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FOR ABELIAN GROUPS

R. B. WARFIELD, JR.

In this paper we find a class ^ of Abelian groups with
the property that if a group A is a direct sum of groups in
the class ^ , then any two direct sum decompositions of A
have isomorphic refinements. The class & includes those groups
which are complete and Hausdorff in their natural topology
and also the torsion-complete ^-groups.

All groups in this paper are Abelian groups, additively written*
The natural topology (or J£-topology) is defined on a group G by taking
as neighborhoods of 0 the subgroups nG, for nonzero integers n. A
group G is called Hausdorff if it is Hausdorff in this topology, or, equiva-
lently, if PinG — 0 (where n ranges over all nonzero integers). G has
bounded order if for some nonzero integer n, nG — 0. We will fre-
quently use Prufer's theorem that a group of bounded order is a
direct sum of cyclic groups [9, Th. 6]. The groups which are com-
plete and Hausdorff in the natural topology are exactly the reduced
algebraically compact groups in the terminology of [9]. A p-group
is torsion-complete if it is Hausdorff and it is the maximal torsion
subgroup of its completion in the natural topology (which in this case
is the same as the p-adic topology).

We use the symbol Σ for the direct sum of a family of groups,
A 0 B for the direct sum of the groups A and B (either abstractly
or as a subgroup of another group), and A + B for the ordinary sum
of two subgroups of a group (not necessarily a direct sum). If a
group G has two direct sum decompositions, G — Σiez^ί — ΣjejBj*
we say that these decompositions are isomorphic if there is a bi jective
mapping φ:I—+Jy such that At = Bφ{i) for all iel, and we say that
the second decomposition is a refinement of the first if each B3 is
contained in one of the A{.

A group B has the exchange property if for any group A, if
A = B' © C = Σήei Di, with B = B', then there are subgroups Ό\ S D4

such that A = B ' φ Σ ί β i ^ ί If this holds in every case where the
index set / is finite, then B is said to have the finite exchange pro-
perty. It is not known whether these two properties are equivalent.
The exchange property has been exploited for the study of infinite
direct sum decompositions by P. Crawley and B. Jόnsson in [4].

DEFINITION. An Abelian group G is in the class & if it satisfies
the following three conditions:
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( i ) G is Hausdorff
(ii) G has the finite exchange property;
(iii) If /: G —> M is a homomorphism of G into a Hausdorff group

M and M = Σ e/^ί then there is a finite subset J^I and a decom-
position of G, G ^ G i φ G2, where 6̂  is of bounded order and every
nonzero element of G2 has a nonzero multiple whose image under /
is in ΣnejMi.

The main result of § 4 below is that complete Hausdorff groups
are in ^ Torsion-complete ^-groups are also in ^ since Crawley
and Jόnsson showed [4, Lemma 11.4] that they have the exchange
property, and property (iii) is easy to check directly (using, for ex-
ample, the completeness of the socle in the p-adic topology and ap-
plying the Baire category theorem as in § 4 below).

There are many other examples of groups in <g*. Crawley proved
[3, Lemma 3.5] that for p-groups properties (i) and (ii) above imply
(iii) (his condition appears weaker than (iii) but is actually equivalent)
so any Hausdorff p-group with the finite exchange property is in cέ?.
He also constructs in [3] a class of "stiff" ^-groups which are in ^ ,
but which are not torsion-complete. For other examples, we remark
that if G is a Hausdorff group whose maximal torsion subgroup T is
a stiff p-group and if G/T is divisible of finite rank, then G is a
mixed group in <£*. Finite rank pure subgroups of the p-adic integers
(for any prime p) are examples of torsionfree groups which are not
complete but which are in c<^ (see Proposition 1 and the proof of
Proposition 4 in [14]).

We will need two important additional properties of ^

LEMMA 1. If G is in ^ so is any summand of G. If G*(i —
1, , n) are in ^ so is Gλφ φ Gn.

LEMMA 2. If G e cέ?, any two finite direct sum decompositions
of G have isomorphic refinements.

Lemma 1 is obvious except perhaps for property (ii) for which
see [4, Lemma 3.10]. Lemma 2 is immediate from the finite exchange
property. The groups in ^ actually have the exchange property (not
just the finite exchange property). For a proof we refer to [3,
Lemma 3.6], only remarking that one must use our Lemmas 6 and 7
ΐelow instead of Crawley's 3.2 and 3.3. We will not need this result.

We will state our main results for abstract classes of groups,
since the class c^ is not the only class of groups for which these
theorems can be proved.
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THEOREM 1. Let & be a class of groups such that
( i ) Summands and finite direct sums of groups in 3? are in

(ii) If Ge£S? then any two finite direct sum decompositions of
G have isomorphic refinements, and

(iii) If Ge £&, and f:G—+Mis a homomorphism, where M —
Σie; Mi9 and the M{ are all in &f then there is a finite subset J g
I and a decomposition of G, G = G1@ G2, where Gx is of bounded
order and every nonzero element of G2 has a nonzero multiple whose
image under f is in Σ i e / ^

Then if A is any group which is a direct sum of groups in the
class &j any two decompositions of A into summands in the class
& have isomorphic refinements.

THEOREM 2. Let £& be a class of Abelian groups satisfying the
hypotheses of Theorem 1, and such that the elements of £& have the
finite exchange property. Then if a group A is a direct sum of
groups in the class £%r, any summand of A is also a direct sum of
groups in the class 2f.

