EXTREMAL ELEMENTS OF THE CONVEX CONE A_{n} OF FUNCTIONS

Roy M. Rakestraw

Let A_{1} be the set of nonnegative real functions f on $[0,1]$ such that $\nabla_{h}^{\frac{1}{h}} f(x)=f(x)-f(x+h) \leqq 0, h>0$, for $[x, x+h] \subset$ $[0,1]$, and let $A_{n}, n>1$, be the set of functions belonging to A_{n-1} such that $\nabla_{h}^{n} f(x)=\nabla_{h}^{n-1} f(x)-\nabla_{h}^{n-1} f(x+h) \leqq 0$ for

$$
[x, x+n h] \subset[0,1] .
$$

Since the sum of two functions in A_{n} belongs to A_{n} and since a nonnegative real multiple of an A_{n} function is an A_{n} function, the set of A_{n} functions forms a convex cone. It is the purpose of this paper to give the extremal elements (i.e., the generators of extreme rays) of this cone, to prove that they form a closed set in a compact convex set that does not contain the origin but meets every ray of the cone, and to show that for the functions of the cone an integral representation in terms of extremal elements is possible. The intersection of the A_{n} cones is the class of functions alternating of order ${ }^{\infty}$. Thus, the set of these functions, which will be denoted by A_{∞}, forms a convex cone also. The extremal elements for the convex cone A_{∞} are given too.

Let f be a function in A_{1} which assumes exactly one positive value in $[0,1]$; that is, $f(x)=0, \mathrm{x} \in[0, \xi), f(x)=c>0, x \in[\xi, 1]$ where $0 \leqq \xi \leqq 1$, if $f=f_{1}+f_{2}$, where f_{1} and $f_{2} \in A_{1}$, then $0=\nabla_{h}^{1} f(x)=$ $\nabla_{h}^{1} f_{1}(x)+\nabla_{h}^{1} f_{2}(x)$ implies $\nabla_{h}^{1} f_{i}(x)=0$ for $i=1,2$ and $[x, x+h] \subset[\xi, 1]$. Therefore, $\quad f_{i}(x)=0, x \in[0, \xi), f_{i}(x)=c_{i} \geqq 0, x \in[\xi, 1], i=1,2$, where $c_{1}+c_{2}=c$. Hence, f is an extremal element of A_{1}. On the other hand, if f assumes at least two positive values in [0,1], then a nonproportional decomposition can be given by taking

$$
f_{1}(x)=\min \{f(x),(1 / 2)[f(0)+f(1)]\}
$$

and $f_{2}=f-f_{1}$. Therefore, the extremal elements of A_{1} are precisely the functions in A_{1} which assume exactly one positive value in $[0,1]$.

Since a function in $A_{n}, n>1$, is nonnegative, nondecreasing, and concave on [0,1], it must be continuous on (0,1] (cf. [6], p. 148). It follows that the only extremal elements of A_{1} which are in A_{n} are those functions f such that $f=c>0$ on $(0,1]$ while $f(0)=0$ or $f(0)=c$ and these functions are again extremal in A_{n}. If $f \in A_{n}, n>1$, f is not constant and $f(0)>0$, then a nonproportional decomposition can be given by taking $f_{1}=f(0)$ and $f_{2}=f-f_{1}$. If $f \in A_{n}, f(0)=0$, f is not constant on $(0,1]$ and f is not continuous at 0 (that is,
$f(0+)>0)$, then take $f_{1}=f(0+)$ on $(0,1], f_{1}(0)=0$ and $f_{2}=f-f_{1}$. In so doing, f_{1} and $f_{2} \in A_{n}$ and f_{1} and f_{2} are not proportional to f. Therefore, for $n>1$, the only extremal elements of A_{n} such that $f(0)>0$ are the positive constant functions, and the only extremal elements of A_{n} which are discontinuous at 0 are those functions f such that $f(0)=0$ and $f=c>0$ on $(0,1]$. It will be shown that the remaining extremal elements of $A_{n}, n>1$, are indefinite integrals of the extremal elements of a cone which is similar to A_{1}. This cone is given in the following definitions.

