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REAL C*ALGEBRAS

T. W. PALMER

Several variants of the classical Gelfand-Neumark charac-
terization of complex C*-algebras are here extended to charac-
terize real C*-algebras up to isometric*-isomorphism and also
up to homeomorphic *-isomorphism, The proofs depend on
norming the complexification of the real algebra and applying
the author’s characterization of complex C*-algebras to the
result. L. Ingelstam has obtained similar but weaker results
by an entirely different method.

An involution on 2 is a map (*): A — A which is a conjugate
linear involutive antiautomorphism. A generalized involution is an
involution except that it may be either an automorphism or an
antiautomorphism (Generalized involutions have been considered pre-
viously by B. Yood [12]. If % = AP A* is a Z, graded real algebra,
then 2° + 2'— 2° — 2* is an automorphic generalized involution, and
conversely the sets of hermitian and skew hermitian elements in a
real algebra with an automorphic generalized involution give a Z,
grading.) An algebra 2 with a [generalized] involution is called a
[generalized] *-algebra. If % is also a Banach algebra and the norm
and involution satisfy ||xz* z|| = ||«|]* for all e then U is called
a [generalized] B*-algebra.

If «# is a real or complex Hilbert space, then [«#], the Banach
algebra of all bounded linear transformations from « into «, is a B*-
algebra when the involution is defined as the map assigning to each
element its Hilbert space adjoint. A subset of a generalized *-algebra
is called self adjoint if it is closed under the involution. A self ad-
joint subalgebra is called a *-subalgebra. Obviously a norm closed
*-subalgebra of [«] is also a B*-algebra. A homomorphism ¢ from
an algebra %A with generalized involution into [«] is called a *-repre-
sentation if o(z*) = p(x)* for all xze?W. A Banach generalized
*.algebra 9 will be called a C*-algebra if there is an isometric
*.representation of U on some Hilbert space. In this case the general-
ized involution is in fact antiautomorphic. A generalized *-algebla A
is called hermitian if and only if —A® has a quasi-inverse in U for
each hermitian element % in A, skew hermitian if and only if 5° has
a quasi-inverse in U for each skew hermitian element 5 in 2. A
*.algebra is called symmetric if and only if —x*2 has a quasi-
inverse in 2 for each « in 2. Complex B*-algebras are necessarily
symmetric and therefore hermitian. However the complex numbers, C
considered as a real Banach algebra with the identity map as
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involution are an example of a nonhermitian real B*-algebra. The
existence of an involution or generalized involution is a much weaker
condition on a real algebra than on a complex algebra since the
identity map is an involution on any commutative real algebra and
a generalized involution on any real algebra.

It is well known that any complex B*-algebra is a C*-algebra..
See [4] for a proof and further references (cf. [2], [11]). The analo-
gous result for real B*-algebras is false without further restriction..
In fact we prove the following theorem which extends results of L..
Ingelstam [5, 17.7, 18.6, 18.7, 18.8].

THEOREM 1. The following are equivalent for a real Banach
generalized *-algebra A :

1) A is a C*-algebra.

@ llzlF=slla*x + y*y| for all z,y in A.

3) U is a hermitian generalized B*-algebra.

A complex *-algebra 2 with an identity is a C*-algebra if and
only if |[2*]|| [|z]| < ||#2*#|| for all normal elements z in A [3, 2.5],
and any complex *-algebra ¥ is a C*-algebra if and only if the same:
inequality holds for all elements « in 2 [11]. It is not known whether-
these results generalize to real hermitian *-algebra.

We call a generalized *-algebra C*-equivalent if and only if it is.
homeomorphically *-isomorphic to some C*-algebra. Thus a generalized
*-algebra is C*-equivalent if and only if it has a homeomorphic *-re--
presentation on some Hilbert space.

THEOREM 2. The following are equivalent for a real Banach.
generalized *-algebra .

1) A is C*-equivalent.

