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TWISTED SELF-HOMOTOPY EQUIVALENCES

ALLAN J. SIERADSKI

This paper studies the group G(A X B) of (homotopy classes
of) self-homotopy equivalences of a product A X B of two
connected CW homotopy associative H-spaces A and B. It
establishes the existence of an exact sequence of multiplicative
groups

1-[AAB,AX B]->G(A X B)— GL(2, 4r5) > 1

provided that io[A X B, A X Blogo[A A B, A X B] =0, where
q: A X B—>A A B is the cofibration induced by the inclusion
AV B> A X B of the sum into the product. The entry
GL(2, A;;) is the group of invertible matrices

hia b
h — A4 AB)
(has) (hBA ks

with entries %;; in the homotopy sets A;; =[I,J] for I,J =
A, B, where matrix multiplication is defined by

(hrr)(krs) = (hraokar + hrpoksy)

in terms of composition o and the operation + in the homotopy
sets [I, J], and where the multiplicative unit is

1, 0
Sry) =
6rs) (0 13) .
The homomorphism G(A X B) —> GL(2, A;;) is given by the
correspondence of h: A X B—> A X B with the matrix

(iAOkOPA ’L.A"h"pB)
ipohop. ’iBOhOI)B

with entries obtained from % by composing with the inclusions
14 A—>AXBand ip:B>AXB

and the projections
psiAX B—>A and pp: A X B— B;

for a preliminary result states that under the hypothesis above
h:Ax B—~ A X B is a homotopy equivalence if and only if
the matrix (¢;0hopy) is invertible,

A homotopy equivalence f X g: A X B— A X B is referred
to as untwisted. These determine a subgroup G(4) X G(B) c
G(A X B) which is isomorphic under the homomorphism G(A X
B) > GL(2, 4;5) to the subgroup of diagonal matrices, and so
the nondiagonal matrices give measure of the twisted self-
homotopy equivalences A X B—> A X B. The extreme case in
which all self-homotopy equivalences are untwisted is con-
sidered, and it is shown that G(A) X G(B) = G(A X B) if and
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only if the homotopy sets [A, B],[B, A], and [A A B, A X B]
are trivial.
Next, four settings are considered in which
10[A X B, A X Blogo[A AN B, AXB]=0

and the exact sequence is valid, In the last section the dual
situation of the group G(M v N) of self-homotopy equivalences
of a sum MV N of two co-H-spaces M and N is briefly
sketched,

2. The short exact sequence. We work with spaces with base
points and we fail to distinguish in our notation between a base-point-
preserving map and its homotopy class. Each set [X, Y], with Y a
homotopy inversive, homotopy associative H-space, of homotopy classes
of base-point-preserving maps receives a group structure whose opera-
tion will be denoted additively and will be referred to as “addition.”
Later various other operations will be considered and referred to as
“multiplication.”

For the composition of f: X — Y and g: Y — Z we write

feg: X— 7,

displaying the maps (classes) in the order of their application. Since
we work with subscripts and matrix-like multiplication, this “non-
standard” notation for composition seems preferable; in any case, since
we do not work with elements, expressions of the form ¢(f(x)) which
suggest the other order of writing composition do not occur.

Throughout this paper, spaces A and B are connected CW com-
plexes which admit homotopy inversive, homotopy associative multi-
plications m,: A x A— A and my;: B x B— B. 8o it is easy to define
some twisted classes A x B— A x B; given h;;: I—J for I, J = A, B
we define {(h;;)}: A x B— A x B by setting the projection onto the
J® factor equal to

h’AJ X h:BJOm,] == pAOhAJ + pBOh/BJ:A X B—)J X J‘_‘)J

for J = A, B. For example, if 6,,:1—J is 1: I —J when I = J and
0: I— J when I = J, then {(6;5)} =1:A x B— A X B.