Sections 2 and 3 below are devoted to the proofs of these
theorems.

COROLLARY. If 2$ is a class of groups satisfying the conditions
of Theorem 2 and A is a direct sum of groups in the class £^ then
any two direct sum decompositions of A have isomorphic refinements.
In particular, this applies to the class ^, (by definition and Lemmas
1 and 2) so (specializing further) if A is a direct sum of complete
Hausdorff groups or of torsion-complete p-groups, then any two direct
sum decompositions of A have isomorphic refinements.

The results of this paper for torsion-free and mixed groups are
entirely new, but the corresponding questions for p-groups have a
considerable history. Reinhold Baer completely solved the problem
for countable p-groups in 1935 [1], Kulikov proved in [11] that if
an Abelian p-group is a direct sum of cyclic groups, then any two
direct sum decompositions of the group have isomorphic refinements,
thus generalizing one of the results obtained by Baer in the counta-
ble case. Kulikov also defined torsion-complete p-groups in [11] and
showed that any two direct sum decompositions of a torsion-complete
p-group have isomorphic refinements. E. Enochs, in work based partly
on earlier work of Kolettis [10], proved in [5] the special case of
Theorem 1 involving direct sums of torsion-complete p-groups. Our
proof of Theorem 1 was motivated by his paper. Crawley generalized
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this result in [3], replacing torsion-complete p-groups by Hausdorff
^-groups with the finite exchange property. In both of these cases,
one still needs to prove the corresponding special case of Theorem 2.
This has previously been done only in the special case of direct sums
of torsion-complete p-groups—for countable sums by Irwin, Richman
and Walker [7], and in general by P. Hill [6] and the author [12],
independently.

We close this introduction with some examples to illustrate the
limitations of our results. Numerous examples of groups without the
isomorphic refinement property are known, due to Baer [1] (for count-
able p-groups), Jόnsson [8] (for torsion-free groups), and Corner
and Crawley [2] (for Hausdorff p-groups). On the other hand, there
are groups not in the class & for which a theorem such as ours
should be provable. If G is a p-group such that the subgroup Gι of
elements of infinite height is torsion-complete and not zero, and such
that GIG1 is stiff (in the sense of [3]) then G has the exchange pro-
perty and any two direct sum decompositions of G have isomorphic
refinements, but G is not Hausdorff and therefore is not in ^ . Pos-
sibly the class ^ could be enlarged by omitting condition (i) and.
suitably altering condition (iii).

1* Lemmas on pure subgroups and projections* We recall that
if A is an Abelian group and B a subgroup, then B is pure in A if
nB = B f] nA for all integers n. We define the p-height (denoted hp}
of an element x by setting hp(x) ~ n if x = pny for some y but x Φ
pn+1z for any z, and hp(x) = oo if x is divisible by all powers of p..
By the height of x we mean the function associating to each prime
p the number hp(x). Clearly a subgroup B is pure in A if and only
if the heights computed with respect to B and with respect to A are
the same.

Most of the lemmas that follow are generalizations to mixed
groups of well-known and widely used results for ^-groups. The first
two, for example, are generalizations of Lemmas 12 and 7 of [9].

LEMMA 3. // M is a group and N a pure subgroup such that for
every x e M (x Φ 0) there is an integer n such that nx Φ 0 and nx e Nr

then N — M.

REMARK. This lemma is not true for modules over an arbitrary
integral domain. For instance, if D is a divisible iϋ-module which is
not injective, and E is the injective envelope of JD, then D is pure
in E and every nonzero element of E has a nonzero multiple in Dr

but E Φ D.
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Proof. By a finite reduction process, it suffices to show that if
p is a prime and px e N, then xeN. If px = 0 this is trivial by
hypothesis, since some nonzero multiple of x must be in N. Other-
wise, px = py for some y e N (by the purity of N) and p(x — y) — 0
so either x — y (and we are done) or x — y is of order p and hence
in N, and x = (x — #) + y is a sum of elements in AT.

LEMMA 4. Lei M be a group and N a subgroup and say that
for all x e N (x Φ 0) ίfeerβ is an integer n such that nx Φ 0, and nx
has the same height in M and in N. Then N is pure.

Proof. By a finite reduction we need only show that if px has
the same height in N and M then so does x. Since x and px have
the same g-height for all primes q, q Φ p, we need only consider p-
height and we must show that if x = pny for some y e M then there
is a z e N with x = pnz. If px = 0 the result is trivial since in this
case, if nx Φ 0 then nx and x have the same height. We therefore
assume px Φ 0.

Suppose x = p%7/, y eM. Then p# = pw+1τ/ and by hypothesis, p$ =
pn+1z0 for some 20 e N Then p(^%^0 — #) = 0 so either x — pnzQ (and
we are done) or pnz0 — x is of order p and hence has the same height
in M as in N. Since it is divisible by pn in M (since x = pny) it is
also divisible by pn in JV, so that there is a zx e N with p%z1 — pnz0 — x,
that is, x = pn(zQ — ̂ ), proving the result.

DEFINITION. If two pure subgroups A and B of a group ϋί" have
the property that each nonzero element of A has a nonzero multiple
in B and each nonzero element of B has a nonzero multiple in A, then
A and 5 are said to be essentially linked.