Definition 1. If g is a real function continuous almost everywhere on $(0,1]$ and n is a positive integer, then g is said to satisfy property $P(n)$ if

$$
\operatorname{limit}_{\partial \rightarrow 0} \int_{1}^{\delta} \int_{1}^{t_{n-1}} \cdots \int_{1}^{t_{2}} \int_{1}^{t_{1}} g(t) d t d t_{1} \cdots d t_{n-1}
$$

exists and is finite.
Definition 2. Let $K(n)$ denote the convex cone of nonnegative, nonincreasing real functions on $(0,1]$ which satisfy property $P(n)$.

In the same manner that the extremal elements of A_{1} were found, it can be shown that the extremal elements of $K(n)$ are precisely these functions which assume exactly one positive value in (0,1]. Preliminary to the determination of the extremal elements of A_{n}, it is shown in the following two lemmas how the A_{n} functions are related to the functions in $K(n-1)$, where $n>1$.

Lemma 1. If $f \in A_{n}$, then $(-1)^{n} f_{+}^{(n-1)} \in K(n-1)$, where $n>1$.
Proof. The proof will be by induction on n. If $f \in A_{2}$, then f is nonnegative, nondecreasing and concave. It follows that f_{+}^{\prime} is nonnegative and nonincreasing on $(0,1]$, where $f_{+}^{\prime}(1)=f_{+}^{\prime}(1-)$ [6]. Also,

$$
f(x)=\int_{0}^{x} f_{+}^{\prime}(t) d t+f(0+)
$$

which implies that f_{+}^{\prime} satisfies property $P(1)$ [4].
Assume that $f \in A_{n}$ implies $(-1)^{n} f_{+}^{(n-1)} \in K(n-1)$ for $n \geqq 2$. If $f \in A_{n+1}$, then

$$
\nabla_{h}^{2} \nabla_{h}^{n-1} f(x)=\nabla_{h}^{n+1} f(x) \leqq 0
$$

for $[x, x+(n+1) h] \subset[0,1]$, which implies that

$$
\nabla_{h}^{2} \nabla_{\hat{\partial}_{1}}^{1} \nabla_{\partial_{2}}^{1} \cdots \nabla_{\delta_{n-1}}^{1} f(x) \leqq 0
$$

for $\left[x, x+2 h+\delta_{1}+\delta_{2}+\cdots+\delta_{n-1}\right] \subset[0,1][2]$. It then follows that

$$
(-1)^{n-1} \nabla_{h}^{2} f_{+}^{(n-1)}(x) \leqq 0
$$

for $[x, x+2 h] \subset(0,1]$, and hence, $(-1)^{n-1} f_{+}^{(n-1)}$ is concave on $(0,1]$. Therefore, $f^{(n-1)}=f_{+}^{(n-1)}$, since $f_{+}^{(n-1)}$ is continuous. It follows that $f_{+}^{(n)}$ exists on $(0,1]$, where $f_{+}^{(n)}(1)=f_{+}^{(n)}(1-)$, and $(-1)^{n+1} f_{+}^{(n)}$ is nonnegative and nonincreasing. It remains only to show that $f_{+}^{(n)}$ satisfies property $P(n)$. If $f \in A_{n+1}$, then $f \in A_{n}$, and

$$
\begin{aligned}
& \operatorname{limit}_{\delta \rightarrow 0} \int_{1}^{\delta} \int_{1}^{t_{n-1}} \cdots \int_{1}^{t_{2}} \int_{1}^{t_{1}} f_{+}^{(n)}(t) d t d t_{1} \cdots d t_{n-1} \\
= & \operatorname{limit}_{\delta \rightarrow 0} \int_{1}^{\delta} \int_{1}^{t_{n-1}} \cdots \int_{1}^{t_{3}} \int_{1}^{t_{2}} f^{(n-1)}\left(t_{1}\right) d t_{1} d t_{2} \cdots d t_{n-1} \\
& -f^{(n-1)}(1) \int_{1}^{0} \int_{1}^{t_{n-1}} \cdots \int_{1}^{t_{3}} \int_{1}^{t_{2}} d t_{1} d t_{2} \cdots d t_{n-1}
\end{aligned}
$$

exists and is finite, since $f^{(n-1)}$ satisfies property $P(n-1)$ by the induction hypothesis.

