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ON THE MEASURABILITY OF PERRON
INTEGRABLE FUNCTIONS

W. F. PrEFFER AND W. J. WILBUR

By means of majorants and minorants a Perron-like inte-
gral can be defined in an arbitrary topological space. Although
for its definition only a finitely additive set function is used,
it turns out that if the underlying topological space is Haus-
dorff and locally compact, then the integral itself gives rise
to a regular measure. The natural question, whether every
integrable function is measurable with respect to this measure,

is the subject of our paper.
In §2 some sufficient conditions for measurability of inte-

grable functions are given and the connection of our measure
with the original set function isdescribed, The results of this
section are then applied to integration with respect to the
natural and monotone convergences, The natural convergence,
which can be used in any topological space is discussed in § 3.
In § 4 some elementary properties of the monotone convergence
are derived. This convergence can be used in any locally
pseudo-metrizable space and it seems to be the most important
convergence for the definition of an integral over a differenti-
able manifold. A proof that for the monotone convergence
every integrable function is measurable is given in § 5, Finally,
§ 6 contains a few illustrative examples,

Throughout, P is a topological space which is always assumed to
be Hausdorff and locally compact. The reader can, however, easily
detect those parts of the paper which remain correct in an arbitrary
topological space P. By P~ = P U(~) we denote a one point com-
pactification of P. If A c P, A~ and A~ stand for closure of A in P
and P~, respectively. The interior of a set A — P is denoted by A°.
For « ¢ P~, I, is a local base at « in P~ (see [3], p. 50). We shall
always assume that U < P and U~ is compact for all Ue ", with
xzeP. If o is a pre-algebra of subsets of P (see [5], 1.1) such that
{UnP:Uel,} co for every x € P~, we call the pair i = {0, I',)> a
net structure in P.

If ocoand Ac P~ weletio, ={Bei:BC A). Asystemd Co
is said to be semihereditary if and only if 0, N 0 = @ for every finite
digjoint collection ¢, C 0 whose union belongs to §. A system 6 c o
is said to be stable if and only if @ ¢ d and for every A€o and every
x e P~ there is a Uer', such that 6, ,# Q.

A convergence” in a net structure {s, I,y is a function £ which

' 1 What we call a convergence is sometimes called a derivation basis (see [1], 1.1).
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to every x € P~ associates a family &, of nets {By, Ue ', C} C 0 where
I’ is a cofinal subset of I",. For 6 C 0 and xe P~ £,00) = {{By} ek,
{By} < 6} and 6* = {x e P~ :£,(0) + O}.

A convergence £ is called admissible if and only if the following
conditions are satisfied :

;. For every xeP~,{UN P, Uel, C}ek,.

. If xe P~ and {By, Uel', C} €k, then for every VeI, there
is a U, el such that B, — V for all Ue " for which U c U,.

s If xeP~, {By}yer€k,, and I is a cofinal subset of I", then
also {Bylyer € K,.

. If xe P~, {By}ek,, and Aeco, then also {B, N A} ek,.

%. If 6 C ¢ is a nonempty semihereditary system, then 6* is
nonempty.

. If 6 C o is a nonempty semihereditary stable system, then
0* is uncountable.

A triple I = <N, &, G) is called an integration base in P if and
only if N =<0, I'",> is a net structure in P, £ is an admissible con-
vergence in N, and G is a nonnegative finitely additive function® on
o such that G(4) < + « for every A co with A~ compact.

It was shown in [6] that integration bases exist in P and that
for each of them we can define a nonabsolutely convergent integral
I which is closely related to the Lebesgue integral. For the reader’s.
convenience we shall summarize the basic definitions.

Let xe P~, A c P, and let F' be a function on o,. We call the
number ,F(x, A) = inf {lim inf F(B,) : {B,} € £.(c,)} the lower limit of
F at 2 relative to A and the number ,F(x, A) = (F/G)(x, A)® the
lower derivate of F' at x relative to 4 and it is denoted by I(f, A).