We now consider the extent to which an arbitrary homotopy class
A x B— A x B differs from one of this special form {(%;,)}. Since
the product A x B inherits from A and B a “coordinate-wise” multi-
plication which is homotopy inversive and homotopy associative, we
obtain from the mapping cone sequence for the inclusion i: A \/ B—
A x B a short exact sequence of additive groups of homotopy classes

0——[AAB Ax B-L5[Ax B, Ax Bl—2»[AV B, A x B|—s0,
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where q: A x B— A N B is the inclusion of A x B onto the base of
the mapping cone of 7. It proves convenient to identify [A \V B, A x B]
with the set of 2 x 2 matrices

hAA hAB
(hay) = ( )

hsa pg

with entries %,, from the homotopy sets [I, J] for I, J = A, B, via the
correspondence of h: A \/ B— A X B with the matrix (i;ohop,), where
s I— A\ B(I = A, B) are the two inclusions of the summands into
the sum and p,: A x B— J(J = A, B) are the two projections of the
product onto the factors.

Note that given the matrix (&,,), the class {(h;,)}: A x B—~ A X B
defined earlier satisfies

io{(hw)} = (hIJ): AV B—AXB
because

troto{(hr)}on; = iy0t0h,y X hyyomy
= t0h,y V hpsotom,
= 10h4y V hgoV
= hyy .

Therefore, for any h: A x B— A x B we have h — {(h;;)} in kernel
7 = image ¢*, if we choose h,;, = 1,0t0hop, for I, J = A, B. This proves

LEMMA 1. Each class h: A X B— A X B is of the form
= q°f+ {U’Lu)} .

To return to the investigation of G(A x B) we observe that
composition of homotopy classes determines an associative operation in
[A x B, A x B] which we will write multiplicatively. This operation
has a unit 1, is generally noncommutative, and distributes over addi-
tion from one side: fo(g 4+ h) = fog + foh. Thus [A X B, A X B] is
nearly a ring (lacking commutativity of addition and left distributivity
of multiplication), and the group G(A x B) of self-homotopy equiva-
lences of A x B is just the group of invertible elements of [A X B,
A x B] with respect to the multiplication.

To abstract information about G(A x B) from the additive exact
sequence above, we try to introduce compatible multiplications in its
other entries. The identification of the set [A \V B, A X B] with the
set of 2 x 2 matrices (h;,) with entries k;, from the homotopy sets
[I, J] for I, J = A, B makes it possible to introduce matrix multipli-
cation in [A \VV B, A X B]:
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(hu)'(ku) = (hIAOkAJ + hIBOkBJ)

where the indicated addition takes place in [I, J]. This matrix multi-
plication need not be associative, but does admit a unit (5,,) and so
we can refer to invertible matrices (h,,): AV B— A x B. The next
theorem begins to relate these invertible matrices (4;,): AV B— A X B
to homotopy equivalences h: A x B— A x B.

THEOREM 2. If toh = (hy): AV B—A X B s an invertible
matrix, then h: A x B— A X B is a homotopy equivalence. In parti-

cular, each invertible matrixz (h;;) determines a homotopy equivalence
{(hi))}y AX B— A X B.

We base the proof on the following facts.

LEMMA 8. (i) If we identify [X, A X B] with the set of 1 x 2
matrices (9;) with entries g;: X — J(J = A, B) by means of the corre-
spondence g— (gop,), then {(h;,)}::[X, A X Bl —[X, A x B] can be
caleulated by matric multiplication

(gJ)°{(h1J)} = (nghAJ + gBOh’BJ)
(ii) If X has a comultiplication and ioh = (h;,), then h, = {(hz;)}s
[X, A x Bl —[X, A x B
(iii) If X has a comultiplication, then {(h;)}so{(Fr)}s = {(hrs)+ (Frs)}st
[X, A x B]—[X, A x B].