(2) There is a constant C such that ||z*||||z|| £ C||2z* 2+ w* w||.
for all commuting pairs of normal elements z, w in U.

B) U ts hermitian and there is a constant C such that ||z*|| ||z |
< C||z*z|| for all normal elements z in A.

4) A is hermitian and skew hermitian and there is a comstant:
C such that || k|]* < C|| k|| for all hermitian and all skew hermitian
elements k in A.

The real group algebra of Z, with ~-norm and an involution
given by (@ + bY)* = a — by where v is the generator of Z, satisfies.
condition (4) except that it is not skew hermitian. Also the algebra
C of complex numbers with the identity map as involution satisfies.
(3) and (4) except that it is not hermitian. The equivalence of (1)
and (4) can be regarded as a real and noncommutative version of B..
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Yood’s result [12, 4.1(4)] or as a real version of his Theorem 2.7 in
[13] as extended by a remark in [10]. Notice that condition (2), (3),
(4) do not assume the continuity of the involution nor do they put
any restriction on nonnormal elements of 2. In these respects
Theorem 2 significantly strengthens Theorem 17.6 of L. Ingelstam in

[5].

S. Shirali and J. W. M. Ford have recently shown [10] that a
complex Banach algebra with a hermitian real linear involution is
symmetric. Their arguments also show that a real hermitian and
skew hermitian Banach *-algebra is symmetric. Although the full
force of the real version of this result could be avoided in our
arguments it is noted in Lemma 1 because of its general interest.

The theorems are all proved by embedding the real algebra in a
complex algebra and using a recent result of the author on complex

C*-algebras:

THEOREM A ([7]). A complex Banach algebra 2 with an identity
element 1 of norm one is isometrically isomorphic to some complex
C *-algebra if and only if A is the linear span of

Wy ={he: ||lexp (ith)|| =1, VteR}.

In this case each element of A has a unique decomposition x =h + ik
with h, ke Wy. Furthermore the map h + itk — h — 1k is an invo-
lution on A and any isometric isomorphism of U into a C*-algebra
is a *-isomorphism relative to this involution.

2. Embedding in a complex C*-algebra. The fundamental tool
used in this paper is described in Proposition 1 at the end of this
section. For convenience we establish some notation to use throughout
the paper.

If % is a real algebra, we shall denote the associated complex
algebra by B. That is, B is the set of formal expressions z + iy
with « and y in ¥ and the obvious algebraic operations. Reecall that
the spectrum of an element in a real algebra 2 is defined to be its
usual spectrum in B. Notice that with this convention a real algebra
9 with generalized involution is hermitian if and only if each her-
mitian element in A has real spectrum, is skew hermitian if and
only if each skew hermitian element has purely imaginary spectrum,
and a *-algebra is symmetric if and only if z*zr has nonnegative
spectrum for each element x in 2 [8, 4.1.7 and 4.7.6]. Clearly a
complex *-algebra is skew hermitian if and only if it is hermitian.
If 9 has a generalized involution, then B will be endowed with the
generalized involution (z + iy)* = a* — iy*.
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If 90 is an algebra without an identity then 2* will represent the
algebra (under the obvious operation) of all formal expressions z -+ ¢
with © in 9 and ¢ a scalar. If 9 is normed ' is given the norm
o +t] =|le|l +]¢] unless A is assumed to be a generalized B*-
algebra in which case the norm

[l 4+ ¢l =sup{|jew + tu|l: uell, Jul =1}

is used instead. If 9 is a Banach algebra the first norm on 9 is
complete, and if ¥ is a B*-algebra so is ' with the second norm
[8, 4.1.13].

It is also convenient to introduce once and for all the following
notation for the sets of hermitian, skew hermitian, unitary, normal
and pesitive elements in a generalized *-algebra :

Uy ={he: h=n*, A, ={jeA: —j =75%,
Ay ={ueA: wu* =w*nw =1}, Ay = {zeW: 2"z =2"2},
A, ={heA,: h has nonnegative real spectrum} .

