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SOME MEASURE ALGEBRAS ON THE INTEGERS

RICHARD SCOVILLE

The author constructs some abstract algebras whose ele-
ments are subsets of the positive integers, and such that the
measure of a set is its density. These algebras &7 are
““abstract’’ in the sense that the countable join in the underly-
ing lattice is not ordinary set union., However they are
‘““‘concrete’’ in the sense that the elements of the algebra are
sets, the notion of an integrable function is available and the
normed vector space of integrable functions can be shown to
be isometrically isomorphic to an ordinary L! space, If a
function f is integrable, it is shown that its integral is given
by

lim =37 £4()
N N =1 J

where f* is a suitably chosen function differing from f only
on a set of density 0.

This construction differs from others (several are described
by Kubilius in his book on probabilistic methods in number
theory), because usually countable additivity is sacrificed,
whereas here the meaning of countable join has been altered.

The work was motivated by a desire to prove Theorems 3 and 4
which concern an application to sequences (mod 1). We also include
some remarks concerning the possibility of constructing probabilisti-
cally independent measure algebras. Furthermore by means of the
Cantor expansion of a number we construct an algebra which contains
all periodic sequences.

2. Construction of &% Let (X, <7 ¢t) be a probability space.
Let & =< <& be an algebra (not necessarily a o-algebra) which
generates <7, i.e., < is the smallest o-algebra containing &#. We
refer to the members of <# as Borel sets. Suppose also that a
sequence {z,} of elements from X is given satisfying

w(I) = Iiml—];r—card Gl2;e i =1,2, -+, N}, for all Ie. 5.

This sequence will remain fixed throughout the discussion. A set
Be &7 is called admissible if there is a set of integers A such that

p(BNI) = lilsnflr-card{ﬂz,-eI;jeA;j =1,2, ..., N}, Ie.7.

769



770 RICHARD SCOVILLE

A will be said to go with B. A set of integers A is said to hawve
density if

limicard{jljeA;j =1,2, -+, N}
¥ N

exists. The value of the limit will be written dens(4). Moreover,
if dens (4, — 4,) =0 we will write A, & A4;(dens). We will write
A, = A,(dens) if A, = A4,(dens) and A4, < A, (dens). We state now a
series of lemmas.

LEmMA 1. If A goes with B, then p(B) = dens (A).
Proof. p(B) = (BN X) = dens (4).

LEMMA 2. If A goes with B and if A = A, (dens), then A, goes
with B.

Proof. Obvious.

LEMMA 3. If Ie &, then I is admissible and the set {j|z;€I}
goes with 1.

Proof. Obvious.
LEMMA 4. If B is admissible, then B° is admissible.
Proof. If A goes with B, A° goes with B°.

LEMMA 5. If B, and B, are admissible with B, & B, and if A,

and A, go with B, and B, respectively, then A, & A, (dens).
Proof.

~11\7card{9'|jeAl — Ay j=1,+-+, N}

:l—tr—card{ﬂjeAl—Az;zjeI;sz ..., N}

+ %card{j[jeAl — Ay z;¢l;5=1, -+, N}

g%,—card{meA;;zjeI;j =1,-+, N}
+ %card{j]jeAl;zjeI;j =1,2, -+, N}.
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Hence
lim L card (j(je 4, — 435 =1, -+, N}
¥y N
=uB:inI) + uB.NI%), Ie 7.

Now since .&# generates <7, (I A (B, — B))) can be made as small as
we wish so we see that

lim -~ card {j|je A, — Agj=1,+-+, N} =0.
¥y N

LEMMA 6. If A, and A, go with B, then A, = A, (dens).
Proof. This follows from Lemma 5.

LEMMA 7. If B, and B, are admissible with B,NB, = @ then
we can find sets A, and A, going with B, and B,, respectively, such

that A,NA, = @.

Proof. Suppose A, and A, go with B, and B,. Then A: goes
with Bj, and since B, & B, A, & A (dens). Hence 4; — A, = A, (dens),
so by Lemma 2 we may set 4, = 4, — A,.