Proof. Since {(h;)}on; = Dsoh,; + Dpohy;, we have for g: X —
A X B

go{(hr))}en; = go(paohas + Dpohsy)
= gopsohyy; + gopgohy,
which proves (i). Now if X has a comultiplication then ¢,: [X, A \V B] —

[X, A x B] is surjective so g = doi. If we use Lemma 1, then we
see that

geh = go(qof + {(hi)}) = goqof + go{(hs,)}
= dotogef + go{(hi)} = go{(hs,)}
which proves (ii). If X has a comultiplication then the usual addition
in [X,J] (J = A, B) is abelian and furthermore coincides with the

operation induced by the comultiplication so that each k;,:[X, I]—
[X, J] is a homomorphism. Thus we have

(97) o A(he)}to{(k1)} = (9aohas + gpolips)o{(k1s)}
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= ((9a°has + 9sohpa)okar + (9aohas + 95ohss)oks,)

= (9uohauokar + grohpaokass + guohugokss + 9sohpsoksy)
= (9uohasokas + guohapoks; + gpohpsokss + gpohssoksy)
= (940 (hasokas + hasokss) + 9so(hpackss + hpsokss))

= (97)°{(hrs) - (Fr,)}

which proves (iii).

Proof of Theorem 2. It is an immediate consequence of (i) and
(iii) of the lemma that for an invertible matrix (k;;) the function

{(h11)}: [X, A x B] — [X, A X B]

is an isomorphism, provided that X is comultiplicative. In view of
(i) and the fact that the spheres S*(k = 1) are comultiplicative, the
hypothesis that ¢oh = (h;;) is an invertible matrix then implies that

hy: 7, (A X B)—7,(A X B)

is an isomorphism (k= 1). So the Whitehead Theorem and our
hypothesis that A4 and B are connected CW complexes allow us to
conclude that n: A x B— A x B is a homotopy equivalence.

A crucial consideration, which we postpone until the next section,
is whether

#[Ax B, Ax B|—[AV B, A x B

is a homomorphism from the composition multiplication to the matrix
multiplication. When 4* is a multiplicative homomorphism, its surjec-
tivity shows that matrix multiplication is associative and hence the
set GL(2, 4;,) of invertible matrices (k,,) with entries h;, € 4;;, = [I, J]
(I, J = A, B) is a group under matrix multiplication.

THEOREM 4. Let 7*:[A x B, A X B]—[A Vv B, A X B] be a multi-
plicative homomorphism. Then

(i) h:Ax B— A X B is a homotopy equivalence if and only if
doh = (hy;): ANV B— A X B is an invertible matriz, and

(ii) there is a short exact sequence of multiplicative groups

1——[AAB Ax BE36A x B2 6L, 4,) — 1.

Proof. (i) Theorem 2 states that if 7o/ is an invertible matrix,
then % is a homotopy equivalence. The converse holds here since
invertible elements are sent into invertible elements by the multipli-
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cative homomorphism 7%

(ii) It follows from (i) that the restriction of the multiplicative
homomorphism 4 to G(A x B)yC[A x B, A x B] is a surjective multi-
plicative group homomorphism

#: G(A x B) — GL(2, 4,,) .

The kernel of this homomorphism consists of those 2 € G(A x B) with
h — 1 ¢ kernel 7 = image ¢*. Thus the multiplicative kernel is image
¢* + 1 with the multiplicative structure described by

(qof + 1)-(geg + 1) = (gof + 1)ogog + qof + 1.

We can therefore consider the multiplicative kernel as the image of
the injection

¢+ 1:[A A B, A x B| »G(A x B)

and this is a multiplicative group homomorphism if the domain is
given the multiplication uniquely described by the requirement

qo(f-9) = (qof + L)ogeg + qof .

There is a situation in which the addition in [A A B, A X B]
coincides with the multiplication just introduced. Suppose that :
AV B— A x B is the cofibration induced by some map a: X — A \V B
that is, A x B= (4 Vv B)U.CX = C,, the mapping cone of «, and
the sequence

AVB—>4xB-*AANB
is equivalent to the tail-end of the sequence

X5 4avB @0 s x

where i(a): AV B—C, and j(a):C,—C,/J(AV B) =3, X are the
indicated inclusion and quotient maps. Then there is a cooperation

¢:Ax B—(AAB)V(AXB)

in the sense that

l~c¢cop:AXB—-(AANBV(AXB—AXB
g=cop:AXB—-(AANBV(AxXxB—AANB.