Let Aco and let f be a function on A-. A superadditive func-
tion M on o, is said to be a magorant of f on A if and only if there
is a countable set Z,, < A~ such that ,(—G)(x, 4) = 0 for all xe Z,,
Mz, A) = 0 for all xeZ,, U (), and — o =* M(x, A) = f(x) for all
xe A~ — Z,. The number I,(f, A) = inf M(A) where the infimum is
taken over all majorants of f on A is called the upper integral of f
over A. If I(f, A) = —I,(—f, A) # + o this common value is called
the integral of f over A.

If Aeco and f is a function on A-, we denote by IN(f, A) the
family of all majorants of f on A. The family of all functions inte-
grable over A co is denoted by PB(A).

For A c P, y, denotes the characteristic function of A in P. By
€ and I we denote the families of all compact and open subsets of
P, respectively. Using the integral I, we shall define measure spaces

2 Unless specified otherwise, by a function we always mean an extended real-
valued funection.

3 We let a/0 = +o for a =0, a/0 = —o for a <0, and a/(F ) = 0.
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(P, Z, 7) and (P, &, 7,) as follows:

(i) < is the family of all sets A < P such that y,,, € B(P) for
every CeC@; and for Ae g, t(4) = L(x4 P).

(ii) For A cC P,

T(4) = inf{r(U): Uell and A c U}

and ¥, is the family of all r,-measurable subsets of P.

These measure spaces will play an essential part in our paper.
Some of their important properties can be found in [7], §’¢83 and 4;
e.g., there is a proof that they actually are measure spaces. We just
recall here that 1 ¢ £, ¢ £ and that the measure 7, is regular.

2. Measurability in general. In this section we shall prove a
few general theorems concerning the measurability of integrable func-
tions. Throughout we shall assume that there is given an integration
base § = <o, I',, £, G> in P.

PROPOSITION 2.1. If the lower derivate of every superadditive
Sfunction on ¢ is T -measurable, then T = I, and every function from
PB(P) s T -measurable.

Proof. Let AeZ with A~ e@. Then by [7], 2.7 there are narrow
majorants M, € M~ (y,, P) (see [7], 2.5) for which M,(P) — I(x. P) <
in, n=12 +--. IfB,={xeP: Mz, P)= 1} then by our assump-
tion B, €%, Letting B= A" N (N;.. B,), we have Be &, B~ c€, and
A C B. Because

T(B.) — ©(4) = M.(P) — I(xs P) < 1/n

for n =1, 2, --., it follows that 7(B — A) = 0. Now replacing A by
B — A and repeating the previous construction, we obtain a set Ce g,
for which C-e¢@,B — A c C, and

(C)=t(B—A) +(C—[B~ A]) =0.

By [7], 4.7 also 7,(C) = 0 and since 7, is a complete measure, A =
B — (B — A) belongs to Z,.

If AeZ is arbitrary, then (A N C)~ €€ for every Ce€. Thus
AN CeZ, for every Ce € and it follows from [7], 4.7 that A&,

The last part of the proposition is now a direct consequence of
{71, 4.3.

The previous proposition and Proposition 4.3 in [7] indicate the
importance of the following :

PROPOSITION 2.2. Let M be a function on o, where Aco, and
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let ¢ be a real number. If o,M,c)={Beo,: M(B)/G(B) < ¢}, then
No-0i(M, ¢ + 1/n) = {we A~ : M(x, A) < c}.

Proof. If ,M(x) <c¢ and n is a positive integer, then there is a
net {By}y.r€k,(c,) such that

lim inf [M(By)/G(By)] < ¢ + 1/n..

Hence there is a cofinal subset I of " such that {Byly.r C 0,(M, ¢ +
1/n). It follows from .2%; that x eo%(M, ¢ + 1/n). On the other hand
if xeoX(M, ¢ + 1/n) then it follows that M(x) <c+1/n,n=1,2, «--.

DEFINITION 2.3. An integration base & in P is said to be mea-
surable if and only if every function from P(P) is T,-measurable. It
is said to be strongly measurable if and only if 6* — (o) belongs to
I, for every 0 C 0.