LEMMA 5. If M is a group with pure subgroups A and B which
are essentially linked, such that A is a summand (M = 4 © A ' ) , then
B is also a summand and M = B 0 A!.

Proof. The conclusion is equivalent to the statement that the
projection Θ\M—>A carries B isomorphically onto A. θ restricted to
B is clearly injective since any nonzero element of B has a nonzero
multiple which is left fixed by θ. We next note that Θ{B) is a pure
subgroup of A, by Lemma 4, since if θ{b) is in Θ(B), then for some
integer n, nθ(b) = nb Φ 0, and nθ{b) has the same height in Θ{B) as
in B (since θ restricted to B is injective) and the same height in B as
in A (since A and B are pure). Finally, any nonzero element in A
has a nonzero multiple in Θ{B), so A — Θ{B) by Lemma 3.



242 R. B, WARFIELD, JR.

LEMMA 6. If M is a group with pure, essentially linked subgroups
A and B, both summands {say M = i φ A! = B0 Bf), then also

Proof. Apply Lemma 5 twice.

LEMMA 7. If A and B are summands of a group M and every
nonzero element of B has a nonzero multiple in A, then the pro-
jection of B into A carries B isomorphically onto a summand of A.

Proof. Let the projection into A be θ. Θ{B) is pure by Lemma
4. By Lemma 5 therefore, Θ{B) is a summand with the same com-
plement as B.

LEMMA 8. If M is a group and n a positive integer, we can
decompose M = A 0 A' where nA = 0 and any nonzero element of Af

has a nonzero multiple in nAf. Furthermore if G = B 0 Bf is ano-
ther such decomposition then A — B and A' = B'.

Proof. Choose A to be a subgroup of M maximal with respect
to the properties that A is pure and nA — 0. A pure, bounded-order
subgroup is a summand [9, Th. 7], so we can decompose M — A 0 A!.
We must show that any nonzero element of A! has a nonzero multiple
in nA!. If the element has infinite order the result is trivial, and
otherwise it has a nonzero multiple of prime order, so it will suffice
to show that if x e A', x Φ 0, and px = 0, for some prime p, then x
is divisible by n. This is equivalent to showing that hv(x) ^ k, where
pk is the highest power of p dividing n. If this were not the case,
there would be an element ye A' with pmy — x, where hp(x) = m and
m < k. By Lemma 4, the subgroup [y] generated by y would be
pure, and hence a summand of A'. A 0 [y] would then be a pure
subgroup satisfying n(A 0 [y]) = 0, contradicting the maximality of
A.

To prove the final statement, note that nM — nAr — nB', so A!
and B' are essentially linked, so by Lemma 6, M = A 0 Br = B 0 A',
which implies that A = B and A! ~ B'.

LEMMA 9. Let Mbea group, and M = A 0 S 0 C = A0 D @E,
and suppose that A and A! are essentially linked, and every nonzero
element of D has a nonzero multiple in A 0 5 , and that π is the
projection of M onto B from the first decomposition. Then π{D) is
a summand isomorphic to D, and the subgroups A 0 π(D) and A! 0
D are essentially linked.
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Proof. Let θ be the projection of M onto B 0 C. By Lemma
6, M = AζBDξBE, so Θ(D) is a summand of B0 C. By the condi-
tion on elements of D, every nonzero element of 0(1?) has a nonzero
multiple in B. By Lemma 7 therefore, π(D) = π(θ(D)) is a summand
of 5, and it is clearly isomorphic to D. Note that π(D) and Θ{D)
are essentially linked by construction. To prove the last statement
of the lemma, it suffices to show that any nonzero element of D has
a nonzero multiple in A 0 π{D) and that any nonzero element of π(D)
has a nonzero multiple in Ar 0 D. For the first, we note that D g
A 0 Θ{D), and any element of A 0 Θ{D) has a nonzero multiple in
A 0 π(D). For the second, let x be a nonzero element of π(D) and
wa? a nonzero multiple which is in Θ(D). Then nx = α + ώ, where
α e i and de D. If α = 0 we are done. Otherwise there is a nonzero
multiple ra of α in A'. Certainly rnx = ra + rd is in A! 0 Z), and,
since ra Φ 0, rwα? Φ 0 since rα G A', and rdeD and A Π Z) = 0.

2* Proof of Theorem 1. We begin with three remarks which
we will need to refer to.

(2.1). Hypothesis (iii) of Theorem 1 can be strengthened by add-
ing the condition that none of the finite set of summands M^ieJ)
are of bounded order. To see this, let n be a positive integer such
that nMi = 0 for all of the M^i e J) which are of bounded order.
This is possible since there are only a finite number of them. Let
Gj (?! and G2 be as in the statement of condition (iii) and use Lemma
8 to decompose G2 so that G2 = G2* 0 G2J where nG* — 0 and every
nonzero element in G2 has a nonzero multiple in nG'2. We now let
G[ = Gx 0 G2*, so that G = G[ 0 G'2, where G[ is again of bounded order,
and every nonzero element of G2 has a nonzero multiple whose image
under / is in the sum of those M^i e J) not of bounded order.