The cooperation is essentially the map C,— >, X Vv C, which collapses
the equatorial belt X x 1/2 in the cone CX.

PROPOSITION 5. When 1: A \/ B— A X B is an induced cofibration
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then
¢+ 1:[AANB,A X Bl—[4A X B, A X B]

18 a homomorphism from the additive operation in [A N B, A X B]
to the composition multiplication in [A x B, A X B].

Proof. For fe[A N B,A x B] and he[A x B, A x B], define
h = cof V hoJ: A X B— A X B.
Since A x B has a multiplication =,

' = ¢cof V hoW/

= ¢of \/ hejon, for j:(A x B)V (A X B)— (4 x B) X (A X B),
cog’of X hon, for j: (AN B) V(A X B)— (AN B) X (A X B),
= doqf X hom, since ¢ =~ c¢op, and 1 =~ cop,,
=qf +h.

So for f,ge[A N B, A x B], and h,ke[A X B, A x B] we have

Wik = (cof \/ ho\7)ok?

= co(fok? \/ hok®)o\/
qofok? + hok?
= qofe(qeg + k) + ho(geg + k)
= qofoqog + qofok + hogog + hok
= qofok + hoqog + hok ,

i

as the presence of a comultiplication on A A B = 3, X guarantees
that f = ec1: AN B— A\ B— A x B for a suitablee: AN B— AV B,
and 80 foq = eoioq = ec0 = 0. In particular
(gof + 1)-(geg + 1) = 17-1°
=gof + qog +1
=q(f+9) +1

which proves the proposition.

While this result does not have great applicability, it is tailored
to the case 4 = S*, B= S™ for n, m from the collection (1,3,7) for
then we have the mapping cone sequence

Sremet L, ge St g Sm T gr A S

3. The multiplicative homomorphism. We see that “*({(7.,)}*
{(k:)}) = #{(hry)}+¥{(ky1,)} since
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17010 {(hrs)} o {(kr)}oms
= 1,0(hy;) o (Packss + Dpokss)
= 10(hrs)opsok s + 10(hrs)oppoks;
= hIA"kAJ + hIBOkBJ
= 1,0(hss) - (krs)opys -
For the general case h = gof + {(h;;)} and k = qog + {(k,,)}, we have
#(h-k) = iohogog + #(h)-i*(k) ,

since

tohok = 1oho(geg + {(k.,)})
= iohogog + ?:O{(hIJ)}O{(kIJ)} .

We record this fact as follows.

THEOREM 6. The function :[A x B,A X Bl—[AV B, A x B]
s a multiplicative homomorphism if and only if

10[A X B, A X B]eqe[A N B,AX B] =0,

or equivalently, kermel * = qo[A N B, A X B] is a right ideal in.
[A x B, A x B].

COROLLARY 7. If the H-spaces A and B satisfy [A N B, A X B] =
0, then the group of self-homotopy equivalences of A x B is GL(2, 4,,),.
the group of inmvertible matrices (h;;) with entries h; € Ay = [1, J],
for I, J = A, B.

COROLLARY 8. If either

(i) the H-spaces A and B admit comultiplications,

(ii) all maps I— J(I,J = A, B) which induce the zero homomor-
phism on homotopy are null-homotopic, or

(iii) the homotopy set [A \ B, A A\ B] is triwial, then

(vi) a map h: A x B— A X B is a homotopy equivalence if and.
only if ioh = (hy;): AV B— A X B is an invertible matriz, and

(V) there is a short exact sequence of multiplicative groups

1—[AA B, Ax B]—G(A x B)—GL@2, 4;,)) > 1.

COROLLARY 9. For any two H-spaces A and B
G(4) x G(B) = G(A x B)

iof and only if the homotopy sets [A, B], [B, 4], and [A N B, A X BJ
are trivial.
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Proof of the corollaries. Corollary 7 and Corollary 8 (iii) are
immediate consequences of Theorems 4 and 6. For Corollary 8 (i) and
(ii) we point out that if X is comultiplicative

[X, AV B]eto|A X B, A X Blogo|][A N B, A x B]
c[X, AV B]oieqge[ANB,AX B]=0.