LemMA 8. If B, & B, are both adwmissible then so is B, — B,.

Proof. Let A, and A, go with B, and B,, respectively. By the
preceding lemmas we can assume that A, S A4,. Then for any Ie &,

(B, — B)NI) = p(B:NI) — (BN 1)
1 e a1
—lgnwcard{jl.?eAzrszIr:]_1y :N}

-—lim-l—card{jljeAl;zjeI;j=1, ..o, N}
»y N

=lim —card{jlje 4, — A;2;€l;5 =1, -+, N}.

1

¥y N

LemmaA 9. If B, B, +--, is a sequence of mutually disjoint
admissible sets, then U B, is admissible.

Proof. Let A, A,, ---, be a sequence of mutually disjoint sets
going with B,, B,, ---, respectively. Since

lim L card (jlje As;§ =1, -+, N} = (B ,
¥y N



772 RICHARD SCOVILLE

we may assume, by removing a finite number of elements from A; if
necessary, that for all 4

-%mmdwueAaj=L-HPN%<MB»+24ErMIN-

Let A = UA; and let Ie . Then

1 . .
Wcard{glzjeA;g =1,.--,N}

o

= card {j|2;el;je A5 =1,---,N}.

3=

L
N

-

Now passage to the limit within the summation is justified since, by
(1), the series is dominated by the series > (#(B;) + 27%). Hence we
get

lim L card |z, e Ljed;§ =1, -++, N}
¥y N
= S uB:nI) = p(BNI) .
LeMMA 10. The admissible sets form a o-algebra.
Proof. This is a simple consequence of Lemmas 8 and 9.

THEOREM 1. FEwvery Borel set is admissible.

Proof. This is obvious from Lemma 10 since the sets of # are
admissible.

We denote by .o the collection of all sets of integers which go
with some Be < Then it is clear from the preceding discussion that
7, modulo sets of density 0, is isomorphic as a lattice to <&, modulo
sets of measure 0. We omit the details since the situation will be
clearer after the definition of L'(.%7). However we will make one
comment on the lattice operation in .o For any sets {4,} from &
going with sets {B;} from %, let \VA; be a set going with UB;. Of
course VA, is unique in . modulo sets of density 0, but in addition
the following is true.

THEOREM 2. Let A, A,, -+, be sets from % Let D be any set
having density equal to dens (VA;) and suppose D 2 A;(dens), ¢ =
1,2, +«+. Then D = VA, (dens).

Proof. Since D — VA, =D — UL, A; (dens), and since

dens (D — LZJ1 Al) = dens (D) — dens (g Ai) ’
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we see that dens (D — VA,) =0, ie., DS VA, (dens). But since
dens (D) = dens (\VA;) we have also VA; S D (dens). Hence D =
V A; (dens).

This characterizes \/ A4;, modulo sets of density 0, as the smallest
set having a density and containing all the sets A4,, 4,, +--.

3. Applications to sequences (mod 1). Let T be the unit circle
in the complex plane, and let {z,} be a sequence of points in 7. We
will say that {z,} has the distribution g if g is a probability measure
on T such that for any “interval,” I, of T (i.e., any connected subset
of T) satisfying p(0I) = 0, we have

©() =limicard{j|zjel;j =1,..-,N}.
y N

If we let &% be the algebra of sets generated by those I for which
p1@I) =0, the preceding work is applicable and we get as special
cases the following two theorems.

THEOREM 3. If {2,} has the distribution p, and if pt = tl: + M.
where ., 1s the atomic part of p, then there exists a set A of integers,
unique to within a set of density 0 such that, for any interval I
satisfying p(©I) = 0,

tro(I) = lim%card{jijeA;zjeI;j ~=1,...,N}.

THEOREM 4. If {z,} has the distribution g, and if p =t +
where p, is absolutely continuous with respect to Lebesgue measure
and pt, is singular with respect to Lebesgue measure, there exists a
set A of integers, unique to within a set of density 0 such that

i) = lim - card {j|je Az € I = 1, -+, N}
v N
and

(I) = lim L card (j|je A5 2,¢ I,j = 1, -+, N}
v N

for any interval I for which oI is p-null.