(2.2). If G is in the class £gr then any two direct sum decom-
positions of G have isomorphic refinements. For if G = Σiez A{ =
Σie/ Bj , then by condition (iii) of Theorem 1 there is a positive in-
teger n such that nAi = nB3 = 0 for all but a finite number of the
iys and i's. We now apply Lemma 8 to each of the summands At
and Bj, using this integer n, and obtain decompositions

where nA* — nB* = 0 for all iel, j eJ, and any nonzero element of
A'i or B) has a nonzero multiple in nG. If A = Σ ί e/A*, A' = Σίe/^ί
and B and J5' are defined similarly, then G ^ i φ A ' - ΰ φ ΰ ' . These
decompositions satisfy the conditions of Lemma 8, so A = B and
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A! = Bf. These four groups have decompositions inherited from the
original decompositions of G. The decompositions of A and B are
finite, so by hypothesis (ii) of Theorem 1 they have isomorphic re-
finements. A! and B* are of bounded order and hence are direct sums
of cyclic groups, so their decompositions have isomorphic refinements
by Kulikov's theorem ([11] or [9, Exercise 34]). Putting these results
together, we have the required isomorphic refinements of the original
decompositions.

(2.3). Applying (2.2) several times, it is easy to see that if G
is a group which is decomposed in two ways as a direct sum of groups
in the class ϋ^, G = ΣrerCr = Σ UΛ A> and if these decompositions
have isomorphic refinements, then if G = Σίe/^4-* is a refinement of
the first decomposition, and G = Σ/ej B, is a refinement of the second,
then these two decompositions also have isomorphic refinements.

We now outline the rest of the proof of Theorem 1. Suppose
G = ΣiieiAi •= ΣjejBj where the A« and B5 are groups of the class
£&. We regroup the summands Ai into finite sets, setting Cr — Σ»ez Ait

where 7 is an ordinal in some initial segment of the ordinal numbers
(7 < λ), and the Ir we construct will be disjoint and their union will
be 7. We similarly group the summands Bό defining Dγ — Y^^JyBjf

where Jr is a finite subset of J, and the Jr are disjoint sets which
together include at least all elements j e J for which Bά is not of
bounded order.

We will then have

Σ r ( Σ r ) θ Σ B3
γ<λ \ΐ<λ / jeJ*

where J* is the set of all j eJ not contained in any of the Jr, and
all of the Bό(j e J*) are of bounded order. We will construct isomor-
phic refinements of these decompositions, which will prove Theorem
1 by (2.3). We will decompose the C"s and D's as follows:

and we will have by construction
(1) D\ = C\
(2) D2

r = C2

r+1 where C2

r = 0 if 7 = 0 or 7 is a limit ordinal.
(3) D) and C* are of bounded order.

(4) Σr<; (D\ θ D2

r) and Σr<; (Q θ Q) are essentially linked.
We now note that in the above situation, the theorem is proved,

since by (4) and Lemma 6,

G = Σ (Cf 0 Cr

2) Θ Σ ^ Θ Σ Bj
ϊ<λ γ<l jej*
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so that Σr<* £*r ΘΣ/ej*#i = Σr<λQ> and since these last groups are
direct sums of finite cyclic groups, we can get isomorphic refinements
by Kulikov's theorem. Hence our pairing in formulas (1) and (2)
above and this remark together prove the theorem.

We now construct the subgroups Cr, Dγ and their decompositions
to satisfy (1), (2), (3), and (4). We say the process is completed up
to k if

(a) for n ^ k (ordinal numbers) the finite sets In of indices are
chosen, and for n < k the sets Jn are chosen.

(b) for n < k the Dn and Cn decompose as above and the summ-
ands Di, Cl satisfy the statements (1), (2), (3) where they apply.

(c) Ck is chosen and C|, a summand such that Cl = JD|_X if k — 1
exists, and Cl — 0 if k is a limit ordinal.

(d) Σ.<* (Cl © Cl) 0 Cl and Σ.<, (Dl® Dl) are essentially linked.
Now let the induction hypothesis be that this has been done for

all k < 7, and do it for 7. If 7 is a limit ordinal the process is trivial.
Take Cγ to be any summand A{ not previously included in Ck(k <7),
and set C) = 0. Ir is the single chosen index i. (If no A< remain
then we are done, for no Bό can remain except possibly groups of
bounded order, since by the previous argument, if we let K be the
sum of the remaining summands BjΊ we have Σ&<r Dl 0 K = Σ&<r Cl>
a direct sum of finite cyclic groups, and by condition (iii), any element
of & which is a direct sum of cyclic groups is necessarily of bounded
order.)

If we are not at a limit ordinal, we change notation and assume
that the process has been carried out for 7 and do it for 7 + 1. We
are given Cr and C*. Let C* be a complement to Cf in Cr. Let Σ r Bj
be the sum of those summands B3 not in Dk for any k < 7.

We now apply condition (iii) of Theorem 1 to the subgroup C*
and its natural inclusion mapping into G, using the decomposition

k<γ k<γ

We obtain a decomposition C* = CJ 0 CJ, where CJ is of bounded
order, and also a finite subset Jr of J disjoint from all of the Jk,
k < 7, such that if Dr — Σ ej ^ then any nonzero element of C) has
a nonzero multiple in

Hence we have used remark (2.1) to eliminate summands of the form
D\j k < 7. We now apply Lemma 9, where A and A' (in the term-
inology of that lemma) are Σ*<r (Dl θ D\) and Σ^<r (C*L θ CJ) 0 Cr

2,
^ is D π and D is CJ. We obtain a summand Dr

L of Dγ which is



246 R. B. WARFIELD, JR.

isomorphic to Cj, and such that the subgroups

and Σ*<r (D\ 0 D\) 0 D\ are essentially linked.
We now apply the same process in the other direction, choosing

Jr+1, Cr+1, D2

r, D
3

T, Cγ+1 exactly as we choose Jr, Dγi Cr\ C?, and D\, re-
spectively. The proof is exactly the same, thus completing the induc-
tion and the proof of Theorem 1.