Definition 3. If g is a real function on $(0,1]$ which satisfies property $P(n)$, then define the function $I(g, n ;)$ by the equation

$$
\begin{aligned}
I(g, 1 ; x) & =\int_{0}^{x} g(t) d t \\
I(g, n ; x) & =\int_{0}^{x} \int_{1}^{i_{n-1}} \cdots \int_{1}^{t_{2}} \int_{1}^{t_{1}} g(t) d t d t_{1} \cdots d t_{n-1}, \\
n=2,3,4, \cdots, \text { for } x & \in[0,1] .
\end{aligned}
$$

Lemma 2. If $g \in K(n-1)$, then $(-1)^{n} I(g, n-1 ;) \in A_{n}$, where $n>1$.

Proof. The proof will be by induction on n. If $g \in K(1)$, then

$$
I(g, 1 ; x)=\int_{0}^{x} g(t) d t \geqq 0
$$

for $x \in[0,1]$. If $[x, x+h] \subset[0,1]$, then

$$
\nabla_{h}^{1} I(g, 1 ; x)=\int_{x+h}^{x} g(t) d t \leqq 0
$$

since $g(t) \geqq 0$, where $x \leqq t \leqq x+h$. Since g is nonincreasing on $(0,1$], then $I(g, 1 ;)$ is concave on $[0,1]$ and it follows that $\nabla_{h}^{2} I(g, 1 ; x) \leqq 0$, for $h>0$ and $[x, x+2 h] \subset[0,1]$ [4]. Hence, $I(g, 1 ;) \in A_{2}$ whenever $g \in K(1)$.

Assume that $(-1)^{n} I(g, n-1 ;) \in A_{n}$ for $g \in K(n-1)$ and $n>1$. If $g \in K(n)$, then let

$$
f(x)=\int_{1}^{x} g(t) d t
$$

for $x \in(0,1]$. Since $g \in K(n)$, it is easily seen that $-f \in K(n-1)$ and it follows from the induction hypothesis that

$$
(-1)^{n+1} I(g, n ;)=(-1)^{n} I(-f, n-1 ;) \in A_{n}
$$

By a repeated application of the mean value theorem for a Riemann integral, it can be shown that

$$
\nabla_{h}^{n-1} I(g, n ; x)=(-h)^{n-1} f(\xi)
$$

for $[x, x+(n-1) h] \subset[0,1]$, where $x<\xi<x+(n-1) h$. It follows that

$$
\begin{aligned}
& \nabla_{h}^{n+1}(-1)^{n+1} I(g, n ; x) \\
= & (-1)^{n+1} \nabla_{h}^{2} \nabla_{h}^{n-1} I(g, n ; x) \\
= & (-1)^{2 n} h^{n-1} \nabla_{h}^{2} f(\xi) \leqq 0
\end{aligned}
$$

for $[x, x+(n+1) h] \subset[0,1]$, since f is concave on $(0,1]$ [4]. This inequality, together with the fact that $(-1)^{n+1} I(g, n ;) \in A_{n}$, implies that $(-1)^{n+1} I(g, n ;) \in A_{n+1}$.