Proof. The proof uses only the fact that g 1 p,: there are
disjoint Borel sets B, and B, such that y,(B) = #(B.NB), and p,(B) =
¢#(B,N B). Since the intervals having p-null boundaries generate <z, B,
and B, are admissible. The conclusion of the theorem follows.
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4. Representation of L'(X) as a space of sequences. In this
section we define a space L) of sequences (actually equivalence
classes of sequences) which is isometrically isomorphic to L'(X).

If f is a sequence of real numbers, f will be called measurable
if for all real numbers z in a dense set, we have

D, = {j1f0) <a}e 7.

The function a(x) = dens (D,) is nondecreasing and of course can be
extended to a nondecreasing function defined for all z. We will loosely
refer to any such extension as the distribution of f. A measurable
sequence f will be called integrable if its distribution « satisfies

(i) S:da(x) — 1 and (ii) Sl]xlda(m) < o

If f is integrable, let M(f) = S“’ sda(@). Let L be the set of all

integrable sequences.

LeEmMA 11. If fe L has the distribution «, then D,c .7 for
every « for which « is continuous.

Proof. We give only a sketch. Suppose a is continuous at wx,.
Then for all z, y with » <%, <y and D,, D, € .»7, we have D, =D, S D,,
so it is clear that dens(D,) exists. We must show that D, goes
with a Borel set B,. Since D, and D, are in .o they go with Borel
sets B, and B, with B, & B,(¢#). Set B, = NB,, the intersection
being taken over a decreasing sequence {y;} converging to x,. Then it
is easily verified that D,, goes with B,, proving the lemma.

We define a map ¢ from L to LX) as follows: let fe L and
construct a sequence of partitions P, = (++-, @_,,,, Qo n, Q1,m, + ) Of the
real line having the following properties:

(i) mesh(P,) <2™n=12,---)

(ii) Qoiynt1 = ai,n(n =1,2--+;1=0, 1, £2, --+)

(iii) a,,, is a point of continuity of a.

Define

D,, = {Jia’zn = f(.?) < ai+1,n}
and let B;, be a Borel set such that D,, goes with B;,. Define, in
Li(X),

gn = Z ai,nXBi,n .

r=—0c0

{9.} is clearly a Cauchy sequence in L'X). Let ¢(f) =limg,. The
limit may be taken either a.e. or in L'(X).
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LEMMA 12. é(f) does mot depend on the choice of the partitions
P,.

The proof is omitted. Suffice it to say that #(f) could have been
defined by a “spectral” integral of the form

SN = |~ e,
where D, = {j|f(j) < «} goes with B,.

THEOREM 5. If f and g are in L and if f has the distribution
a, then ¢(f) = 6(9) if and only if

{71/0G) <o} = {j]g() <} (dens)

for every x for which « 1is continuous.

Proof. Assume the condition is satisfied. If we choose partition
points at which both « and A (the distribution of g) are continuous,
we get immediately 4(f) = ¢(g).

Conversely, suppose that #(f) = ¢(g) and that z is a point of
continuity of both o and of 8. Then as in the proof of Lemma 11
we see that both the sets {j|f() <x} and {j|g(j) < 2} go with
{z19(f)(z) < x} and hence are equal (dens). It then follows that a = 8
on a dense set so the points of continuity of « are precisely the points
of continuity of 8. This proves the theorem.

We now set /=g if ¢(f) = ¢(g), and let [f] be the equivalence
class containing f. The collection of all equivalence classes [f] (fe L)
will be denoted by L!(.).

LemMA 13. If fe L then there is a sequence f*e L with f =
f* (dens) such that

M(F) = lim - 3 7°0) -

Here we have used the notation f = g (dens) to mean that the
set {7]f(j) # 9(j)} has density 0. If f= g (dens) then surely f =g,
but the converse need not be true as the example f(j) = 1/ and
9(7) = 0 shows.

