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UNITARY DILATIONS FOR COMMUTING
CONTRACTIONS

STEPHEN PARROTT

Let Si, S2, , Sn be a set of commuting contraction opera-
tors on a Hubert space H, let Ulf U2, "-9Un be a set of com-
muting unitary operators on a Hubert space K containing H,
and let P be the projection from K to H. The set Uu , U»
is called a set of commuting unitary dilations for Si, —-,Sn

provided that

PZ/M7Γ«. - - υinx = SΓISΓ* sz»x

for all x in H and for all nonnegative integers mi, m2, , mn.
Sz.-Nagy proved that a single contraction has a unitary dila-
tion, and Ando showed that any two commuting contractions
possess a pair of commuting unitary dilations. This note
presents several counterexamples which disprove the corre-
sponding conjecture for three or more contractions.

In § 3, three commuting contractions, R, S, T are con-
structed which do not have commuting unitary dilations. The
operators R and S each have norm one, while the operator T
may be chosen to have any norm between zero and one.
However, the proof yielding the counterexample fails complete-
ly if the operators R, S, T are replaced by λR9 λS, T with
0 < λ < 1, and this raises another question.

It is known that a finite or infinite set of commuting con-
tractions Si, S2, ••• which satisfies Σ I | S & | | 2 ^ 1 possesses a
set of commuting unitary dilations. Thus it appears that the
"size" of a set of contractions may be relevant to the ex-
istence of commuting unitary dilations; and since two of the
contractions in §3 have norm one, it is conceivable that this
example might be only a peculiar "boundary" phenomenon.
In §4 this notion is dispelled by a more complicated example
showing that three commuting contractions, each of norm
strictly less than one, can fail to have commuting unitary
dilations. Although the example of § 4 is in most (but not all)
respects more powerful than that of § 3, the latter is presented
separately because of its simplicity.

Section 3 also observes that a recent result of Sz.-Nagy and
Foias is equivalent to Ando's theorem. Section 5 shows that the
counterexamples constructed in this paper to the unitary dila-
tion conjecture cannot be used as counterexamples to another
well-known conjecture concerning spectral sets.

2* Notat ion and preliminaries* If H is a subspace of a Hubert
space K, the orthogonal projection from K to H will be written as
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PH9 and the restriction of an operator S to H will be written as S\H.
A contraction operator S on a Hubert space is a linear operator with
|| SII ^ 1; a proper contraction satisfies | | S | | < 1.

We shall require a well-known result of Sz.-Nagy which states
that the minimal unitary dilation of a contraction is unique up to
unitary equivalence.

THEOREM (Sz.-Nagy). Let S be a contraction operator on a
Hilbert space H, and let U and U' be unitary dilations of S to
Hilbert spaces K and K', respectively, containing H. Let Ko (resp.
K'o) be the smallest subspace of K (resp. K') which contains H and
reduces U (resp. U'). Then there is a unitary operator W from
Ko onto Kr

Q such that W\H is the identity operator, and W(U\K0)W~x~

The operator U\K0 is called the minimal unitary dilation for
the operator S.

3* A simple example* In this section we present a very simple
example of three commuting contraction operators which do not pos-
sess commuting unitary dilations. Let Ho be a Hilbert space of di-
mension at least two, and let H = Ho 0 Ho. Let V be any unitary
operator on Ho which is not a scalar multiple of the identity operator
/, and let A be any contraction on Ho which does not commute with
V. Define operators R, S, T on H by the operator matrices:

Ό 0Ί Γ0 0-

y oj " [A O

Notice that R, Sy T commute no matter how V and A are chosen; in
fact, the product of any two of them is 0. We shall show that these
operators cannot have commuting unitary dilations.

The proof is more natural when expressed in functional, rather
than sequential, notation and for this reason we introduce the Hilbert
space Ko of all Fourier series Σ?=~~ znxn, with the Fourier coefficients
xn in Ho, and Σ ll^ll2 < °° The inner product <( , •)> on Ko is de-
fined, as usual, by <Σ zn%n> Σ 3*i/Λ> = Σ(^> 2/»)> where ( , •) is the inner
product on Ho. Such a Fourier series may be considered to define an
honest square-integrable function from the unit circle into HQ (see [8]
for details), or it may be considered as merely a convenient way of
keeping track of the components of a conventional infinite sequence
of elements of Ho. For our purposes it makes no difference.