It is a consequence of Lemmas 1 and 2 that $f=I\left(f_{+}^{(n-1)}, n-1\right.$;) whenever $f \in A_{n}, n>1, f(0+)=0$ and $f^{(k)}(1)=0$ for $1 \leqq k \leqq n-2$. If $f \in A_{2}$, then f is concave on $[0,1]$ and

$$
f(x)=\int_{0}^{x} f_{+}^{\prime}(t) d t=I\left(f_{+}^{\prime}, 1 ; x\right)
$$

If $f \in A_{n}, n>2$, then $(-1)^{n-2} f^{(n-2)}$ is concave on (0,1] (cf. proof of Lemma 1). It follows that

$$
f^{(n-2)}(x)=\int_{1}^{x} f_{+}^{(n-1)}(t) d t
$$

which implies that $f=I\left(f_{+}^{(n-1)}, n-1\right.$; [4].
Proposition 1. The function f defined by

$$
f(x)=m\left[\xi^{n-1}-(\xi-x)^{n-1}\right]
$$

for $x \in[0, \xi]$ and $m \xi^{n-1}$ for $x \in[\xi, 1]$, where $0<\xi \leqq 1$ and $m>0$, is an extremal element of $A_{n}, n>1$.

Proof. If f is such a function, then

$$
f_{+}^{(n-1)}(x)=(-1)^{n} m(n-1)!,
$$

$x \in(0, \xi)$ and 0 for $x \in[\xi, 1]$, which implies that $(-1)^{n} f_{+}^{(n-1)}$ is an ex-
tremal element of $K(n-1)$. Since $f(0)=0$ and $f^{(k)}(1)=0$ for $1 \leqq$ $k \leqq n-2$ (whenever $n>2$), then $f=I\left(f_{+}^{(n-1)}, n-1\right.$;) and it follows from Lemma 2 that $f \in A_{n}$.

If g and $h \in A_{n}$ such that $f=g+h$, then $(-1)^{n} g_{+}^{(n-1)}$ and

$$
(-1)^{n} h_{+}^{(n-1)} \in K(n-1)
$$

and $f_{+}^{(n-1)}=g_{+}^{(n-1)}+h_{+}^{(n-1)}$. Since $(-1)^{n} f_{+}^{(n-1)}$ is extremal in $K(n-1)$, there are constants $\lambda_{i} \geqq 0, i=1,2$, such that $g_{+}^{(n-1)}=\lambda_{1} f_{+}^{(n-1)}$ and $h_{+}^{(n-1)}=\lambda_{2} f_{+}^{(n-1)}$. Since $f(0)=0$ and $f^{(k)}(1)=0$ for $1 \leqq k \leqq n-2$, it follows that $g(0)=g^{(k)}(1)=0$ and $h(0)=h^{(k)}(1)=0$ for $1 \leqq k \leqq n-2$. Hence

$$
\begin{aligned}
g & =I\left(g_{+}^{(n-1)}, n-1 ;\right)=I\left(\lambda_{1} f_{+}^{(n-1)}, n-1 ;\right) \\
& =\lambda_{1} I\left(f_{+}^{(n-1)}, n-1 ;\right)=\lambda_{1} f
\end{aligned}
$$

and similarly, $h=\lambda_{2} f$. Thus, if $f(x)=m\left[\xi^{n-1}-(\xi-x)^{n-1}\right], x \in[0, \xi]$ and $m \xi^{n-1}$ for $x \in[\xi, 1]$, where $0<\xi \leqq 1$ and $m>0$, then f is extremal in $A_{n}, n>1$. Denote this latter function by $e(m, \xi, n-1$;).