Notice that this is only one of several possible notions of positivity.
It will be convenient to use U, to denocte U, U A, in a (real or
complex) generalized *-algebra. Denote the spectrum and spectral
radius of an element « in a Banach algebra by o(x) and v(x),
respectively. Note that o(z*) = {X: yveo(x)} so that v(x) = v(z*) for
all  in 2.

LEemma 1. (Shirali and Ford [10].) A real hermitian and skew
hermatian Banach *-algebra is symmetric.

Proof. Ford’s square root lemma [1] is proved for a real Banach
*_algebra 9 by applying the original proof to the complexification &
of a closed maximal commutative *-subalgebra of ¥ which contains
h, and noting that % = lim 2, lies in the natural image of ¥ in €.
Lemmas 1 through 5 of [10] now follow for real *-algebras without
essential change. The proof is completed by constructing the real
commutative *-subalgebra ¢ as in [10] and noting that ¢ is defined
on the complexification of .

We note that the proof of Ford’s square root lemma holds even
for real Banach generalized *-algebras.

LEMMA 2. Let % be a (real or complex) Banach generalized *-al-
gebra. Let there be a constant C such that ||k|* < C || k|| for all
ke Wz Then

(@) ||k < Cyk) for all ke .

(b) The involution is continuous.
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(¢) If A is hermitian and lacks an identity then ||k + t|* <
9C* ||(k + ¢)}| for all k + te (AY)g.

(d) Let A be hermitian and if the involution is antiautomorphic
let A be skew hermitian. Then W, is closed under addition.

Proof. (a) |kl = (CC*--C* 7)™ || B[P

(b) This follows from Theorem 3.4 in [12].

(¢) If A is real ), = A, and if A is complex the inequality for
elements in ('), follows from the inequality for elements in (2').
Thus let he 2, and teR. By replacing » by —h if necessary we
can assume that v(h) is the greatest real number in o(h). Let the
convex hull of o(k) be [—7,s]. Then r and s = v(k) are nonnegative
since 2 lacks an identity, and o(h + t) S [—7 + ¢, s + t].

Case 1. t=0. Then Cuv(h+1t)=C(s+t)=||h||+|t]=llh+t].

Case 2. 0 >t = r—s/2. Then 3Cy(h +t)=8C(s+1¢t) = 3C
(s +(r—s/2)) =28C(S/2) =zC(s—(r—s/2)=C(s+ [t =Ilh + L]

Case 8. r—s/2>t. Then 3Cyv(h + t) = 3C (r — t) = 3C(r—(2/3)
(r—s/2) —1/8t) = C(s—t) = ||h + t||]. Thus in any case 3Cy(h + t)
=||h+¢t]] so that ||k + ¢t]]* < 9C*v(h + £ = 9C*v(h + 1)) < 9C*
(R + 1)

(d) If the involution is antiautomorphic this follows from
Lemma 1 and [8, 4.7.10] and in any case is an intermediate step in
the proof of Lemma 1. If the involution is automorphic then €, is
a *-subalgebra of ¥ in which every element satisfies ||| < C|| A?||
and has real spectrum. Then U, is semisimple by [12, 3.5] and thus
is commutative by [6, Th. 4.8]. Thus A, S A, is closed under addition
since the spectrum is subadditive in a commutative algebra.

The existence of C such that ||k|*< C || k]| for all ke, is
equivalent to the existence of B or D such that ||k|| < By (k) for all
keUsor||z|| < Dy(z) for all ze Ay, since || 2|| < || (z+2%)/2]] + || (z—2%)/2]|
< Ck +vi*)) =2Cv(»).

ProrosiTioN 1. Let U be a real hermitian and skew hermitian
Banach generalized *-algebra. Let there be a constant C such that
k|2 < Cll K| for each ke Uz  Then there is a complex C*-algebra
B and a homeomorphic *-isomorphism of A into B.