It follows at once from 2.1 and 2.2 that every strongly measura-
ble integration base is measurable. On the other hand, Example 6.1
shows that a measurable integration base need not be strongly mea-
surable. From [7], 4.7 we see that if & is measurable, then € = ..

REMARK 2.4. Let ¢ be a real number and let Aeo. It is easy
to see that o,(M, ¢) is semihereditary whenever M is a superadditive
function on o,. Furthermore, it can be shown that if ,(—G)(x, 4A) =
0 for every x € A~, then o,(M, ¢) is semihereditrary and stable when-
ever M is a majorant for some function on A~ (see [6], (4.4)). How-
ever, Example 6.1 indicates that there is no link between the semi-
hereditariness or stability of 6 ¢ and the I,-measurability of 6* —

(o).
THEOREM 2.5. If Ce@, then
7/(C) = inf 3 G(A)

where the infimum is taken over all finite families {A)r, C o for
which C < (Ur, 4,)".

Proof. Let Cec@ and let A4,, ---, A, be sets from o for which
Cc(Ur A). If we set M(B) = >1..G(B N A, for Beo, then Me
M(xe, P) and so

@(0) = 7(C) = M(P) = 3, G(4).

On the other hand, given C e € and € > 0, there is a U el such that
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Cc U U €@, and 7,(U) < 7,(C) + ¢. Using [5], (1.1), we can find
disjoint sets B,, -+, B,, from ¢ for which

<x%QBJcchU.

If we set N(B)= — 3, GB N B;) for Beo, then NeI(—yxy, P)
and thus

7(C) + ¢ > t(U) = (U) = _I(”"XU: P)
g—Mmzémm.

Using the regularity of 7, (see [7], 4.7), we obtain the following :

COROLLARY 2.6. Let {o,I,, £, Gy and <Lo',I',, ¥',G) be two
integration bases in P. If o N o' is a pre-algebra which contains a
topological base of P and if G = G on o N o', then (T, 7)) = (T}, 70).

Proof. Suppose 7{(C) > 7,(C) for some Ce €. Then by [5], (1.1)
there is a disjoint finite family {4;} < ¢ such that C — (U 4,)° and
2.G(4;) < ’(C). Since C is compact, using again [5], (1.1), we can
find a disjoint finite family {B,;} € ¢ N ¢’ such that C ¢ U B! < UB; C
(U 4,)°. Hence

70) S B E(B) = S G(B)
= ;G(Ai N B) = ;G(A»z)

which is a contradiction. By symmetry 7,(C) = 74(C) for every C € €.
Now the corollary follows from [7], 4.7.

The previous corollary is the main reason why we are discussing
T ,-measurability rather than T-measurability.

Let 3 =<0, I, £,G) and I =<o’, I';, £', G") be two integration
bases in P. If o' C o, G’ is the restriction of G to ¢/, and for every
exeP~, "I, and £, C k,, we say that & is larger than & and
write & < & Obviously, the relation < is a partial ordering in the
family of all integration bases in P. Imitating the proof of Theorem
31 in [4], one can easily see that it J' < I then P(4)  P'(4) for
every Aeco’; here P(4) and P'(4) are the families associated with
and &', respectively. From this and Corollary 2.6 it follows that if
X is a measurable base in P so is I’ for every I’ > J.

The next difinition and proposition will be used in §5.

DEFINITION 2.7. An integration base & in P is said to be locally
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strongly measurable if and only if for every z e P there is an inte-
gration base I in P (generally depending on x) which satisfies the
following conditions :

(1) (T2 = (@ )

(ii) There is a neighborhood Ueo N ¢’ of 2 such that BU) <
P'(U) and 0* — (o) € Tf whenever ¢ C oy.

ProposITION 2.8. If & s locally strongly measurable then I is
measurable.

Proof. Let feP(P). We shall show that every point x € P has
a neighborhood V such that f restricted to V— is &,-measurable. It
will follow that f restricted to any compact subset of P is ¥ -mea-
surable and hence by [7], 4.7 also f itself is ¥,-measurable.

