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FRATTINI SUBALGEBRAS OF A CLASS OF
SOLVABLE LIE ALGEBRAS

ERNEST L. STITZINGER

In this paper the Lie algebra analogues to groups with
property E of Bechtell are investigated. Let X be the class
of solvable Lie algebras with the following property: if H is
a subalgebra of L, then ¢(H) < ¢(L) where ¢(L) denotes the
Frattini subalgebra of L; that is, ¢(L) is the intersection of
all maximal subalgebras of L, Groups with the analogous
property are called E-groups by Bechtell. The class X is
shown to contain all solvable Lie algebras whose derived
algebra is nilpotent, Necessary conditions are found such that
an ideal N of LeX be the Frattini subalgebra of L. Only
solvable Lie algebras of finite dimension are considered here.

The following notation will be used. We let N(L) be the nil
radical of L and S(L) be the socle of L; that is, S(L) is the union
of all minimal ideals of L. If A and B are subalgebras of L, let
Zz(A) be the centralizer of A in B. The center of A will be denoted
by Z(A). If [B, A] < A, we let Ad,(B) = {adb restricted to A; for
all be B}. L’ will be the derived algebra of L and L” = (LY.

PROPOSITION 1. Let L be a Lie algebra such that L' is nilpotent.
Then the following are equivalent:

(1) ¢(L) =0.

(2) N(L) = S(L) and N(L) is complemented by a subalgebra.

(3) L' is abelian, is a semi-simple L-module and is comple-
mented by a subalgebra.

Under these conditions, Cartan subalgebras of L are exactly those
subalgebras complementary to L'.

Proof. Assume (1) holds. Nilpotency of L' implies ¢(L) =2 L”,
so L’ is abelian and may be regarded as an L/L’-module. We may
assume L' = > P V,, V, indecomposable L/L'-submodules. If M is a
maximal subalgebra of L and if V, £ M, then MNV, is an ideal of
L. If Sisan L/L'-submodule of V, properly contained between M NV,
and V,, then M + S is a subalgebra of L properly contained between
M and L, contradicting the maximality of M. Therefore M contains
all maximal submodules of V, for each p. Then ¢(L) = 0 implies the
intersection of all maximal submodules of V, is zero for each p. If
Vy +++, V, are maximal submodules of V, with V,n---NV, =0 and
are minimal with respect to this property, we have V = V,n---V,#0
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and VNV, =0 so that V& V, = V,, contradicting indecomposability.
Therefore each V, is irreducible and L’ is a completely reducible L/L’-
module and is also a completely reducible L-module. Since L is solva-
ble it contains Cartan subalgebras by Theorem 3 of [1]. Let H be
a Cartan subalgebra of L and let L, and L, be the Fitting null and
one component of L with respect to H. Then L =L, + L, = H+ L, &
H + L’ shows L = H+ L’. Weclaim that HNL' = 0. If HNL' # 0,
then, since L’ is abelian, H is nilpotent and L’ is a completely re-
ducible L-module, L' is a sum of irreducible H-modules, U,, ..., U,,
such that for each U;[---[U,, H]---H]=0 for some k, hence [U;, H]=0.

k
Thus [H, L' H] = 0. One sees that each U; is a central minimal
ideal of L, and since ¢(L) = 0, U; is complemented by a maximal sub-
algebra M. Therefore U; is a one-dimensional direct summand of L,
contradicting U, & L'. Hence L’NH =0 and H is a complement to
L' in L. Since [H, Hl S HNL' = 0, H is abelian. Any minimal ideal
not in L' satisfies [L, A] & ANL' = 0, so is central. Therefore S(L) =
L' + Z(L) and, since H is a Cartan subalgebra, Z(L) = H. Let H,
be a complementary subspace to Z(L) in H. One sees that N(L) =
L'+ Z(L) + (N(L)n H,) = S(L) + (N(L)n H,). If h is a nonzero ele-
ment in N(L)NH, ad h is nilpotent but not zero which implies

k

[Vo B] = V, for some V, & L’ and [---[V,,,h’_]-m] = 0 for some k, a
contradiction. Thus S(L) = N(L) and H, is a complement. Conse-
quently (1) implies (2).