Proof. First assume that « is continuous at 0. We can clearly
treat the positive and negative parts of f separately so we assume
also that f>0. Let 0=4,34,, 0, --- be an increasing sequence of
numbers at which « is continuous and such that limd, = . Let
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L[S, 0 S SU) < Oan
Fa0) = {0 otherwise .

Since

1 L. [
lim 3 £,) = S wda(@) ,

we can modify £, on a set of density 0 (actually a finite set) so that
for all N the modified function f;} satisfies

1 N . 5'n+l
+ 3 £20) < | odate) + 20
Ni= 8y

Let f* = 3 fF. Then
1f0G) = f*0)} S {71f() > N} (dens)
for every N so that f = f* (dens). Moreover

L3 70) = 5 (5 £40)
Ni= a=1 \ N j=t "

Again the interchange of limits is justified by the dominated con-

vergence, and we have

lim 31 7G) = | ada(@)

proving the lemma for those f for which « is continuous at 0. For
any f choose x, at which « is continuous. Consider g = f — ®,, apply
the preceding to get ¢* and set f* = g* + 2,. Clearly f* has all the
desired properties.

THEOREM 6. The space LY.%7) is a wvector space.

Proof. We must show that L is closed with respect to addition and
to multiplication by real numbers and that furthermore f+g=f"+¢’
and ¢f = ¢f’ whenever f = f’ and g = ¢’. Suppose f and ¢ are in L.
We must show that for all numbers « in a dense set, A, = {7|/() +
9(j) < @} e ./ For each rational number »;, let A; = {§|f() < — »;
9(f) < 7). For any M > 0 and ¢ > 0, choose N so large that a sub-
collection of the numbers »,, 7,, ---, 7y partitions the interval [— M, M]
with a mesh less than €. Then for any jeA4,.. — U¥, 4, we have
fU) + 9(j) < & — e and either f(j) <o — r; for all r,e [-M, M], f(j) =
x — r; for all r;e [—M, M] or for some r;, r;e€ [—M, M1, f(j) <& — 5
fG)=x —r;. In the first case f(j) <2 — M + ¢, in the second
fG)>ax+ M — ¢, and in the third, since j¢ A4,, 9(4) = r;. Since we
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may suppose |r; — r;| < € we get in the third case f(j) + g) =« — e.
Hence the third case is impossible and we have

A —UASHIfG) >0+ M—gUliG) <o —M+d.

Now since UL, 4; & VA, (dens), we see that dens(4,..— V4) =0,
i.e., A,_. S VA,;(dens). Let T(x) = dens (VVA4,;). Clearly A, 2 A; for
all 4, so we get for every x and every ¢ > 0,

dens (4,) = dens (VA4) = T(x)
and
dens (A4,_,) < dens (VA) = T() .

Here we have used the notation dens and dens for lower and upper
density respectively. Replacing & by z + ¢ in the second inequality
we get

T(x) = dens (4,) < dens (4,) = T(@ + )

This shows that A, has a density if x is a point of continuity of T
and Theorem 2 then gives A4, € .o, since A, = V A4, (dens).

Note that for such 2, the set A, goes with the Borel set
{z16(f) + 8(9) <al(={z|8(f) + 8(9) =< x}(#1)). Hence ¢(f +9g) = ¢(f)+4(9)-
The only nontrivial point left is to prove that —fe L whenever fe L.
But {j| —f0) <z} = /0 < —a} = /O = -2} ={f0) < —2} e
whenever —x is a point of continuity of «. This finishes the proof.

At the outset one is tempted to call a sequence f, “measurable,”
if for all z, {|f()) < x}e .o~ However, consider the following: let
D be a set not in .&” and define f(j) = —1/7 and

1 jeD
@) !
9Q) =
1_1 jeb.
J J
Then {7]/(4) + 9(j) < 0} = D¢.>; so that f+ g is not “measurable”
even though f and ¢ are.

THEOREM 7. If L'(.%) is given the norm |[f]| = M(f]) then ¢
is an isometric tsomorphism of L) and LYX).