Thus, if 4 and B admit comultiplications, then
i000[A X B, A X Bloge[AN B, AX B] =0

for I = A, B, which proves Corollary 8 (i). In any case each map of
1,000[A X B, A X Bleqe[A N B, A X Blep,

induces the zero function [X, I] — [X, J] (I, J = A, B) provided X is
comultiplicative. If all maps I — J(I, J = A, B) which induce the zero
homomorphism on homotopy are null-homotopic, then the above maps
are null, which proves Corollary 8 (ii).

For Corollary 9 note that if G(A) x G(B) = G(A x B) we obtain
an exact sequence as in Theorem 4. From the injectivity of G(4) x
G(B) — GL(2, 4;;) and exactness we conclude [A A B, A X B] = 0; from
its surjectivity we conclude [A, B] = 0 = [B, A]. Conversely, if [4, B],
[B, A], and [A A B, A x B] are trivial we have from Corollary 7 and
direct calculation G(A x B) = GL(2, 4,,) = G(A) x G(B).

ExampLES. 1. For integers n, m = 1 and abelian groups G and
H, the Eilenberg-MaLane spaces A = K(G, n) and B = K(H, m) are
H-spaces and [A N\ B, A x B] = 0 so that by Corollary 7, G(K(G, n) x
K(H, m)) = GL(2, A,;). If n = m,then 4,, = Hom, (I, J) (I, J = G, H):
if in addition G = H, then G(K(G, n) x K(G, n) = GL(2, 1), the general
linear group of degree 2 over the endomorphism ring 4 = Hom, (G, G)
of the abelian group G. If n > m, then A,, = H™(G,n; H) =0 and
so GL(2, 4,;,) consists of triangular matrices (k,,) with entries A, e
Iso (G, &), by, e H*(H, m; G), and hy, e Iso (H, H). We write the group
GL(2, 4,,) of such triples with matrix multiplication as

G(K(G, n) x K(H, m)) = Iso (G, G)x H*(H, m; G)xIso (H, H) .

2. If X is an m-connected CW complex with 7,(X) = 0 for k >
2n, then the group G(X) of self-homotopy equivalences of X is the
group of units of the ring 4 = [X, X, while the group G(X x X) of
self-homotopy equivalences of the product X x X is the general linear
group GL(2, 4) of degree 2 over 4. So the situation here is like that
which occurs in the entirely algebraic setting. That 4 = [X, X] is a
ring follows from the facts that (i) as % [X x X, X]— [X VvV X, X]
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is a bijection, X is a homotopy commutative H-space for which each
self-map X — X is an H-map, (ii) as *: [X X X X X, X]—-[XV XV
X, X1 is a bijection, the multiplication is homotopy associative, and
(iii) as X is a CW complex, the multiplication is homotopy inversive.
Alternatively, we could argue from the fact that X has the homotopy
type of an infinite loop space and each self map can be achieved up
to homotopy as a looped map. Finally, that G(X x X) = GL(2, 4)
follows from Corollary 7 as [X A X, X x X] = 0.

3. If A=S"=B (n=1,3,7), then the additive and multiplica-
tive structure of 4,, = [S*, S"] (I, J = A, B) used in defining matrix
multiplication coincides that that of the ring Z of integers under the
usual isomorphism [S*, S"] ~ Z. Thus GL(2, 4;;) = GL(2, Z), the group
of 2 x 2 matrices with integer entries and determinant +1. We have
from Corollary 8 that

h:S* x S"— S" x S” =137

is a homotopy equivalence if and only if the matrix ioh = (h;;): S* V
S*— 8" x S* of “integers” has determinant 1.

Since the additive structure in [S™ A S*, S” x S"] coincides with
that of

0 n=1
T(S" X 8™ =1Z,6P Z, n =3
Z120 @ leo n="1.

Corollary 7 shows that G(S* x S") = GL(2, Z), while Proposition 5 and
Corollary 8 yield exact sequences

0—-2,DZ,— G(S® x Ss)’_)GL(zv Z)—1
and
0—Z3 @D Ziyy— G(S™ x 8" — GL(2, Z)—1.