3* Proof of Theorem 2. Suppose we have

where the Mά are groups of the class <2f. We group these, as in the
proof of Theorem 1, defining summands Ni9 where each Ni is the sum
of a finite number of the Mό. The indices i of the Ni will form an initial
segment (i < λ) of the ordinal numbers and the Nt will be constructed
by transfinite induction, so that we will have M = Σ«<J Ni F ° r e a c h
i we will also construct summands Ait B{ of A and B respectively,
where A* and Bt are in the class £& and we will set d = A{ 0 B{.
By construction the C< will be independent, by which we mean that
the subgroup generated by them is their direct sum. We will de-
compose the Ni as follows

Λ7-. _ ATI Π\ ΛΓ2 Π\ ΛT3

where N* is of bounded order and Ni — 0 if i = 1 or i is a limit
ordinal. We then regroup and decompose again, so that we will have

where P? is of bounded order (the superscript 3 will always mean
this). Finally, the subgroups Σ%<χ Pi a n ( i Σ;<; Ci will be essentially
linked, so that by Lemma 5, Σi<χ C* is actually a summand of M.

Let us first show that when this construction has been carried
out we will have proved the theorem. By Lemma 6 the summands
Σi<j Pi a n ( i ΣΪ<A Ci interchange and we have

where the second term is a direct sum of finite cyclic groups. Now
Σi<λ Ci = Σή<χ A* 0 Σί<A Bi9 and since Σ ί < λ C< is a summand of M, so
are Σί<* ^ a n ( i Σί<; #•• Hence Σi<^ ̂  a n ( i Σi<^ -B» a r e summands
of A and I? respectively, and we have A = Σ i < M ί 0 ^ Λ J5 = Σ ΐ < ^ i 0 ^ * >
and i * φ ΰ * = Σ ^ (PI 0 -W) (since both are complements to Σ;<;t C<)
and since this is a direct sum of cyclic groups, so are A* and 5* by
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Kulikov's theorem. Any cyclic summand of M is in 3f (by hypothesis

(1) of Theorem 1) since it is actually contained in (and therefore a

summand of) the sum of a finite number of the original summands

Mj. Hence A — A* 0 Σ;<;t A% * s a direct sum of groups in the class

^ , which is what we wanted to prove.

To complete the proof, we must carry out the construction of

the subgroups Ni9 C< and P{ in the way outlined above. We say the

construction has been carried out for k if for i :g k, N{ is chosen and

for i < k, Ciy Ai9 and B{ are chosen (all belonging to the class £&),

where At and B{ are summands of A and B respectively, C* = A{ 0 Bi9

and all these are chosen so t h a t

(a) Ni = Nl®Ni(B N!(ί < k) with N! of bounded order and

N = 0 if i = 1 or a limit ordinal,

(b) Nk has a summand N£ which is zero if k is 1 or a limit

ordinal.

(c) For i < k, Ni 0 JV?+1 = Pi® Pi where PI is of bounded order.

(d) The d are independent and Σ*<£ C* is a pure subgroup of

M.

( e ) Σi<ifc ^ and Σ;<fc ^ a n ( ϊ essentially linked, so that , in par-

ticular, Σi</C Ci is a summand of M by Lemma 5.

We now suppose t h a t this has been done for all k < y and do it

for 7. Suppose first t h a t y is 1 or y is a limit ordinal. We let ΛΓr

be one of the remaining Mά (if any remain) and set N* — 0 (as we

must) . Note t h a t this choice guarantees t h a t the process eventually

terminates with the choice of all of the Mά. Conditions (a) and (c)

are trivially verified, having already been assumed for i < T, and (b)

is immediate from our definition of N*. For (d), it is clear t h a t the

Ci (ί < y) certainly are independent and their direct sum is a pure

subgroup, since it is an ascending union of pure subgroups. For (e),

we note t h a t Σ;<r Ci and Σi<r P% a r e essentially linked, and since

Σi<r P% is a summand, we can apply Lemma 5 to show t h a t Σ « r Ci

is also a summand. This completes the induction in this case.

Suppose, then, we are not a t a limit ordinal. For convenience

we assume t h a t the construction has been carried out for y and do

it for y + 1. Say Nr = N? 0 Nf, and let the projections to A and

B respectively be ΘA and ΘB. We can decompose M in three ways.

( Λ \ Ά/T — V C (Xλ A * CX\ 7?*
\ •*• / -LV-L — f i v-'i \£s -fl γ Kjp J-^γ

where A? is a complement in A of ^Σn<rAif and J5* is a complement

in B of Σί<r Bi.