Proof. It is clear from what has already been done that ¢ is an
isometric isomorphism of L!(.%7) into L*X). We must show that ¢
is onto, so let ¢ e LY(X) and suppose + has distribution «, a(x) =
z|¥(z) < «}. Choose partitions P, as before in the definition of .
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For each n let A}, go with the Borel set {z|v(?) < a;,}. We can
suppose that for all 4, A;, = A},,,. and that A}, < A}, whenever

Qipiy = @5,,. Set A;, = A}, and define
fald) = 2. @ik, )
and let f(j) = lim, f.(j). Now if a,, <% < Gpr1n
o=V A S{alf@) <9} € V As = ALy, (dens) .

This shows that if 2 is a point of continuity of «, the set {j]/(j) < «}
is in .o This is what we wanted to prove.

5. Examples. In the first example we exhibit two algebras .oF
and .o that are independent; i.e., for any A,e€.97, 4,¢.%, the set
A, N A, has density and dens (4, A4,) = dens (A4,) dens (4,). Let T be
the unit circle, let X = 7' x T, let z£ x ¢ be normalized Lebesgue (i.e.,
Haar) measure on X, let 7 be the Borel sets of X , and let & be
the algebra generated by the rectangles of X. Let {2z, w) e X be such
that the sequence {(z, w)"} = {(z", w")} is uniformly distributed in X.
Let .o~ be the algebra determined by this sequence and let .o/ and
%% be the algebras determined by {2"} and {w"}, respectively. Let
A, e .o/ and A,c .o go with Borel sets B, and B,e <& We will show
that, in .o A, goes with B, x T and A, goes with T x B,. Then it
will follow that A,NA, goes with (B, x T)N(T x B,) = B, so that
dens (4,NA4,) = (£ x p)(B, X B,) = dens (4,) dens (4,). But the fact
that A, goes with B, x T is clear: let A] go with B, x T and consider
Ix Te#. Then

u#B.NI) = (¢ x ) (B, x T)Nn x T))
— lim L card {j| 2, wy e I x TjeALj=1, -+, N}
¥y N

—lim-L card {jlzie L je A5 =1, -+, N} .
¥y N

Hence A] = A, (dens).
In this second example, we let X = [0, 1] and let .<# be the Borel
sets of X. We are concerned with the sequence {z,} defined by

2, =3,
=2 j!

where n; is the remainder obtained by dividing »n by 7,0 < n; <j.
Let » be a rational number in [0,1). We show that {z,} is uni-

formly distributed in X by showing that
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lim—l—card njz, <r;m=1,+.-+«, N} =r.
¥y N

Let © and K be such that » = k/K! Note that z, < k/K! if and
only if n*2! + --+ + n,/K! < k/K!, for suppose the latter. Then
Nf2! + oo + Ngx/KI<k—1/K!,s0that 2, <k —1/K! + >3z d—1/5' =
k/K!. The converse follows from the fact that for any =, n; = n for
J > mn. It follows that the set {n|z, < k/K!} is periodic with period
K! so its density is

_card{ '&+ %<k/K!;n:0,---,K!—l}zk/K!:fr.

THEOREM 8. The algebra .oz, constructed by means of the sequence
{z.}, contains all periodic sequences.

Proof. Let K= 2 and let p be between 0 and K — 1. Let

(K—1)!1—1 N >
I— 7 ' 1 p+1 )
U <(K—1)‘+ (K—l)'+ K! )

7=0

It is not difficult to see that n, = [K!z,] (mod K) so if z,el then
nx = p and conversely. Hence {n|z,eI} = {n|n = p (mod K)}. This
proves the theorem.

Thanks are due to Professors L. Carlitz and O. Stackelberg with
whom the author had many discussions during the preparation of this

paper.

REFERENCES

1. N. Dunford and J.T. Schwartz, Linear operators, Part I, Interscience, New York,
1958.

2. J. Kubilius, Probabilistic methods in the theory of numbers, Translations of
Mathematical Monographs, vol. 11, American Mathematical Society, Providence, R. 1.,

1964.

Received October 2, 1969.
DUKE UNIVERSITY
DURHAM, NORTH CAROLINA