Agsume (2) holds and proceed by induction on the dimension of
L. Since L' & N(L) = S(L) and minimal ideals are abelian, L’ is
abelian. If every minimal ideal of L is contained in L', then S(L) = L'
and (3) follows. Therefore let A be a minimal ideal of L such that
AZL'. Hence A<Z ¢(L) and there exists a maximal subalgebra M
of L such that L = M + A. Since [L, A]S ANnL' =0, A is central,
hence one-dimensional. It follows that L is the Lie algebra direct
sum of M and A. Since M inherits the condition (2), M satisfies (3)
by induction. It now follows that L also satisfies (3).

Assume (8) holds. Then L’ is a sum of minimal ideals of L, which
we denote by 4,, ++-, A, and L = L' + H, H a subalgebra of L. Since
H'S HNL' =0, H is abelian. One sees that L’ = [L/, H] and, con-
sequently, A; = [A;, H] for all 7. Since Z,,(H) is central in L, Z, ,(H)
is an ideal in L contained in A;. Since Z,(H) # A;, Z,,(H) =0. It
follows that H is its own normalizer, hence is a Cartan subalgebra
of L. Now H+ A, + ++- + A; + --- + A, is a maximal subalgebra
of L since any containing algebra has a nonzero projection on A; which
is ad H stable, hence equal to A;. Therefore ¢(L) S H and ¢(L) =
HNL' =0. Hence (1) holds.
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That complements to L’ are Cartan subalgebras is shown in (3)
implies (1). That Cartan subalgebras are complements to L’ is shown
in (1) implies (2). This completes the proof of Proposition 1.

THEOREM 1. Let L be a Lie algebra such that L' is milpotent
and ¢(L) = 0. Then, for any subalgebra M of L, ¢(M) = 0.

Proof. Suppose L'’ & M. Let H be a complement to L’ in L, so
HNM is a complement to L' in M. Since L acts completely reducibly
on L' and L’ is abelian, H acts completely reducibly on L’. Then,
since H is abelian, HNM acts completely reducibly on L', hence so
does M. Therefore L' = M'@ A for some ideal A in M where M
acts completely reducibly on M’ and A + (HN M) is a complementary
subalgebra of M’ in M. Thus by Proposition 1, ¢(M) = 0.

Suppose L' & M. Since M + L’ falls in the preceeding case, we
may assume M + L' = L. Since L’ is abelian, L’ M is an ideal in
L, M/(L' N M) complements L'/(L'NM) = (L/L’NM)" in L/(L'NM) and
M/(L' " M) acts completely reducibly in L'/(L'NM), M/(L'"M) is a
Cartan subalgebra of L/(L'NM). Let C be a Cartan subalgebra of
M. By Lemma 4 of [1], C is a Cartan subalgebra of L. Thus C is
a complement to L' and C + (L'NM) = M since C & M. Hence C is
a complement to L'NM in M. Since M acts completely reducibly on
L'NM and M' < L'V M, M acts completely reducibly on M', L' "M =
M P L' NZ(M)) and, since Z(M) = C, ZM)NL' = CNL = 0. There-
fore C = M’ = M and CNM' = 0. Now M satisfies part (3) of Proposi-
tion 1, hence ¢(M) = 0.

If L is a solvable Lie algebra it has been shown in [2] that #(L)
is an ideal of L. We look for a condition on the subalgebras of L/¢(L)
which are necessary and sufficient that LeX. In order to do this
the following concept is introduced.

We shall say that a Lie algebra L is the reduced partial sum of an
ideal A and a subalgebra B if L = A + B and for any subalgebra C
of L such that L = A + C and C & B then C = B. It is noted that
if A & ¢(L), then there exists a B =+ L such that L is the reduced
partial sum of A and B. On the other hand, if A S ¢(L) and L is
the reduced partial sum of A and B, then B = L.