If $f \in A_{2}$ such that $f(0+)=f(0)=0, f \neq 0$ and $f \neq e(m, \xi, 1$;), for $m>0$ and $0<\xi \leqq 1$, then f_{+}^{\prime} is not extremal in $K(1)$, since f_{+}^{\prime} assumes at least two positive values in (0,1]. It follows that there are functions g_{1} and $g_{2} \in K(1)$ such that $f_{+}^{\prime}=g_{1}+g_{2}$ and g_{1} and g_{2} are not proportional to f_{+}^{\prime}. Since $f(0)=0$, then $f=I\left(f_{+}^{\prime}, 1\right.$;) and it follows that

$$
f=I\left(f_{+}^{\prime}, 1 ;\right)=I\left(g_{1}+g_{2}, 1 ;\right)=I\left(g_{1}, 1 ;\right)+I\left(g_{2}, 1 ;\right)
$$

Thus, if $f_{i}=I\left(g_{i}, 1 ;\right)$, then $f_{i} \in A_{2}, i=1,2$, and $f=f_{1}+f_{2}$. This gives a nonproportional decomposition of f. Therefore, the extremal elements of A_{2} are the positive constant functions, the functions which are a positive constant on (0,1] and zero at 0 and the functions $e(m, \xi, 1 ;)$, where $m>0$ and $0<\xi \leqq 1$. The remaining extremal elements of A_{n}, $n>2$, are given in the next proposition.

Proposition 2. If $m>0$, the function $e(m, 1, k$;) is an extremal element of A_{n} for $n>2$ and $1 \leqq k \leqq n-2$.

Proof. Since A_{n} is a subcone of A_{k+1} and $e(m, 1, k ;)$ is an extremal element of A_{k+1}, it is sufficient to show that $e(m, 1, k ;) \in A_{n}$. If $f=$ $e(m, 1, k ;)$, then $f=I\left(f^{(k)}, k ;\right)$ where

$$
f^{(k)}(x)=(-1)^{k+1} m(k!)
$$

for $0<x \leqq 1$. Since $f^{(k)}$ is constant on (0,1], it follows from a repeated application of the mean value theorem for a Riemann integral that

$$
\nabla_{h}^{k+1} f(x)=\nabla_{h}^{1} \nabla_{h}^{k} f(x)=(-h)^{k} \nabla_{h}^{1} f^{(k)}(\xi)=0
$$

for $h>0,[x, x+(k+1) h] \subset[0,1]$, and thus, $\nabla_{h}^{p} f(x)=0$ for $h>0$, $[x, x+p h] \subset[0,1]$ and $p \geqq k+1$. Hence, $f \in A_{n}$ for every n, which implies that f is extremal in A_{p}, for $p \geqq k+1$.

It will follow, as a consequence of the next three lemmas, that no other functions in A_{n} are extremal elements of $A_{n}, n>2$.

Lemma 3. Let $f \in A_{n}, n>2$, such that $f(0+)=f(0)=0$ and $f \neq e(m, 1, k ;)$, where $m>0$ and $1 \leqq k \leqq n-2$. If there is an integer k such that $1 \leqq k \leqq n-2$ and $f^{(k)}(1) \neq 0$, then f is not an extremal element of A_{n}.

Proof. Let k denote the smallest integer such that $f^{(k)}(1) \neq 0$ Then $f \in A_{n} \subset A_{k+2}$ implies that $(-1)^{k} f_{+}^{(k+1)} \in K(k+1)$, and it follows from Lemma 2 that $I\left(f_{+}^{(k+1)}, k+1 ;\right) \in A_{k+2}$. \quad Since $f(0)=0$ and $f^{(p)}(1)=$ 0 for $1 \leqq p<k$, then $I\left(f_{+}^{(k+1)}, k+1 ;\right)=I\left(f^{(k)}, k ;\right)-f^{(k)}(1) I(1, k ;)=$ $f-e(m, 1, k ;)$, where $m=(-1)^{k-1}[1 /(k!)] f^{(k)}(1)>0$. Since

$$
\nabla_{h}^{p} e(m, 1, k ; x)=0
$$

for $h>0,[x, x+p h] \subset[0,1]$ and $p \geqq k+1$ and $f \in A_{n}$, it follows that

$$
\nabla_{h}^{p} I\left(f_{+}^{(k+1)}, k+1 ; x\right)=\nabla_{h}^{p} f(x) \leqq 0
$$

for $[x, x+p h] \subset[0,1], k+1 \leqq p \leqq n$. Hence, $f-e(m, 1, k ;) \in A_{n}$, where $m=(-1)^{k-1}[1 /(k!)] f^{(k)}(1)$, and a nonproportional decomposition of f can be given by taking $f_{1}=e\left(m, 1, k\right.$;) and $f_{2}=f-f_{1}$. Thus, f is not extremal.

