l#m—l + Nm + cm#m
2am+11ﬂ1 + e + zam-ﬂmf"m + ZuE + (0
am—§~111u1 + e + a’m-Hm#m + E + 1)40

am+1

according as «,,,, is characteristic, or not.

Case 2. «, characteristic. Then we may take «,, = > "7 a,.tt; +
{ where {e H, P B. Since «, is characteristic, a,; €20 and hence {
is primitive and characteristic. Applying an isometry to H, P B, we
may assume { = 2ué + vo, and changing the basis of {¢, p> we may
take v = 1. We may now assume that «,., has the form

m—1

am+1 = Z{am%—li#i + CS + 67\’m + f#m .

If ¢e20, %, €20 and «,,., is not characteristic. Therefore, this vector
could be used as «, in Case 1 and there is no need to consider it
again here. Thus ceu.

If neither e nor f are units, apply the isometry

L& 0 B Doy Py — L&+ Ny 0 — 2uN, > DB oy — (1 + 2ud)p
+ 2ué + 2u(l + ud)\,p .

This leaves «, fixed and in «,., changes the coefficient of A, to a
unit. Eliminating any p term between «, and «,.,, we can take

am+l = Z— a’m-(—li/’ti + CS + )"m + cm#m .



UNIMODULAR QUADRATIC FORMS, II 651

Again, if 2r(J) > r(L), we may assume «,., has the form
Apyyp = i byt + bé .

Eliminate the & term between «,., and «,., to obtain a noncharacter-
istic vector with norm 2a. This could have been taken as our «, in
Case 1.

This concludes the investigation of the embedding of J in L.
From now on we consider 2r(J) = (L), and there are essentially three
embeddings possible, two from Case 1 and one from Case 2.

5. Now assume that J=<a, ---, «,.,> has been canonically
embedded in L in one of the above forms. Because of the similarity
with the proofs in [1], we will assume o(J) = K =@, «++, @p, B,
where o(a)) = a;, 1 <7 < m, and p(a,,) = 8. We now apply isome-
tries to L that leave «,, ---, «,, fixed and send @ into «,.,. This will
complete the proof of the theorem. Only the more involved cases are
considered, the remaining cases may be handled similarly. First
assume

a, =N+ Gty

«,, = a’ml#l + - + amm——l#m—-l + >"m + leum
Apss = 20pifls + o0+ + 201 imflln + 2uE + P

so that «,., is a characteristic vector. A will also be characteristic,
S0 we may write

B =233 (b + dipt) + 26¢ + fo .

Since B is primitive, feu; and since T(«,..) = T(B), it follows that
f=1(mod2). We apply isometries to L that reduce, in turn, the
coefficients b,, ---, b,, to zero. Assume b, ---, b,_, have been reduced
to zero.! The isometry

oy ) D <+ D oy ) D L& 00 = Qi + G20, e — 2O
@D Piers + @0, Yir) B+ v D v + B0, P
B — ettty + TNy — QW sy — * o0 — Qi
+ c’o, 0
leaves «, ---, «,, fixed. However, in £ the coefficient of \, is changed
from 2b, to 2b, + 2ex, which can be made zero by choice of 2. In this

manner reduce S to a vector with b, = .-- =5, =0. Since f=1
(mod 2), an isometry in <&, o> can be found sending 2e¢¢ + fo into

1 Using a symmetry in <§, p>, we may assume that e is a unit.
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2u& + o. This completes the proof in this case.

Finally, we consider the case where «, ---, a,_, are as above,
a, = 2305 @pifts + 2ué + 0 and

m—1
am-H = Z a/m-f-li;ui + CE + )\'m + cm/“m ’
1=1

where «,, = ¢(«,,) is characteristic and a?,,, eu, so that ceu. In this
case we may write B = @(@,.) = 2n, (bn; + dipt;) + €& + fp with
ecu. If neither b, nor d, is a unit, apply the isometry

& 00 B oy M) —<E + Ny 0 — 2UNy) B s M + 2uS
— (1 + 2ud)o + 2u(l + ud)r,,) .

Then «,, ---, «, are left fixed, and in B the coefficient of X\, be-
comes ¢ — 2uf + b, + 2u(l + ud)d,, cu. Now apply the isometry

<)‘*u f"1> @ cee @ <Xm—u ﬂm—l> EB <§, 10> @ <7\'m! ﬂm> -
o+ ety e — Bt D + Qs ) D -+ D
Doy + Qo3 Ty ﬂm—1> @ <E, o+ 2“m1x#m> P
vy — CXL + TN, — Aty — o0 — Oy Ty
— 2a,,2(& — do) + x%(c, + 2daz,) s tny

which leaves «,, --., «,, fixed. The coefficient of A, in B changes to
b, + 2b,,, and may be made zero. Reduce, in turn, b, ---, b,,_, to zero.
Finally, apply

O — @0 + 2ux(E — dp) + 2u®(1 + ud)ln, tn) -

In B the coefficient of o becomes f — b,x(1 + 2ud), which can be
made zero. We have therefore mapped K onto J. This completes
the proof of the theorem.
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