Proof. UA' is hermitian and skew hermitian. Thus using Lemma
2(c) we may assume 2 has an identity element. We will define a
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norm on B which makes it a complex Banach algebra satisfying the
hypotheses of Theorem A. The norm || - ||y for B is defined to be
the Minkowski functional of the convex hull of B,, or directly:

[[o+lly =inf {35 t;: @ + 2y = 0 tuy5 6, eR 8, =05 u; € By}
(This norm has been used previously by Russo and Dye [9]).

In order to prove that this expression is always finite and in fact
a complete norm, it is easiest to introduce another norm ||| - ||| on B
which is obviously finite and complete and then compare || - ||, and
N+ l. Let |||z +2ylll =]l + ||yl for all =, ye . With respect
to this norm % is a real Banach generalized *-algebra.

By Lemma 2(b) the involution in 2 is continuous. Let 2
constant such that ||z*|| < B|l«| for all xc%A. If zeU . hen
x="h+7j where h = (x + *)/2€ ¥, and j = (x — 2*)/2€ ;. Clearly
{|h]|| and ||j|| are bounded by (1 + B) ||z|]/2 < B||z]||.

Let s be a real number greater than B ||«||. Then the power
series for V =cos™*(h/s) and w = sinh~'(j/s) converge and % = s[exp(iv)
-+ exp(—1)]/2, 7 = slexp(w) + (—exp(—w))]/2 with each exponential
in B,. Similarly iy can be expressed as a positive real linear com-
bination of elements in B,. Thus || + %y ||y is always finite and in
fact ||z + |y = 2B(||z] + [l¥|)) = 2B|||z + sy ||| for all », ye?A.

It is obvious from the definition that || - ||, is a norm for a real
linear space. However B is also a complex normed algebra with
respect to || - ||y since B, is a multiplicative group closed under

multiplication by complex numbers of norm one. Furthermore the
involution is an isometry.

Any element ue®, can be written as w =k + j + 1(k + ¢) with
h,ke?, and j,geA,. Taking the real part of the equations
w*u =1 and uu* =1 we get

BR—2+kE—-—90+hj—Jh+ky—gk=1

-3 +k—9+jh—hj+9k—kg=1.
Thus #* — 72 + k* — ¢* = 1. Since 2 is hermitian and skew hermitian,
K, kK, —j* and —g¢* all belong to A,. Thus by Lemma 2(d)

—72+k*—¢*eU,.. Therefore () <o(A—(—75*+ Kk — ¢%) = [0,1]
and v(h) <1. Similarly v(j) =1, v(k) =1 and v(9) <1. Thus

Mulll =h +3l + 11k +gll=lrll+ 17+ IEll+ gl =4C

for all ue®B,. Thus if = + iy = > 7., tu; with ¢; =0 and u;€B,
then [[|o + iy |l = (3= t)) [llw; |l £4C 35 ¢;.  Therefore |[||2 + iy ||
<4C||z + ||y for all  + iy in B.

Since || - ||y is equivalent to a complete norm it is a complete
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norm. Thus B is a complex Banach algebra with an identity element
of norm one. Furthermore % is the linear span of B,. For each %
in By, exp(ith) is in B, and hence | exp(ith)|ly < 1. Therefore
(B, || - ||y) satisfies the hypotheses of Theorem A and is a complex
C*-algebra with respect to its involution.

We must still show that the natural map of 2 into B is a home-
omorphism. This is true since, for all « in A, ||z||y < 2B|||z]|| =
2B|lx|| = 8BC |l x|y

COROLLARY 1. Any generalized *-algebra satisfying the hypotheses
of Proposition 1 has an antiautomorphic involution.

COROLLARY 2. Let U be a real hermitian and skew hermitian
generalized B*-algebra. Then there s a complex C*-algebra and a
real isometric *-isomorphism of U into B.