Lemma 4. Let $f \in A_{n}, n>2$, such that $f \neq 0, f(0+)=f(0)=0$ and $f \neq e(m, 1, k ;)$, where $m>0$ and $1 \leqq k \leqq n-2$. If $f_{+}^{(n-1)}=0$ on (0,1], then f is not an extremal element of A_{n}.

Proof. If $f_{+}^{(n-1)}=0$, then there is a positive integer $k \leqq n-2$ such that $f^{(k)} \neq 0$ and $f^{(k)}$ is constant on (0,1]. Thus, $f^{(k)}(1) \neq 0$ and it follows from Lemma 3 that f is not extremal.

It follows from Lemmas 3 and 4 that if f is an extremal element of $A_{n}, n>2$, such that $f(0+)=f(0)=0$ and either $f_{+}^{(n-1)}=0$ or $f^{(k)}(1) \neq 0$ for some $k, 1 \leqq k \leqq n-2$, then $f=e(m, 1, k$; $)$, where $m>0$ and $1 \leqq k \leqq n-2$.

Lemma 5. Let $f \in A_{n}, n>2$, such that $f(0+)=f(0)=0, f_{+}^{(n-1)} \neq 0$ and $f^{(k)}(1)=0$ for $1 \leqq k \leqq n-2$. If f is an extremal element of A_{n}, then $f=e(m, \xi, n-1 ;)$, where $m>0$ and $0<\xi \leqq 1$.

Proof. Since $f(0)=f^{(k)}(1)=0$ for $1 \leqq k \leqq n-2$, then

$$
f=I\left(f_{+}^{(n-1)}, n-1 ;\right)
$$

and it follows from Lemma 1 that $(-1)^{n} f_{+}^{(n-1)} \in K(n-1)$. If g_{1} and $g_{2} \in K(n-1)$ such that $(-1)^{n} f_{+}^{(n-1)}=g_{1}+g_{2}$, then

$$
\begin{aligned}
f & =I\left(f_{+}^{(n-1)}, n-1 ;\right)=(-1)^{n} I\left(g_{1}+g_{2}, n-1 ;\right) \\
& =(-1)^{n} I\left(g_{1}, n-1 ;\right)+(-1)^{n} I\left(g_{2}, n-1 ;\right)
\end{aligned}
$$

Then $f_{i}=(-1)^{n} I\left(g_{i}, n-1 ;\right), i=1,2$, implies that f_{1} and $f_{2} \in A_{n}$ and $f=f_{1}+f_{2}$. Since f is extremal in A_{n}, there are numbers $\lambda_{i} \geqq 0$ such that $f_{i}=\lambda_{i} f, i=1,2$, which implies that $g_{i}=\lambda_{i}(-1)^{n} f_{+}^{(n-1)}, i=1,2$, and $(-1)^{n} f_{+}^{(n-1)}$ is therefore extremal in $K(n-1)$. Thus,

$$
(-1)^{n} f_{+}^{(n-1)}(x)=c>0, x \in(0, \xi)
$$

and 0 for $x \in[\xi, 1]$, which implies that

$$
f=I\left(f_{+}^{(n-1)}, n-1 ;\right)=e(m, \xi, n-1 ;)
$$

where $m=c /(n-1)!$.
Therefore, the extremal elements of $A_{n}, n>2$, are the positive constant functions, the functions which are a positive constant on $(0,1]$ and zero at 0 , the functions $e(m, 1, k ;$, where $m>0,1 \leqq k \leqq$ $n-2$, and the functions $e(m, \xi, n-1$;), where $m>0$ and $0<\xi \leqq 1$.