Choose xc¢ P and let ' and U have the same meaning as in
Definition 2.7. Then by [6], 6.8, f<%’ (U) and we can choose major-
ants M, e DV (f, U) such that M (U) —I(f, U)<1/m, n=1,2, «-..
By the definition of majorant (see [6], 3.2) with each M, there is
associated a certain countable set Z, < U-. For xcP let h,(x) =
« Mz, U)if e U~ — Zy, and h,(x) = + oo otherwise ; here, of course,
oM, (x, U) denotes the lower derivate computed in . By 2.2, the
h, are I,-measurable, and so is & = infh,. Set r(x) = h(x) — f(x) if
this difference has meaning and »(x) = 0 otherwise. Since z = f, r =0
and

0 < Ii(r, U) < inf Li(hay U) — I'(f, U)
= inf [M(U) - I'(f, U)] = 0

(see [6], 6.4). Now choose Vel such that V> U® and let », =
rYy-(we define (o) .0=0). Since 0 r, <, L(r, U) =0 and
r, e P (U). Exactly as before we can define a T,-measurable function
g = r, such that if we set s(x) = g(xr) — r, () whenever this difference
has meaning and s(x) = 0 otherwise, then I'(s, U) = 0. Letting g, =
9xXv— and s, = SYv—y W€ obtain I’(gu P) = I,(gu U) = I'(Su U) + I’('ru
U)=0;forg,=0o0n (P—U) and 0 <s, =<s. Since g, is nonnega-
tive, T;-measurable, and has a compact support it follows from [7]

4.2 and 4.7 that S 9.dt, = 0. Because 7, is a complete measure and
P

g, =r =0, also », is T,-measurable. Therefore f restricted to V—,
which is equal to % + 7, restricted to V-, is $,measurable too.

Let & be measurable or strongly measurable and let Aco be
different from P. Then, in general, we do not know whether the
functions from PB(A) are Z,-measurable over A-. This fact, e.g.,
caused the main difficulty in proving Proposition 2.8. The following
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proposition is a contribution to this problem.

PrOPOSITION 2.9. Let X be measurable, let o <%, and let
G(4A) = t,(A) for every Aeco for which A~ is compact. If Aco is
such that A N (P — A)~ is t,0-finite, then every function from P(A4)
18 E,-measurable.

Proof. If feP(A) let f(x) = f(x) for ke A~ and f(x) =0 for
xeP— A-. According to [7], 4.14, /" eP(P) and the proposition
follows.

3. Some remarks on the natural convergence. Let Nt = <o, I",>
be a net structure in P and let £ be a convergence in N. If for every
xe P, k, congists of all nets {B,} which satisfy the condition .°%;,
then « is called the natural convergence and it is denoted by &x°
According to [6], 4.3 the natural convergence £° is admissible.

Hence assume that there is given an integration base & = {0, I',,
&% G> where £° is the natural convergence. It is easy to see that
for 0 < o, 6* is closed in P~ (see [5], 2.1) and so & is strongly mea-
surable. In fact we have more precise information.

LeEMMA 3.1. Let Aco and let M be a function on o, If
«M(x, A) > —oco for all xe P, then the function ,M(-, A) is lower
semicontinuous.”

Proof. If ¢ is a real number, then

{xeP: Mx, A >¢c}=(P— A) U {xed:
M, Ay >c} =P —{xecd™: Mz, A < c}.

By 2.2, {xe A~ : M(x, A) < ¢} i8 closed in P~ and the lemma follows.
THEOREM 3.2. The measure T is regular.