LeEMMA 1. Let L be the reduced partial sum of A and B. Then
ANB < ¢(B).

Proof. Suppose C = ANB & ¢(B). Then B contains a subalgebra
D such that C+ D=B. Then L=A+B=A+C+ D=A+ D.
This contradicts the minimality of B.
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LEMMA 2. Let L be the reduced partial sum of A and B. Then
#(L/A) = A + ¢(B)/A.

Proof. Since ANBE ¢(B), AN¢(B) = ANB. Since L/A~A +
B/A =~ B/AN B, ¢(L/A) = ¢(B/AN B) = ¢(B))/AN B = ¢(B)/A N ¢(B) =
A + ¢(B)/A.

PROPOSITION 2. The following are equivalent for the Lie algebra

(1) LeX.
(2) For any subalgebra H of L/¢(L), ¢(H) = 0.

Proof. Let L satisfy (1) and let z: L — L/¢(L) be the natural
homomorphism. Then ¢(n(L)) = n(¢(L)) = 0. Let W be a subalgebra.
of L/¢(L) and let W be the subalgebra of L which contains ¢(L) and
corresponds to W. Since L satisfies (1), (W) S ¢(L). If (W) = ¢(L),
then ¢(x(W)) = w(¢(W)) = n(¢(L)) = 0. Suppose then that ¢(W)Zo(L)..
Then W can be represented as a reduced partial sum W = ¢(L) + K.
Let T be a subalgebra of W such that T/¢(L) ~ ¢(W/s(L)). If T/¢(L) =+ 0,
then T = TN(¢(L) + K) = (Tne¢(L)) + (TNK) = ¢(L) + (TN K). Con-
sequently there exists an x € TN K, x ¢ ¢(L). Since ¢(K) S (L), x ¢ ¢(K)
and there exists a maximum subalgebra S of K such that x¢S. We
claim that either ¢(L) + S = W or ¢(L) + S is maximal in W. Suppose
#(L) + S == W and let J be a subalgebra of W which contains ¢(L) + S.
Then S = JNK, so, by the maximality of S, either JNK = S or
JNK =K. If JNK = S, then ¢(L) + S = ¢(L) + (JNK) = JN($(L) +
Ky=JdJnW=J. If JNK =K, thenJ 2 K and, since J 2 ¢(L), J 2
#(L) + K = W, hence J = W. Consequently there exist no subalgebras
of W properly contained between ¢(L) + S and W, hence either ¢(L) +
S = Wor ¢(L) + S is maximal in W. If ¢(L) + S = W, then ¢(L) + K
is not a reduced partial sum which is a contradiction. If ¢(L) + S
is maximal in W, then ¢(L) + S/¢(L) 2 ¢(W/s(L)) =~ T/¢(L). Hence
T<¢(L)+S. Since SS¢(L) +Sandeec TNKc TS ¢(L) + S, K =
{S, 2} S (L) + S. Then W = ¢(L) + K S ¢(L) + S W implies ¢(L) +
K is not a reduced partial sum, a contradiction. Hence ¢(W) =
T/¢(L) = 0 and (2) is satisfied.

If L/g(L) satisfies (2), then 7(3(H)) & ¢(x(H)) = 0 for every sub-
algebra H of L. Then ¢(H) S ¢(L) for every subalgebra H of L.

Combining Proposition 2 and Theorem 1 we have

THEOREM 2. Let L be a Lie algebra such that L' is wmilpotent.
Then LeX.

THEOREM 3. Let LeX and let T be a Lie homomorphism of L.
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Then T(3(L)) = ¢(T(L)).