Let U be the operator on Ko defined by: £7(Σ zn%n) = Σ zn+1%n

When expressed in sequential notation, U is just the familiar bilateral
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shift acting on a direct sum of copies of Ho. Further, if H = Ho φ Ho

is identified in the obvious way with the subspace of Ko consisting of
all functions of the form x0 + zxlf with x0, xι in Ho, then it is very
easy to check that U is the minimal unitary dilation of the operator
R defined above.

Now suppose R, S, T have commuting unitary dilations UR, Us, Uτ

acting on a Hubert space K containing H, and let K'o be the smallest
subspace of K which contains H and reduces UR. Then the theorem
of Sz.-Nagy quoted in §2 shows that we may identify K'Q with the
space Ko of Fourier series in such a way that H is identified with
{x0 + zx^Xo, x, e Ho) and UR\K0 = U.

Given x in H, let x be the Fourier series Σ %nχn with x0 = x and
xn = 0 for n Φ 0. Since PHUS\H = S, Usx = w + ΣsΊ/» with yQ = 0,
y, = Vx, and w orthogonal to Ko. Then, ||α;||2 = || Usx\\2 = || Vx\\2 +
\\wII2 + Σ ^ i II^II2> and since F is an isometry, we must have yn = 0
for 7i ̂  1 and w = 0. Since Us commutes with UR, Us(znx) =
Us(Un

Rx) = URU8x = z*+1Vx. Thus Us maps iΓ0 onto itself (which
implies that Ko reduces Us because Us is unitary), and Us is uniquely
•determined on Ko by the equation above. In fact, US\KO may be
considered as multiplication by the operator-valued function z—>zV.

Now let E be the projection on iΓ0, and let T = EUT\KO. Then,
since Ko reduces both UR and Us, E commutes with UR and Us, and
hence f commutes with both U = UR\K0 and Us\Ko.

Let Tx = Σ znLnx, where this defines Ln as operators from Ho to
jff0. Since T commutes with U, it is easy to see that T acts as
multiplication by the operator-valued function z —• Σ znLn, and it is
obvious that this will commute with multiplication by z —> z V if and
only if each operator Ln commutes with V.

More explicitly, we compute: TUsx = T{zVx) = TU(Vx)= UT(Vx) =
Σzn+ιLnVx and UsTx = Us(ΣznLnx) = Σ«Λ + 1VL α?.

But finally we notice that PHT\H = PHEUT\H = PHUT\H = T,
and hence Lo = 0 and I^ = A. Thus if A is chosen to be any con-
traction which does not commute with V, we have a contradiction,
and it is impossible to find commuting unitary dilations for R, S, T.

A. Lebow and R. Douglas have observed that a weaker example can
be obtained more simply by taking the operator A to be unitary. Also,
the reader may have noticed that the dilation condition PHUk

RU%U%\H =
RkSmTn was not fully used. Actually, the counterexample is valid
under the much weaker assumption that PHUS\H = S, PHUT\H = T,
and PHUn

R\H = Rn for n^O. Further, the assumption that Uτ be
unitary was not used at all, and there are several ways that the ex-
ample can be strengthened at the expense of minor complications.
However, I do not know of any simple modification which will produce
three proper contractions without commuting unitary dilations.
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A simple idea contained in the proof above sheds light on a recent
result of Sz.-Nagy and Foias [9]. Let R and T be commuting con-
tractions with \\T\\ = 1, acting on a Hubert space H, and let UR, Uτ

be a pair of commuting unitary dilations acting on a Hubert space K
containing H. (The existence of UB9 Uτ is guaranteed by Ando's
theorem [1], [8, Chapter 1].) Let Ko be the smallest subspace of K
which contains H and reduces UB, let E be the projection on Ko, and
let T = EUT\KQ. Then it is an elementary exercise to verify that T
commutes with UR\K0 (the minimal unitary dilation for R), \\f\\ —
|| T\ I = 1, and the pair UR\K0, f dilates the pair R, T. The first two
statements are trivial, and the last will be evident to anyone familiar
with the structure of unitary dilations. For the reader's convenience
a proof of the last statement is sketched in the next paragraph.