Proof. Since we already know that 7 is inner regular on U and
finite on € (see [7], 3.13), it remains to show that = is outer regular
on ¥. Hence choose Ae¥ and €€ (0, 1). Since everything is trivial
if 7(4) = + o, we may assume that 7(4) < +<. By [7], 3.10, y.¢€
Po(P) and so there is a narrow majorant M e M(y,, P) such that
M(P) — 7(A) < ¢ (see [7], 2.5, 2.7). By Lemma 3.1, ,M(-, P) is lower
semicontinuous and hence the set U= {wxeP: M, P)>1—¢} is
open. Clearly A < U and M/(1 — ¢) is a majorant of y,. Therefore

9 See [3], Chapter 3, Problem F, p. 101.
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7(4) = 7(U) = M(P)/(1 — ¢) < [t(4) + €]/(1 — ¢)

and the outer regularity of ¢ at A follows from the arbitrariness of
€.

COROLLARY 3.3. (%, 7) = (%,, Ty).

Proof. By a rather standard procedure it follows from [7], 4.7
that the measure 7z, has no proper regular extension. Hence ¥ = %,
and because both = and 7, are regular, also 7 = z,.

4. The monotone convergence. Let N =<0, I",> be a given
net structure in P and let £ be a convergence in M. If for every
x € P~, k, consists of all nets {By, Uel', c}ek. such that B, c B,
whenever U C V, then £ is called the monotone convergence and it is
denoted by £'. The following proposition indicates the essential dif-
ference between £° and £

ProrosiTioN 4.1. If xe€ P~ and {By, Uel', C} ek, then either
€ Nuer By or there is a Vel such that By = @ for all Uel for
which U C V.

Proof. If ¢ Nyer By then ¢ By, for some U,el” and hence
there is a U,el’, such that U, N By, = @. To U, we can assign a
U,e I such that U el and U c U, implies B, — U,. On the other hand,
Uerl' and U c U, implies B, B, and thus V can be any element
of I" for which V c U, n U..

REMARK 4.2. Let P be the set of all real numbers with the
usual topology. Let & =<o,,, £, G> be an integration base in P
defined as follows: o is the pre-algebra generated by all one-side-open
intervals, for x e P~, ', C ¢ is an arbitrary local base at « in P~,
and G is the Lebesgue measure on ¢. Using the previous proposition,
we see rather easily that if £ = &' is the monotone convergence, then
X gives precisely the classical Perron integral (see [10], Chapter VI,
§8).

We also note that a singularization of a monotone convergence
is again a monotone convergence (see [8], §2).

PROPOSITION 4.3. Let N = (o, I",) be a net structure in P. If the
space P is locally metrizable, then the monotone convergence in N is
admissible.

Proof. Conditions .27 — %, are satisfied obviously. To show
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that also .%%; and 9% are satisfied we can repeat verbatim the proofs
of Proposition 3.1 and Theorem 3.2 in [5], respectively.

We note that in an arbitrary topological space the monotone con-
vergence still satisfies conditions 977 — .9#;; however, we do no know
whether it also satisfies conditions .%; and .%%. An example of a net
structure in a nonlocally metrizable space in which the monotone
convergence is still admissible will be given in 6.2.

We shall close this section with a proposition which will show
how conditions 2% — .24, are related to each other.

ProrosiTioON 4.4. Conditions 27, — 5% are independent and they
do mnot imply 9%. Conditions ¢ — %%, and 5% are independent
and they imply _2%.

Proof. Examples 6.3 and 6.4 show that 977 — .97, do not imply
%5 and that 277 — 24 do not imply %, respectively. The remaining
examples which are needed to prove the independence are quite simple
and their construction will be left to the reader. We shall complete
the proof by showing that .2¢7, .27,, and 2%, imply .°%.

Let M = <o, I',) be a net structure in P, let £ be a convergence in
N satisfying conditions .27, 7%, and %%, and let 6 C o be a nonempty
semi-hereditary system. If ¢ is stable, then by .o, 6* is uncountable
and so nonempty. Hence suppose that ¢ is not stable. Then either
@ €o* = P~ [see [6], (4.1)] or there is an A€o and an xe P~ such
that 6, , = @ for all Uel',. Choose Uel',. Since UN Aco, A=
(U n A)U(Uz, B, where B,, ---, B, are disjoint sets from o,_,. There-
fore B,, ---, B, do not belong to 6 and because § is semi-hereditary,
we conclude that AN Uecd. Now it follows from .9 and .%¢; that x € 6*
and thus again 6* is nonempty.