( 2 ) M = Σ Pi 0 #
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where ^/M3 denotes the sum of those Ms not chosen to be in Nt

for any i, i^y. Since Σ;<r Ct and Σ*<r Pi are essentially linked we
also have

(3) ilf = Σ £<©#;© Σ ( Ή 0 Ή 8 ) © Σ r AT*.
i<r i<r

We now apply condition (iii) of Theorem 1 to the group N* and
the two homomorphisms ΘA and ΘB (applying the condition twice),
using the decomposition (3) above. We obtain a decomposition

N* = Nl © N?

where N? is of bounded order, and there are a finite number of the
summands Md not included in any Nt for i ^ 7, such that if Lr+1 is
the sum of this finite number of subgroups, then any nonzero element
of Nγ has a nonzero multiple whose images under ΘA and ΘB are both
in

Hence we have used remark (2.1) in order to eliminate summands of
the form Pi or Ni.

Now let π be the natural projection of M onto A* φ Bf from
decomposition (1). We have immediately

(4) ΣCi@N?@Lΐ+1 = Σ Ci0τr(iSΓ* 0 L γ + 1 ) .
i<r i<r

We let K = Σi<r Ci 0 JVr* 0 L7+ί. Note also that

(5) Jfn(A?ΘS?)

Now π(iVr* 0 Lr+1) is isomorphic to iVr* 0 Lΐ+1 and is therefore in
(since summands and finite direct sums of elements of Z& are in
and therefore has the finite exchange property, so that

A* 0 B* = π(N* 0 Lΐ+1) 0 A** 0 S**

where A r **gA*,5**£B*. We have natural decompositions

A* = A** 0 Df, B* = S** 0 D?

where the groups D^, Df can be identified as follows:

D? = Af n (π(N* 0 Lr+1) 0 β**)

D? - 5? n (π(iV* 0 Lr+1) 0 A**)

Note that the above formulas and statement (5) imply that
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(6) Kn A*SDf, and Kn B?SD? .

We let Dr = Df φ Df, and we claim that any nonzero element of
Nγ has a nonzero multiple in Σ*<r C* Θ A By the original definition
of N}f if a? e JV? and x Φ 0, then # has a nonzero multiple nx such
that if w# = y + z, with y e A and z 6 B, then 2/ and z are in if. We
will show that y is in Σ ί < r C* φ Z)r, and the proof for z will be the
same. We have y = α2 + α2, where αx e Σ*<r A+ and α2 e A* Since
<h e Σ « r Ci> it will be enough to show that α2 e D r. Since y and αx

are both in K, so is α2, so α 2 e 4 r n ϋΓ, and thus is in Dr by formula
(6).

We have now shown that any nonzero element of JVJ has a non-
zero multiple in Σ ί < λ C; φ Dγ. We apply Lemma 9 to obtain a summ-
and D\ of i?r such that the subgroups Σ ί < r P^ φ Nj and Σi<r Ci Φ Dι

r

are essentially linked.
Let Dγ be a complement to Ό) in Z)r. As usual, we cannot

handle all of D*, so we apply condition (iii) of Theorem 1 again, with
respect to the decomposition

where we use the notation Σ r ' Ms to denote the sum of those Ms not
chosen to be in Nt for any i ^ 7 or in Lr+1. We obtain a decomposi-
tion Z?*.= ΰ2

r φ D3

r, where Z)J is of bounded order, and there are a
finite number of summands Mά from the term Σ r ilf̂  such that if we
let Nΐ+1 be the sum of Lr+1 and this additional set of summands, then
any nonzero element of D* has a nonzero multiple in

Applying Lemma 9 again, (where this time the subgroups correspond-
ing to the A and A' of that lemma are Σί<r Pi Φ ty and Σ ί < r d φ DJ
respectively), we obtain a summand iVr

2

+1 of Nγ+1 such that the sub-
groups Σ w C β B D r θ D? and Σ ^ r ^ Φ ^ r Φ ^ w are essentially linked.

Unfortunately, D^ φ Z>? cannot be the Cr we need for our induc-
tion since it is not necessarily the sum of its A and B components.
We return then to Dr, and compare decompositions. We have

Dγ = Di@Df - Ό) φ Ό) φ Ό),

where nΌz

r = 0 for some positive integer n. Applying Lemma 8 (using
this integer n) we obtain decompositions

where A) and B) are of bounded order and every nonzero element of
Ay and Bγ has a nonzero multiple in Ό) φ Z^. Let



r

2

+1
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γ — ^\.y \X) £>γ

Let σ be the projection onto N} 0 iV2

+1 from the decomposition

M = Σ Pi e w e Nhd Θ Σ ^ Θ Ni) e ivr

3 © N?+1 © Σ r+1 ̂  ,

where JV*+1 is a complement to iV2

+1 in Nτ+1. Since Σ ί < r C; and Σ ί < r

are essentially linked, and Σ <r <?•• θ A1 θ D*r a n d Σ*<r -P. θ W 0 ΛΓ
are also essentially linked, we know that σ takes Ό) 0 D) isomorphic-
ally onto N\ 0 iVr

2

+1. Let Pr = σ(Cr) and Pr

3 = σ(Ar

3 0 £3) We then
have

where Pr

3 is of bounded order. We now apply Lemma 9 once more,
where the A, A', and D of that lemma correspond to Σ ί < r P;, Σ ί < r Cif

and Cr respectively, and we see that the subgroups χ ί < r P< 0 P r and

are essentially linked. It is also clear that Cr is in Sf since it is
isomorphic to P r and Pγ is a summand of i\Γr 0 Nr+1, which in turn
is a direct sum of a finite number of groups in the class !3f. We
therefore have completed our induction and the proof of Theorem 2.