Proof. T(¢(L)) is always contained in ¢(7T(L)) by Proposition 1
in [6]. If N = kernel T < ¢(L), then equality holds by Proposition 2
in [6]. Suppose N & ¢(L). Let L = N + K be a reduced partial sum.
Using Lemma 2, ¢(T(L)) = ¢(L/N) =~ N + ¢(K)/N = T(#(K)). Since
T(N + ¢(L)) = T(¢(L)S¢(T(L)) = ¢(L/N) = T(N + ¢(K)), N + ¢(L)&
N+ ¢(K) = N + ¢(L). Hence N + ¢(L) = N + ¢(K) and ¢(T(L)) =
T(3(K)) = T(s(L)).

THEOREM 4. Let LeX. Necessary conditions that an tdeal N
of L be the Frattint subalgebra of L are that

(1) ¢(Ady (L)) = Ady (¢(L))-

(2) There exists a subalgebra M of L such that M/N =~
Ady (L)/Ady ($(L)).

Proof. (1) Let T be the mapping from L into the derivation
algebra of N by T(x) = adx restricted to N for all xe L. Then
T(p(L)) = Ady (¢(L)) = ¢(T(L)) = ¢(Ady (L)).

(2) Let M = Z,(¢(L)). Suppose that M < ¢(L) and let F' = L/¢(L)
and A = (M + ¢(L))/¢(L). Since Adyy, (L) = L/M and Ad,, (¢(L)) =
#(L)[Z($(L)) = ¢(L)/ M N ¢(L) = (M + ¢(L))/M, F|A=(L/¢(L))/(M + ¢(L)/
$(L)) = L{(M + ¢(L)) = (L/M)/(M + ¢(L))/M) = Ady, (L)/Ad, (6(L)).
Since ¢(F') = 0, there exists a subalgebra D in F' such that F' is the
reduced partial sum of A4 and D. Using Proposition 2 and Lemma 1,
AND Z ¢(D) =0, hence AND =0. Let E be the subalgebra of L
which contains ¢(L) and corresponds to D. Then E/¢(L) =~ D =~ F/A =
Ady iy (L)/Adsy (#(L)).  If M < ¢(L), then Ad,y, (L)/Adyy, (8(L)) =
(L/M)/((L)/ Z(¢(L))) = (L/M)/($(L)/ M N ¢(L)) = (L/M)/(¢(L)/ M) = L/$(L).

Related to part (1) of Theorem 4 are the following results.

THEOREM 5. Let LeX and let K be an ideal of L containing
&(L). Then ¢(Adg (L)) =~ Adx (K) if and only iof K = ¢(L) + Z(K).

Proof. Let T be the Lie homomorphism from L into the deriva-
tion algebra of K given by T(x) = ad x restricted to K for each x ¢ L.
Then  ¢(Adg (L)) = ¢(T(L)) = T(¢(L)) = Adg ($(L)) = ¢(L)/Zsr)(K) =
d(L)(Z(K)N¢(L)) = (#(L) + Z(K))/Z(K). If ¢(L)+ Z(K) = K, then
Adx(K)~K/Z(K) = (¢(L) + Z(K))/Z(K)=¢(Adk (L)). If ¢(L) + Z(K)C
K, then Ady (K) = K/Z(K)D(¢(L) + Z(K))/Z(K) = ¢(Ad (L)).

THEOREM 6. Let Le¥% and let A be an ideal of L contained in
#(L). Then ¢(Ad, (L)) = Ad, (4A) +f and only if ¢(L) = A + Z,;,(4).
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Proof. If ¢(L) = A+ Z,1,(A), then Ad,(4) = Ad(4(L)) = T(4(L)) =
$(T(L)) = ¢(Ad4(L)). .

Conversely, Ad, (L) = L/Z,(4) and Z,(A) + A/Z,(A) ~ AJZ(4)
Ad, (A). Then L/Z,(A) + A = Ad,(L)/Ad,(A) and ¢(L/Z,(A) + A) =
¢(Ad, (L)/Ad, (4)) = ¢(Ad, (L))/Ad, (4) = 0. Hence ¢(L) S Z.(A) + A
and ¢(L) = Zyu\(4) + A.

Ul

The author wishes to thank the referee for many helpful com-
ments. In particular the present form of Proposition 1 and Theorem
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