COROLLARY 4.5. Let N =<0, I',) be a net structure in P and
let 0 contain no nonempty semihereditary stable system. Then every
convergence in N which satisfies conditions 5] — 5%, 1s admissible.

The assumption of this corollary is always satisfied if P is count-
able. It is also satisfied if P is the set of all ordinals less than a
given ordinal « topologized by the order topology (see [5], 1.4).

COROLLARY 4.6. Let R be a net structure in P and let £ and
k' be two convergences in N satisfying conditions ¢, — . If k, =
K, for all but countably many x € P~, then k is admissible if and
only if k' is admissible.

Proof. Let S be the countable set of those ae P~ for which
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K,#K, Since 0* — S =0* — S for every 6 — g, it follows that &
satisfies condition .97 if and only if £’ does.

According to Proposition 4.4 condition .9%; is superfluous for the
admissibility of a convergence. Nevertheless, for a given convergence,
establishing _9; is usually the first step in establishing .97 (see [5]
and [9]). It should be also noted that a convergence which satisfies
only conditions .27 — .%; is still adequate for the definition of the
narrow integral (see [7], 2.5).

5. Measurability with respect to the monotone convergence.
Throughout this section we shall assume that the space P, in addition
to Hausdorff and locally compact, is also locally metrizable. We shall
assume that there is given an integration base & = (o, I, £', G> where
k' is the monotone convergence and we shall prove that & is measur-
able. We begin with a simple but useful remark.

REMARK 5.1. Let € P and let {By, Uel', C}ck.. Since P,
being locally metrizable, is first countable, I has a linearly ordered
countable cofinal subset I = {U,}. Hence there is a sequence {C,}¢€
£.({By}) such that C,., < C, for n =1, 2, -..; for it suffices to set
C, = By,. The sequence {C,} may consist only of a single element if
2 is an isolated point of P.

LEMMA 5.2. Let Aco and let 6 c 0,. If o, is countable then
0% — (c0) is Tmeasurable.

Proof. Since I',Co for all ¢ P, it follows from the countability of
o, that A is paracompact and hence metrizable by [2], Th. 2-28, p. 81.
Choose a metric on 4 and if B < A denote by d(B) the diameter of B
with respect to this metric. Because ¢ € ¢ implies 6* — (o) = P which
is ¥,-measurable, we shall agsume that @ ¢ . Let {B,}, be an enumera-
tion of the family {Bed:d(B) < 1}. If B,,..,, where = and k&, ---, k,
are positive integers, has been already defined we let {B,,...;,+}, be an
enumeration of the family {Beds..., : d(B) <1/(n + 1)}. Setting
By,..., = @ for those groups (k, --- k,) of positive integers for which
B,,...., was not previously defined, we obtain a determining system
{Br,....,} of Tr-measurable sets (see [10], Chapter II, §5). By [10],
Chapter II, Th. (6.5), p. 50, its uncleus

3

N= U B,

kykgees n=

is also ¥,-measurable. On the other hand, using 5.1 it is easy to see
that N = 0* — (o).
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COROLLARY 5.3. If o is countable then & is strongly measurable.

LEMMA 5.4. Let o be a pre-algebra of subsets of P, 6 C o, and
let Aco be such that {A N B:Bed} is countable. Then there is a
pre-algebra o’ C o contatning 0 and for which d', is countable.