By definition, the space Ko is the closed linear span of the spaces
URH, — oo < n < oo. Let Ki be the closed linear span of the spaces-
Un

RH, n^:0, and let M = Kt θ H. Then the following facts (a) and
(b) are well-known and easy to verify:

(a) Ko Q Kt is the closed linear span of all vectors (UB

n — R*n)xr

with x e H and n ^ 0
(b) M is the closed linear span of all vectors (UR — Rn)x, with

x e H and n ^ 0.
From (a) and (b) we deduce:
(c) TK$aK£. This follows from (a) and a routine computation,

showing that for all xyyeH and m, n ^ 0 , (TU^x, (U%n - R*n)y) =
{EUτUlx, (Ui*-R**)y) = {EUτUTnx, y) - (EUτU%x, R**y) = (TRm+nxr

y) - (TRmx,R*ny) = 0.
(d) TMdM. This follows from (b) and a similar computation

showing that for all x, ye H and m, n ^ 0, ( ? ( ! / £ - -KmK U%ny) = 0.
Finally we compute, for x, yeH and m, n > 0,

(fmUn

Rx, y) = (TmRnx, y) + (fm(UR - Rn)x, y)

= (TmRnx,y) = (TmRnx,y) .

The vanishing of (Tm(Un

R - Rn)x, y) follows from (b) and (d), and the-
last equality follows from (c) and (d) (see [7], Lemma 0, for a com-
plete proof.)

The relation ||f|| = || Γ|| depended on the assumption | |Γ | | = 1,.
but if we replace T by T/\\ T\\ and apply similar reasoning, we obtain
the following result, which is equivalent to the main result of [9];
(see [3] for details).

THEOREM (Sz.-Nagy and Foias). Let R and T be commuting
contractions on a Hilbert space H, and let U be the minimal unitary
dilation of R to a Hilbert space K. Then there exists an operator
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T on K such that:

( i ) The pair U, T dilates the pair R, T.
(ii) Uf=TU
(iϋ)

Therefore, the result of Sz.-Nagy and Foias may be viewed as a
-consequence of Ando's theorem on the existence of unitary dilations
for a pair of commuting contractions. Conversely, it is easy to deduce
Ando's theorem from the theorem above, and in effect, the two re-
sults are equivalent. However, the clever proof of Sz.-Nagy and Foias
in [9] proceeds from first principles, and does not rely on Ando's
theorem (as does the proof above.) Another proof, written in matricial
notation and also independent of Ando's theorem, may be found in [3].

4* Proper contractions without commuting unitary dilations*

In this section we give an example of three commuting proper con-
tractions which fail to have commuting unitary dilations. Unfortun-
ately, this example is not conveniently expressable in functional
notation, and we are forced to use the more cumbersome sequential
notation.

We begin as in the preceding example. Let Ho be a Hubert space
of dimension at least two, and let H — Ho φ HQ. Choose noncommut-
ing isometries V2 and V3 on HQ, and define operators Sίf S2, S$ on H
by the operator matrices:

-0 01

vt ojS t -

where V1 is the identity operator on Ho. We shall show that the
operators XSiy i = 1, 2, 3, do not have commuting unitary dilations
when X is sufficiently close to 1, 0 < X < 1. The idea is that com-
muting unitary dilations for XS{ would have to converge, as λ-* l ,
to commuting unitary dilations for Si9 and this would contradict the
result of §3.

The minimal unitary dilation U(X) for XS19 0 < λ < 1, may be
realized as follows on the space Ko of all sequences {•••, (α?_2, x^),
](ffo> %i)l> fe χs)f " •} of elements of H=H0Q)H0. (The zero' the
component is boxed, and the space H is identified with the subspace
of Ko consisting of all sequences which vanish outside the box.)