Since A_{∞} is a subcone of A_{n}, it follows that the function $e(m, 1$, $n ;$), $m>0$, is an extremal element of A_{∞} for every positive integer n. It is shown in the following proposition that A_{∞} has no other extremal elements which are continuous and zero at 0 .

Proposition 3. If $f \in A_{\infty}$ such that $f(0+)=f(0)=0$ and $f \neq$ $e(m, 1, k ;)$, where $m>0$ and k is a positive integer, then f is not an extremal element of A_{∞}.

Proof. Since $f \in A_{\infty}$ is a function of class C^{∞} on (0,1 , it follows from a theorem of Bernstein, Theorem 13-31 in [1], that

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!}(x-1)^{n}
$$

for $0<x<1$ by noting that the function g defined by

$$
g(x)=f(1)-f(1-x)
$$

satisfies the hypothesis of the theorem. If there is a positive integer k such that $f^{(k)}(1) \neq 0$, then assume, without loss of generality, that
k is the least such integer. Then $f \in A_{\infty} \subset A_{k+2}$ implies that

$$
(-1)^{k} f^{(k+1)} \in K(k+1)
$$

from which it follows that $I\left(f^{(k+1)}, k+1 ;\right) \in A_{k+2}$. Hence,

$$
I\left(f^{(k+1)}, k+1 ;\right)=I\left(f^{(k)}, k ;\right)-f^{(k)}(1) I(1, k ;)=f-e(m, 1, k ;),
$$

where $m=(-1)^{k-1}[1 /(k!)] f^{(k)}(1)>0$. If $f_{1}=e\left(m, 1, k\right.$;) and $f_{2}=f-f_{1}$, then $f_{1} \in A_{\infty}$ since $f_{1} \in A_{n}$ for every n and $f_{2} \in A_{\infty}$ since $f_{2} \in A_{k+2}$ and

$$
\nabla_{h}^{n} f_{2}(x)=\nabla_{h}^{n}[f(x)-e(m, 1, k ; x)]=\nabla_{h}^{n} f(x) \leqq 0,
$$

for $h>0,[x, x+n h] \subset[0,1]$ and $n \geqq k+3$. Since f_{1} is not proportional to f, this gives a nonproportional decomposition of f, and f is therefore not extremal. On the other hand, if $f^{(k)}(0)=0$ for each positive integer k, then $f(x)=f(1)$ for $0<x \leqq 1$, and $f(0+)=f(0)=0$ implies that $f=0$.

The results to this point are summarized in the following theorem.

Theorem. The extremal elements of A_{1} are the functions which assume exactly one positive value in [0,1]. The positive constant functions and the functions which are a positive constant on (0,1] and zero at 0 are extremal elements of $A_{n}, n>1$, and are therefore extremal in A_{∞}. The functions $e(m, \xi, n-1 ; x)=m\left[\xi^{n-1}-(\xi-x)^{n-1}\right]$, $x \in[0, \xi]$ and $m \xi^{n-1}$ for $x \in[\xi, 1]$, where $m>0$ and $0<\xi \leqq 1$, are extremal elements of $A_{n}, n \geqq 2$. The only other extremal elements of $A_{n}, n \geqq 3$, are those functions e $(m, 1, k ;), 1 \leqq k \leqq n-2$. The extremal elements of A_{∞} which are continuous and zero at 0 are the functions $e(m, 1, k ;), k \geqq 1$.

The set of functions $A_{n}-A_{n}, n \geqq 1$, forms the smallest linear space containing the convex cone A_{n}. With the topology of simple convergence, $A_{n}-A_{n}$ is a Hausdorff locally convex space. Let C_{n} be the set of functions $f \in A_{n}$ such that $f(1)=1$. Then C_{n} is a convex set which meets every ray of A_{n} once and only once but does not contain the origin, that is the zero function. It then follows that f is an extreme point of C_{n} if, and only if, f is an extremal element of A_{n} which lies in C_{n}. A proof similar to that found on page 992 of [5] can be used here to show that C_{n} is compact. It follows from the next proposition that the set of extreme points of C_{n} is compact.