Proof. Let d° consist of all finite intersections of elements from
0. For B, B'edy we let (B, B)={C, ---, C,} where C,, ---, C, are
disjoint sets from ¢ for which B— B’ = J%,C,. For B, B'cd we
let [B, Bl ={D, +++, D,} where D,, ---, D,, are disjoint sets from o
for which (B— B')— A=U~,D;. Set a= U {(B, B"):B, B €},
B=U{B,B]:B,Becdé},andé* =6 "UaUB. Then dcdco, Aec
o'yand {A N B:Bed'}={A N B:Bed U a}is countable. If B, B’ €4,
then B N Beéd* and

B-B=(BnA-BnA4U[B-B)-A4
=(Ue)v(Gn)

where the last term is a disjoint union of sets from 6'. Note also
that @ €é* and Ped*, for @ = A — A and P is the empty intersection
of sets from 6. Let ¢, = ¢ and assuming that ¢, has been already
defined let 0,,, = 0%, n =1, 2, ---. The system ¢’ = Y7, 0, has now
all the desired properties.

THEOREM 5.5. The integration base I 1is locally strongly
measurable.

Proof. Choose 2,€ P and Uel', whose closure U~ is compact
and contained in some open metrizable neighborhood of «,. Then for
each x € P~ we can define a local base I, — I", such that U,.,-I"
is countable and U N V=@ for every Vel’, with xeP~— U-.
Setting 6 = {U} U (U,eo~{V N P: Verl}), we have § Cc 0, Ued, and
{UN V:Ved} is countable. Let o’ be a prealgebra from Lemma 5.4
and let G’ be the restriction of G to ¢’. Then Y =o', I}, k', G’ is
an integration base and by 2.6, (L, 7,) = (T4, 7). Since JF'<I (see
§2), BU) c P(U) and the theorem follows from 5.2.

COROLLARY 5.6. If P is metrizable then (T, 7) = (T,, 7).

This corollary follows from [3], Chapter V, Corollary 35, p. 160
and [7], 4.9.

6. Examples. Four examples illustrating the previous sections
will be given here.
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ExamMpPLE” 6.1. For ¢ =1,2, --- let P, = {0, 1} be the two point
set with the discrete topology and let yx; be the measure in P; defined
by £:({0}) = p:({1}) = 1/2. We set P = [[, P, ¢t = [I%, 4, and define
o as the family of all g-measurable subsets of P. Then P is a com-
pact metrizable space whose points are sequences {x;}, of zeroes and
ones, ¢ is a regular measure in P, and o is a o-algebra containing
all rectangles. If ® = {&;} e P we let I', = {U,};-, where U, = {{y;} €
Py =2, t=1,2,+-,m}, n=1,2, --.. It follows from 5.5 and
2.8 that & = (o, I',, &', 1>, where £' is the monotone convergence in
o, I',>, is a measurable integration base. We shall show, however,
that there is a nonempty semihereditary stable system 6 — ¢ for which
J* i8 not z,-measurable. Thus, in particular, the integration base &
is not strongly measurable.

For » = {x;} let f(x) = {fi(x)} where fu(v) =2, and f () =0,
1=1,2,+--. Then f: P— P is a continuous map and we denote by
Q@ its image. The sets Q, = f~'(x) with v € @ are disjoint, nonempty
and prefect, and their union is equal to P. If x ={x}e@ and n =1
is an integer, let Qr ={{y}eP:yy =2y ©=12, ---,n}. Then
2@ =2" and N, Q = Q,. Hence x(Q,) =0 for all xe@. Let
A c P be closed and let p(A) > 0. By the compactness of P, f(4) is
also closed and so it is either countable or its cardinality is the con-
tinuum. Since 4 C U,cs Qrey = Uyerwn @, and p(4) > 0, it follows
that the cardinality of f(A) is the continuum. Plainly @, N 4 # O
for all y e f(4).