, (α?_2, αu

Λ /yt \ (pΛ /y» \ \

[/ j , «Λ/I/, \^2J ™Z/1 ί
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Note that £7(1) is a unitary dilation (but not the minimal unitary
dilation) for S1? and the operators U(X) converge uniformly to £7(1)
as λ —> 1. Let M denote the smallest subspace of Ko which contains
H and reduces £7(1). Expressed concretely, M is the space of all
sequences

{• , (ίc_4, 0), (x_2, 0), (xQ, Xj) L (0, x3), (0, αβ), •} .

Now for each fixed λ, 0 < λ < 1, we assume the existence of
commuting unitary dilations Ui(X) for XSif i = 1, 2, 3, and there is no
loss of generality in assuming that for all λ, 0 < X < 1, the operators
Z7<(λ) act on a fixed Hubert space K containing H. If K0(X) is the
smallest subspace of K which contains H and is invariant under t/Ί(λ),
then by the uniqueness theorem of Sz.-Nagy quoted in §2, we may
assume that K0(X) = Ko for all 0 < λ < 1, and that [/.(X) | iΓ0 is the
operator Z7(λ) defined above. (Given unitary operators W(X) which
map -Ko(λ) onto Ko, fix all elements of H, and satisfy

one can embed Ko in a larger Hubert space K' and choose arbitrary uni-
tary operators W'(X) mapping K onto Kr and satisfying W'(X) \ K0(X) —
W(X). Then one can replace the operators Ui(X) by their unitary
transforms W'(X)Ui(X)W'(X)~~L. For fixed λ, these new operators are
again commuting unitary dilations for XSiy i — 1, 2, 3, and, by con-
struction, W\X)U1(X)W\X)-1\K0 = U(X).)

The unit ball of operators is compact in the weak operator topology,
and hence there exists a sequence {Xn}, λn—•!., such that the operators
PMUi(Xn)PM converge weakly, as n-+ oo, to operators Qiy 1, 2, 3. Since
ί7i(λ)|UL<,= Z7(λ), the uniform convergence of Ϊ7(λ) implies that
PMUSX)PM converges uniformly to Q19 and that Qλ\M = U(l)\M.
Further, it is routine to verify that PHQ^H = Si9 i = 1, 2, 3.

Now we show that Qt commutes with Q2 and Q3. Writing E = PM

and using the notation [A, B] — AB — BA, we first note:

( 1 ) [Qi, Qi] = weak lim [EU&JE, EUt(\%)E]
n—»oo

( 2 ) lim | |(1 -

( 3 )

Equation (1) holds because EUΊiXjE converses uniformly to Qlf and
(2) and (3) follow immediately from the expression for Z7(λ) above.
Now the identity

[EUJME, EU<(\)E] =
{EUMil - E)}Ut(\)E
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together with (1), (2), (3), and [U^X), I7i(λ)] = 0 imply that [Qlf Q,\ = 0.
The contractions Q{ leave M invariant, Qι\M commutes with

Qι\M=U(l)\M, and PHQt|H = S<, 1, 2, 3. From this we conclude
(the argument is identical to one in §3) that the action of Qι on M
is given by:

(0,

-t, 0), (F^_ 2, F Λ ) , (0, F Λ ) ,

Of course, Q2 and Q3 do not commute because F2 and F3 do not com-
mute. However, we will now show that the method of construction
of Q2 and Q3 implies that they must commute. This is a contradic-
tion, and therefore, the commuting unitary dilations Ufa) cannot
exist when X is sufficiently close to 1, 0 < λ < 1.

To see that Q2 and Q3 must commute, first note that their re-
presentation above shows that each is isometric on M. As is well-
known, a sequence of contractions which converges weakly to an
isometry also converges in the strong operator topology. Since the
isometry Q4\M is a weak (hence strong) limit of the contractions
PM Ui(Xn)PMIM, elementary properties of the strong operator topology
imply that for all x in M,

(a) Q2Q,x = Jim PM U2(Xn)PM Ud(Xn)x

(b) l i m ( l - P j r ) ϋ i ( λ )» = 0 .

From this we obtain, for all x in M,

Q,Q,x - limPMU2(Xn)PMU,(Xn)x

= limPMU2(XjU,(Xn)x + limPMU2(Xn)(PM - l)U,(Xn)x

= limPMU2(Xn)U3(Xjx - limPMUz(Xn)U2(Xn)x = Q3Q2x .