Proposition 4. The set of extreme points of C_{n} is closed in C_{n}, $n \geqq 1$.

Proof. Since the topology of simple convergence is equivalent to
the topology of pointwise convergence, it will suffice to show that if $\left\{f_{i}\right\}$ is a net of functions in ext C_{n} which converges pointwise to a function f, then $f \in \operatorname{ext} C_{n}, n \geqq 1$, where $\operatorname{ext} C_{n}$ denotes the set of extreme points of C_{n}. The proof for $n=1$ is obvious. Since all except a finite number of the functions in ext $C_{n}, n>1$, are of the form $e\left((1 / \xi)^{n-1}, \xi, n-1\right.$;), where $0<\xi \leqq 1$, it can be assumed without loss of generality that $f_{i}=e\left(\left(1 / \xi_{i}\right)^{n-1}, \xi_{i}, n-1\right.$;), for each i.

If the net $\left\{\xi_{2}\right\}$ of real numbers converges to 0 , then it is easily :seen that

$$
\underset{i}{\operatorname{limit}} f_{i}(x)=1
$$

for $x \in(0,1]$. Since the topology is Hausdorff, it follows that $f(0)=0$ and $f(x)=1, x \in(0,1]$, which implies that $f \in \operatorname{ext} C_{n}$.

On the other hand, if $\left\{\xi_{i}\right\}$ does not converge to 0 , then there is a positive real number ξ_{0} and a subnet $\left\{\xi_{j}\right\}$ of $\left\{\xi_{i}\right\}$ such that $\left\{\xi_{j}\right\}$ converges to ξ_{0}. If $0 \leqq x<\xi_{0}$, then

$$
\underset{j}{\operatorname{limit}} f_{j}(x)=\frac{1}{\hat{\xi}_{0}^{n-1}}\left[\xi_{0}^{n-1}-\left(\xi_{0}-x\right)^{n-1}\right] ;
$$

whereas

$$
\operatorname{limit}_{j} f_{j}(x)=1
$$

if $\xi_{0} \leqq x \leqq 1$. Therefore, since the topology is Hausdorff,

$$
f=e\left(\left(1 / \hat{\xi}_{0}\right)^{n-1}, \xi_{0}, n-1 ;\right),
$$

and it follows that $f \in \operatorname{ext} C_{n}$.
Since ext C_{n} and C_{n} are both compact subsets of the locally convex space $A_{n}-A_{n}, n \geqq 1$, it follows from Theorem 39.4 of Choquet [3] that for any function $f_{0} \in C_{n}$ there exists a probability measure μ_{0} on ext C_{n} such that

$$
f_{0}(x)=\int f(x) d \mu_{0}
$$

for $x \in[0,1]$. Since C_{n} meets every ray of A_{n} and does not contain the origin, it follows that each function of A_{n} is a scalar multiple of such a representation.

References

1. T. M. Apostol, Mathematical analysis, Addison-Wesley, Reading, Massachusetts, 1957.
2. R. P. Boas, Jr. and D. V. Widder, Functions with positive differences, Duke Math. J. 7 (1940), 496-503.
3. G. Choquet, Theory of capacities, Annales de l'Institut Fourier 5 (1953 and 1954), 131-296.
4. M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, The Netherlands, 1961.
5. E. K. McLachlan, Extremal elements of the convex cone B_{n} of functions, Pacific J. Math. 14 (1964), 987-993.
6. D. V. Widder, The Laplace transform, Princeton Mathematical Series 6 (1946).

Received October 15, 1969. This work was done to partially fulfill the requirements for the degree of Doctor of Philosophy at Oklahoma State University under the direction of Professor E. K. McLachlan. During this time the author was an NDEA Graduate Fellow.

Oklahoma State University
University of Missouri at Rolla