4. If A=S,B=S" (n=38,7), then 4,, = Z for I = J and =0
for I # J. This implies that GL(2, 4,,) consists of the four invertible
diagonal matrices with integer entries, which makes it isomorphic to
the (abelian) subgroup G(S?) x G(S*) = G(S* x S™), and so the exact
sequence of Corollary 8 is split. In view of Proposition 5 and the
fact that the additive structure of [S' A S,, S* x S*] coincides with
that of

71'4(S3) = er n = 3,

T, (ST X S*) =
! ( 8 ) {ﬂs(s7) = Z,, n =",
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this sequence takes the form
0—-Z,—-GS*'x SV~ 2, Z,—0,

where we have used the additive notation GL(2, 4,,) = Z, P Z,.
To prove that G(S*' x S™) is abelian we first note that for

fi9el[S'AS" St x 8" = Z, {(Br)}s {(Brs)} € G(S* x S™)

we have fo{(k,)} = 0 if and only if f = 0 and therefore gofo{(k;,)} =
qof, while {(hIJ)}°Q°g = huy X hpgoqog = qohyy N\ hpzeg = 0 if and only
if ¢ = 0 and therefore {(%;;)}°g°g = gog. Then the operation

(@of + {(her)D) - (@o9 + {(kr)}) = {(he)} {(Rrs)}
= qofe{(k)} + {(he)}oqog + {(Ri)H(Frr)}
as in Proposition 5,
= qof + qog + {(hr)H(kz,)}
= qo(f + 9) + {(hi)H(Ers)}

in G(S* x S™) is observed to be abelian and we conclude

GS'x SY~Z,BDZDZ (n=237).

5. If A =S®%and B = S” we obtain the exact sequence
022,72, —GS* xSV~ Z,PZ,PZ,—0

in view of the data 7,(S°®) = Z;, 7,(S") = Z,, and 7,(S°) = Z,, and
the fact that GL(2, 4;;) = (£1)*m,(S*) % (£1) (see Example 1 for nota-
tion) can be written additively as Z, Z, @ Z,. Associated with the
nonzero element hg, € 7, (S°) = Z, there are four basic twisted self-
homotopy equivalences {(h;,)}: S* x S”"— S* x S’ given by

hAA = ile [83, SS], h/BB = ile [S7y S7]

and each of these has 15-24 variations of the form g¢eog + {(k;;)} for
g€ [S3 A ST, 8% % S7] = 71'10(83) @ 71'10(S7) = Z15 @Zm-

6. We consider here the case A = P® = B (real projective 3-space).
The space P° cannot admit a comultiplication since spaces with both
a multiplication and a comultiplication have fundamental group =, = 0
or Z. Thus this situation doesn’t fit into Corollary 8 (i), but it is
covered by 8 (ii). It is known that two maps P®— P*® are homotopic
if and only if they induce the same homomorphism ¢ on 7, = Z, =
(0, ®') and have the same degree. Since the degree of f: P*— P°?
can be calculated from f,: my(P?) — 7 (P?), it follows that hypothesis
8 (ii) is satisfied.
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Moreover, there exists a map P®— P? of degree d inducing ¢:
Zy— Zy p(@Y) = 0* (k= 0,1) if and only if d = kmod2. Thus the
assignment f— deg f determines a bijection [P? P?]— Z, which is a
homomorphism from addition and composition multiplication to integer
addition and multiplication. Thus Corollary 8 (ii) provides an exact
sequence

1—[P*A P% P x PY|— G(P* x PY)— GL(@2,Z)— 1.

7. If A=8S"and B=S* x S% then A4;, =0 and so GL(2, 4,,)
consists of triangular matrices and can be denoted by

G(S® x S xm/(S® x S*)*(*1) .
Since [A \V B, A A B] = 0, Corollary 8 (iii) is applicable and provides
1-[S"A (S x 8%, 8" xS xS]—-GS" x S*x8)—GL(2, 4,;)—1.