4* Complete Abelian groups* For any Abelian group A there
is a natural homomorphism

A —+ lim A/nA

where the limit is taken over the nonzero integers n ordered by di-
visibility. The inverse limit is denoted A and it is the Hausdorff
completion of A with respect to the uniform structure defined by
taking as neighborhoods of zero the subgroups nA (n Φ 0). The map-
ping A —* A is injective if and only if A is Hausdorff. We remark that
the homomorphism A—>Ά induces an isomorphism A/nA —• A/nA, so
that the image of A is a pure subgroup of A and the Z-topology on
A agrees with the topology induced (by the completion process) from
the Z-topology of A. The group A is complete and Hausdorff if and
only if A = A.

Note that a subgroup B of A is pure if and only if for all integers
n, n Φ 0, the natural homomorphism B/nB —> A/nA is injective. B
is dense in A (with respect to the Z-topology) if and only if for all
nonzero integers n, the natural homomorphism B/nB ~+A/nA is
surjective.



AN ISOMORPHIC REFINEMENT THEOREM FOR ABELIAN GROUPS 251

LEMMA 10. If B is a pure dense subgroup of a group A and f
is a homomorphism from B into a complete Hausdorff group C then
f extends in one and only one way to a homomorphism from A to
C.

This follows from standard inverse limit or topological arguments.
(From the topological point of view, one needs to observe that any
homomorphism between two groups is continuous in the Z-topology
and that the ^-topology on a pure subgroup B agrees with the topology
induced from the Z-topology on A.)

If A is any group, we let A1 be the subgroup of A consisting
of those elements divisible by all integers n. The proof of the follow-
ing lemma is an elementary computation.

LEMMA 11. // B is a subgroup of a group A, then the closure
of B is the inverse image in A of (A/B)1. In particular, B is closed
if and only if A/B is Hausdorff, and B is dense in A if and only
if A/B is divisible.

For any prime p, we denote by Zp the ring of rational numbers
which can be written as fractions with denominators prime to p9 and
for any group A, we let Ap = A ® Zp, regarded as a Zp-modvle. Ap

is the localization of A at the prime p. If Ap is the submodule of
Ap consisting of all elements divisible by all powers of p then we
define the Hausdorff localization, Ap of A by A$ = Ap/Ap. We have
natural homomorphisms φp: A —> Ap, and hence a natural homomorphism

If A is Hausdorff, this imbeds A as a pure, dense subgroup of Π?> ̂ *
This proves the following lemma.

LEMMA 12. If C is a complete Hausdorff group then the natural
homomorphism C —> JJP C* is an isomorphism.

To exploit this lemma, we need some results about modules over
the rings Zp. The results are actually valid for modules over any
discrete valuation ring. A subset X of a ^-module is a pure inde-
pendent subset if the elements are independent and the submodule [X]
generated by X is a pure submodule. A submodule B of M is a
basic submodule if it is pure, dense, and a direct sum of cyclic modules.
By [9, Lemma 21] any maximal pure independent subset generates a
basic submodule, and it is trivial to verify that if X is a pure inde-
pendent subset then X is maximal if and only if [X] is dense (or
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equivalently, M/[X] is divisible). The next lemma is a refinement
of [9, Th. 23].

LEMMA 13. If M is a Zp-module and C a pure submodule which
is complete and Hausdorff, X a maximal pure independent subset of
C, and Y a set disjoint from X such that X U Y is a maximal pure
independent subset of M, then M — C 0 ΰ , where D is the closure of
the submodule generated by Y.

Proof. Define a function / on the set X U Y by f(x) = x if x e X
and f(y) = 0 if y e Y. This extends to a homomorphism of the basic
submodule generated by I U Γ, which can be regarded as a homo-
morphism of [X U Y] into C. By Lemma 10, this extends to a homo-
morphism of M into C, which we also call /. Since / is the identity
on [X] and [X] is dense in C, / is a projection onto C. If D is the
kernel of the projection then D is closed since C is Hausdorff. To
show that D is the closure of Y, we remark that M/[X U Y] is di-
visible and M/[XΌ Y] ~ C/[I]0 i)/[7] , so D/[Y] is divisible, which
implies that Y is dense in D by Lemma 11.

LEMMA 14. If M is a Zp-module with torsion submodule T, and
X is a subset of M, and Xo and Xγ are the subsets of X consisting
of the elements of finite and infinite order respectively, then X is a
maximal pure independent subset if and only if Xo is a maximal
pure independent subset of T and X1 is mapped bijectively onto a
basis of the Z/pZ-vector space M/(T + pM).

Proof. Let X be a maximal pure independent subset of M and
let C = [XJ. Then the natural homomorphism C/pC-*M/(T + pM)
is an isomorphism by the proof of Lemma 21 of [9], and certainly
Xo is a maximal pure independent subset of T, which proves half of
the lemma. Conversely, if the condition above is satisfied, and
σ: M-+M/T is the natural map, then σ takes Xx bijectively onto a
maximal pure independent subset of M/Y by [13, Lemma 3]. The
submodule B generated by σ(X^) is therefore free, so

It follows immediately that X is an independent set. Also, since B
is pure in M/Tf σ~\B) is pure in M, and since [Xo] is a pure submodule
of the summand T, [X] is a pure submodule of M. Finally, M/[X]
is clearly divisible, since T/[XQ] and M/(T + [XJ) are both divisible.