Let v be the least ordinal whose cardinality is the continuum and
let {4,:0 < a < 7} be a well-ordering of all closed subsets of P with
positive measure. By the previous paragraph there are x,, x;€ Q, 2, #
@, such that @, N 4, # @ and Q,; N 4, #* @. Let S8 be an ordinal
less than v and assume that for all ordinals « less than B we have
already defined distinct elements x,, 2, €@ such that Q,, N A, # @&
and Q,, N A, # ©. Since the cardinality of Q" = {&,, ¢,:0 < a < 8}
is less than the continuum and the cardinality of (x€ Q:Q, N 4, = @}
is equal to the continuum, we can choose w;, 2, € Q — @', ©; + x}, such
that Q.,, N 4, # @ and Q,, N 4, # ©. Letting B= U {Q..:0=<a<
7 and B'= U{Q,,:0=a <7}, we have BN B' =@ and AN B #
@, AN B # @ for every closed set A — P for which p(4) > 0. There-
fore every closed subset of B or P — B has measure equal to zero.
If Beo, then by the regularity of g, u(B) = (P — B) = 0 which
is impossible for p(P) =1. Hence B and similarly B’ are not p-
measurable.

Now let 0 consist of all uncountable subsets of Q,,0 < a <.
Then 6 is a nonempty semihereditary stable subsystem of ¢ and 6*

5 This example is due to K. Prikry.
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computed by &' is equal to B. Since the measure p has no regular
extension, it follows from [7], 4.12 that ¢ = 7, and so 0* is not ;-
measurable.

Note that the hypothesis of the continuum was not used in this
example.

EXAMPLE 6.2. Let P be a compact Boolean space (see [3],
Chapter 5, Problem S, p. 168), let ¢ be the algebra of all compact-
open subsets of P, and let I', = {Uco:2¢c U} for all xe P. If &' is
the monotone convergence in <o, I",>, then by 4.1, every net from &}
has the form {U, Uel’, C} where I" is a cofinal subset of I",. It
follows from [9], 4.3 that &' is admissible. Since, e.g., the Tychonoff
product of any family of finite discrete spaces is a compact Boolean
space, we see that the space P need not be locally metrizable.

ExampPLE 6.3. Let P = [0,1) together with the usual topology
and let ¢ be the pre-algebra consisting of all half-open intervals
[a, b) € P. We ghall identity P~ with [0, 1] and for every x € P~ we
shall let I', ={[z — 1/n, 2+ 1/n) N [P U @)]}3=.. If xe P~ then let
£, congist of all sequences {[# — 1/n,, ® + 1/n,) N B}i., where Beo
and {n,} is an increasing sequence of positive integers. Thus defined
the convergence £ = {£,: x € P~} clearly satisfies conditions 277 — 2%,
and if {B,} ek, then for all sufficiently large =, B, is a half-open
interval of rational length (which may be zero). Hence if 6 consists
of all intervals of irrational length, then 6* = . However, it is easy
to see that 6 — 0 is a nonempty semihereditary stable system (see
[9], 4.2) and so k£ does not satisfy conditions .%; and ..

EXAMPLE 6.4. Let P, P~, and ¢ be the same as in Example
6.3. For zeP~, I, ={lz — 1/n, z,) N [P N (®)]}3-, where {z,};-, is a
decreasing sequence of irrational numbers converging to z. Denote
by @ the set of all rational numbers in [0, 1]. If xe P~ then let £,
consist of all sequences {[a,, b,)}7-, C ¢ such that lima, = limb, =«
and for all sufficiently large =, either b,e P— Q or b, = b,.,. It is
easy to see that thus defined the convergence £ = {x, : ¢ € P~} satisfies
conditions 977 — .9%,. Let 0 C ¢ be a nonempty semihereditary system
and let [a, b)ed. If a = b then 6* = P~. Hence assume that a <b
and choose an z, € (a, b) — @ such that max (z, — a, b — 2,) < 3(b — a).
By the semihereditariness of J, e.g., [a, 2)€d. Now choose x,¢
(a, ©) — @ such that max (x, — a, 2, — ®,) < 3(x, — a) and select an
interval from [a, «,), [#, %) which belongs to 4. Inductively, we obtain
a decreasing sequence {B,},-, < 0 for which N, B; = (x). Obviously,
x e 6* and so k satisfies also condition .2%. However, £ does not satisfy
condition .2%;. To see this, let o, consist of all intervals [a, b) € 0 such
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that b —a > 0 and be Q. Then d, C o is a nonempty semihereditary
stable system and 6f =.Q is countable.
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