The proof is complete.

5* Remarks on an open problem* It has long been known
that questions involving unitary dilations are often closely related to
questions involving spectral sets. For instance, Von Neumann's
theorem stating that the unit disc is a spectral set for every contrac-
tion is a simple consequence of the existence of a unitary dilation for
a single contraction together with the easy fact that the disc is a
spectral set for any unitary operator. Conversely, if a simply con-
nected subset of the plane is a spectral set for an operator, then the
operator has a normal dilation with spectrum in the boundary of the
set [2, 4, 5]. (When the set in question is the unit disc, this says
that Von Neumann's theorem implies that every contraction has a
unitary dilation.)
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One can try to generalize Von Neumann's theorem to apply to
several commuting contractions as follows. Let D be the unit disc
{z 11 z I ̂  1} in the complex plane, and let Όn denote the w-fold direct
product of D with itself. We shall say that Dn is a spectral set for
n commuting contractions Slf , Sn if for each polynomial p(zlf , zn)
in n variables,

where ||p||oo denotes the maximum of \p(z19 * ,zn)\ on Dn. The
following conjecture is a natural generalization of Von Neumann's
theorem.

Conjecture. The %-polydisc Dn is a spectral set for any n com-
muting contractions on a Hubert space.

It is easy to employ the spectral theorem to show that this con-
jecture is true if the commuting contractions are normal operators.
From this, it follows that the existence of commuting unitary dilations
for n commuting contractions implies the conjecture for that n. Thus
Ando's theorem implies that the conjecture is true for n — 2. For
n Ξ> 3, the conjecture is still open, and the results of this paper show
that its proof (if, indeed, it is true) cannot rely on the existence of
commuting unitary dilations for commuting contractions.

Also, the operators of §3 cannot be used to construct a counter-
example to the conjecture, for D2 is a spectral set for any three con-
tractions defined on H = HQξ£) HQ by operator matrices

Ό 0",
i — 1, 2, 3,

This also shows that the spectral set problem and the commuting
unitary dilation problem are not equivalent for n ^ 3.

To see that D3 is a spectral set for the operators S19 S2, S3, con-
sider an arbitrary polynomial p in three variables:

3
rγ\(/y /y ιy \ ft I \ ^ /y /y I fίί'y φ Φ \
Jr\ 19 */2) ^3/ — ^ 0 î  x ^ (Λ/̂ /V̂  ~γ~ tyK&if ™21 ™3/ 9

ί = l

where q is a polynomial containing only terms of second or higher
degree. Then

Σ UiQi ^ O j

The first step, left to the reader, is to verify that
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3

Σ
i=l

O-i

—'

3

Σ ai

°Ί

Hence to show that D 3 is a spectral set for Sl9 S29 S5, we need only
show that the norm of the latter matrix is no larger than

inf Σ aizi

where the infemum is taken over all polynomials q containing only
terms of degree two or higher.

Now a classical result of Caratheodory and Fejer states that

0
inf 1160 + hz + r(z)\\ 00 =

where the infemum is taken over all polynomials r(z) (in one variable)
which contain only terms of degree two or higher. (For a modern
proof, see Sarason's beautiful paper [6], where the result is derived
as a consequence of a special case of the theorem of Sz.-Nagy and
Foias discussed in §3.) Using this fact, we have:

s . ) i ι ^
rl«

3

= inf

^ i n f

= inf

ΌI 0 Ί

i 1 «ί 1 do 1
1 - 1

\ao\ + (tla^z + r(z)
3

1 α01 + Σ <
* = 1

3

t = l

CO

f gfe, z,, 2.) CO

where, again, r and g range over all polynomials, in one and three
variables, respectively, containing only terms of degree two or higher.
The second inequality was obtained by setting all three variables
equal in the polynomial \ao\ + Σ5=i + q(z19 z2, z3), and the last
equality was obtained by multiplying by ao/\ao\ and replacing z{ by

Thus Ds is a spectral set for three commuting contractions which
admit no commuting unitary dilations, and it appears that the con-
nection between spectral sets and unitary dilations may not be as
close as has been assumed.
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