REMARK. In Examples 3, 4, 5, and 7 there occurs the H-space
S™ none of whose multiplications is homotopy associative! But at
least the standard one induced by the multiplication of Cayley numbers
is diassociative in that the substructure generated by any two elements
of [X, S7] is associative. Fortunately, this is sufficient to provide the
implication

h —A{(h;)} = qof = h = qof + {(hy))}
needed for Lemma 1, the implication
h — leimage ¢* = hcimageq® + 1

needed for Theorem 4 (ii), and, together with the cyclicity of [S™ A
S7, S7] for » =1, 3,7, the equality

gof +(gog + 1) = (gof + gog) +1

needed for Proposition 5—the only places where associativity is erucial
and does not follow from other considerations.

4. The dual case. Let M and N be simply connected CW com-
plexes which admit homotopy inversive, homotopy associative comulti-
plications ¢,: M— M \/ M and ¢y: N— N \v N. Again the operation
of the induced group structures on the homotopy sets will be written
additively.

Given four maps h;;: [—J (I, J = M, N) we can define a map
Lh))>: M\ N— M N/ N by 1;0(h;;)> = ¢;ohsy \/ hry. To measure the
deviation of an arbitrary map h: M \v N— M v N from this special
form we introduce the exact sequence of additive groups
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0——[MV N, My N]-Z5[M v N, M\ N]—25[M v N, M % N]——0

where the group structures are inherited from the coordinate-wise
comultiplication on M \V N and the map p: Mpb N— M Vv N is the
fibration induced by @: M\ N— M x N. Since 4 {(h;,)> = (hz), We
can use the exactness of the above sequence to show

LeEMMA 1. FEach class h: M\ N— M \/ N s of the form h =
fop + L(hry)y for some f: Mbh N— M \/ N.

Using this fact and the dual to Lemma 8, which we do not bother
to record, we can prove.

THEOREM 2'. If hoi = (h;)): M\ N— M X N s an invertible
matriz, then h: M\ N— M\ N is a homotopy equivalence.

Proof. It follows from Lemma 3’ that
W:[M\V N, Y|—[MV N, Y]

is an isomorphism, provided that Y has a multiplication. Since this
applies to the Eilenberg-MacLane spaces Y = K(G, n), we see that
h:M\/ N— M\ N is a map between simply-connected CW complexes
which induces isomorphisms on singular cohomology and hence is a
homotopy equivalence.

THEOREM 4'. Let ¢:[M\V N, M\ N]l—[M\ N, M x N] be «a
multiplicative homomorphism. Then

(i) h:M~N N— M\ N 1is a homotopy equivalence if and only
iof hot = (hy;): M/ N— M x N 1is an invertible matrixz, and

(i) there is a short exact sequence of multiplicative groups

1—[MV N, Mb N|—GM\ N)— GLE2, 4,;;) — 1.

THEOREM 6'. The function i, [M\/ N, M\/ N|—[M\ N, M x N|
28 a multiplicative homomorphism if and only if

[M\ N, Mb Njepe[M\/ N, M\ Njoi =0,
equivalently, kernel i, = [M\/ N, Mb Nlop is a left ideal in [M \/ N,
M\ NJ.

COROLLARY 7. If the co-H-spaces M and N satisfy [M \/ N,
Mb N| =0 then the group of self-homotopy equivalences of M \/ N
s given by
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G(M \ N) = GL@2, 4,)) .

ExavpLE 8. If M=S"=N (n>1), then [MV N,Mp N] =
Tpra(S™ x S™, 8"V S P 7,.,(S* x S*, S*\v §”) = 0 and the ring struc-
ture of 4,, = [S*, S*] (I, J = M, N) coincides with that of Z. So the
group G(S™ Vv S*) of self-homotopy equivalences of S™ \/ S™ is given
by GL(2, Z), the group of matrices with integer entries and deter-
minant +1. This shows that two exact sequences derived in Example
3 coincide with those obtained by P. J. Kahn [1, Proposition 2].

We thank the referee for suggested improvements in various
imprecise and obscure passages of an earlier version of this paper.
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