LEMMA 15. Let M be a Zp-module, Y a maximal pure independ-
ent subset of M, and X a pure independent subset of M. Then there
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is a subset Z of Y, disjoint from X, such that X U Z is a maximal
pure independent subset of M.

Proof. This result was proved for p-groups in [4, Lemma 10.12].
We therefore know that if XQ and Xt are the sets of elements of
finite order and infinite order respectively in X and Y"o and Yx are
the corresponding subsets of Y, then there is a subset Zo of Fo, dis-
joint from XQ, such that XQ U Yo is a maximal pure independent subset
of the torsion submodule T of M. If φ is the natural map of M onto
M/(T + pM), (where T is the maximal torsion submodule of M), then
φ takes Y1 bi jectively onto a iΓ/pϋΓ-basis for M/(T + pM), and Xt

bi jectively onto an independent subset of M/(T + pM). There is there-
fore a subset Zx of Γi, disjoint from X19 such that φ takes Xx U Zλ

bi jectively onto a basis for M/(T' + pM). This proves the lemma,
setting Z = Zo U Zx.

THEOREM 3. A complete Hausdorff group has the exchange pro-
perty.

Proof. Let A be a group and C a complete Hausdorff summand
of A, and say A = Σiei A We will show that there are subgroups
A S A with

We first prove the theorem in the local, Hausdorff case. Suppose
that A, C, and the Di are all ^-modules. Suppose in addition that
A is Hausdorff. Let X be a maximal pure independent subset of C
and Yt a maximal pure independent subset of D^ By Lemma 15, we
can extend X to a maximal pure independent subset of A by adding
elements from the sets Y{. Let the added sets be F/ £ Yi9 and let
Z be the union of the sets Y (so that X U Z is a maximal pure in-
dependent subset of A). By Lemma 14, if £7 is the closure of the
subgroup generated by Z, then A = C © E. We let ^ = E Π A>
and we claim that £7= Σ i e z ^ Since A is Hausdorff, A is closed,
so Ei is also closed. Since the Ei are in different summands, Σ ί e / ^
is closed, and it contains Z, so E = Σiei-^i a s desired. Hence, A =
C φ Σ e/-&.•> proving the exchange theorem in this case.

We now prove the theorem in general. If A = Σiei A then A* =
Σiei(A)? a^d C* is a Hausdorff complete summand of A*. By the
previous case, there are submodules E^p) £ (A)J such that

A* = C * © Σ #<(*>).Σ
This means that there is a projection gP: A* —> C* such that
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( 1 ) Ker (gv) = Σ ker (gp) f] (D,)* .
iεl

What we need to prove is that there is a projection /: A —> C such
that

(2) Ker (/) - Σ Ker (/) n A .
iel

The definition is now clear. Let

g. TίAϊ->ΐi c*
P V

be the homomorphism induced by the mappings gp:A*^>Cp, let φ be
the natural homomorphism

P

with coordinate mappings φp, and let

σ:*Π.C*-+C

be the inverse of the isomorphism of Lemma 15. Let / = σgφ. To
prove that (2) holds, we need only check that if x e A and x — Σ χί
in the decomposition Σ t e / A then if f(x) = 0, we also have /(#*) — 0.
If f(x) = 0, then gPC& ΦP(x%)) = 0 for each prime p. By (1), this im-
plies that gp(φp(Xi)) = 0 for each prime p, which shows that f(x{) = 0
as desired. This proves that (2) holds, and if we define

Ei = Ker (/) Π A >

then we have

A = C®Σ}Ei.

This completes the proof of Theorem 3.

COROLLARY. A complete Hausdorff group is in the class ^.

Proof. Condition (1) is immediate and condition (ii) is contained
in Theorem 3. For condition (iii), we suppose that C is a complete
Hausdorff group and /: C —> M a homomorphism of C into a Hausdorff
group M which is a direct sum, M = Σ ί e i - ^ We first remark that
it will suffice to show that there is a finite subset JQl, such that
for some nonzero integer n, f(nC)Q^ieJMt. For in this case we
apply Lemma 8 to obtain a decomposition C = Cx 0 C2, where nCλ = 0
and any nonzero element of C2 has a nonzero multiple in nC2 , whose
image under / is therefore in Σ ί e i ^

We assume first that the decomposition of M is countable, M =
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ΣΓ=i M^ The subgroups / ^ ( Σ ^ i Mi) are closed subgroups of C whose
union is all of C, so by the Baire category theorem, for some integer
m> /"HΣί^i M^ contains a neighborhood of 0, namely nC, for some
nonzero integer n.

If the result were false in the general case (with an arbitrarily
large index set I) and if the mapping / and the group M in fact
provided a counterexample, then we could find a sequence of integers
Ujij = 1, 2, •••)> a sequence of elements x5 of C, and a sequence of
distinct summands of the original family, which we simply write Nί9

such that Xj is divisible by % and f(xj) has a nonzero coordinate in
Nj. If we let No be the direct sum of all of the summands Mi not
in our chosen list, then we have a decomposition M = Σ7=o ̂  which
provides another counterexample, this time with a countable number
of summands. Since this has been shown to be impossible, the coroll-
ary is proved.
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