Proof. Consider ¥ as embedded in (B, - |l;) as described in
Proposition 1. Using Lemma 2(a), Corollary 1 and the fact that a
C *-algebra is a B*-algebra we get

|z]]? = ||a*z|] =v(@*x) = ||a*x]|y = ||z]|} for all xcA.

Thus the embedding is an isometry.

3. Proofs of Theorems 1 and 2. We need three more lemmas.
The first one records the connection between real and complex *-re-

presentations.

LEMMA 3. Let ¢ be an tisometric *-representation of the [real,
respectively, complex] B*-algebra U on the [real, respectively, complex]
Hilbert space <. Then there is a natural isometric *-representation
¥ of the [complex, respectively, real] algebra B associated with A on
the complex, respectively, real]l Hilbert space 97 associated with 4.

Proof. If « is real let .2 be the set of formal expressions
&+ ip where & and 7 belong to <. The inner product in 9% is
given by

E+ml+i=E0+imd —i&p+ @
and thus the norm in .9 is given by ||[& + | = ||| + ||7]|>. The
complex B*-algebra B associated to the real B*-algebra U is that

defined in the proof of Proposition 1. The typical element of B is of
the form x + ¢y with « and y elements of 9. Define ¥ by

V(@ 4+ )€ + ) = p@)é + ip@)y + tpW)é — oY) .
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It is easy to check that this is a *-isomorphism, and that the image
is closed in the norm of [2¥7]. Thus the complex *-algebra A can
be provided with a B*-norm pulled back through +. This norm must
agree with the B*-norm defined in the proof of Proposition 1. Thus
Y is an isometry.

Now consider the case where 2 and « are complex. The associated
real algebra and vector space are obtained by merely restricting
scalar multiplication to the real numbers. The inner product and
norm in .27 are (§,7) ., = Re(5, 7)), [|&]l.- = || §ll 4. Thus @ considered
as a *-representation of a real algebra coincides with .

LEMMA 4. Let A be a Barach generalized *-algebra. Let there be
a constant C such that ||z ||z||ZCl|z*z + w*w]|| for all com-
muting elements z and w in Uy. Then WA s hermitian and skew
hermitian.

Proof. Any kc%, lies in some closed maximal commutative
*_gubalgebra ¢ [8, 4.1.3] where it has the same spectrum as in 2.
By Lemma 2(b) there is a constant B such that ||z|*< Bllz*|| ||z]|
< BC||z*z + w* w|| when z and w lie in €. Thus € satisfies Theorem
4.2.3 in [8] so that it is hermitian and skew hermitian. Thus 2 is
also.

LEMMA 5. Let A be a Banach generalized *-algebra satisfying
2% |2l £ Cll#* || for all zeAy. Then A is skew hermitian.

Proof. Let B be the bound for the generalized involution guar-
anteed by Lemma 2(b). Then the involution in 2[' is also bounded by
B. For an arbitrary skew hermitian element j of 9, e¢/(¢?)*=¢le=7 =
1= (e)*(e?) is A'. If z+t is in Yy, then z*z + tz* + tz = 0 and
t*=1. Thus ||z[* = Blz*||[[2]| = BC|[z*z|| < BC(1 + B)||z]|, so
|z+t]|<BC(1 + B) +1. Applying this to e for neZ gives
v(e’) = v(e7’) = 1. Therefore the spectrum of ¢’ lies on the unit
circle and the spectrum of j is purely imaginary.

Proof of Theorem 1. (1)=(2): Consider U as embedded in [£]
for a suitable Hilbert space «. Then for = and ¥ in [£].

@] =sup{|[x &} =sup{l|z&[* + [y}
=sup{(x*z& & + (W yé& o =sup{{(@*a +y* Y& &)
=la*x +y*yll

where each supremum is over all £¢ « with |[£]] < 1.
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(2)=(3): Lemma 4.
(3)=(1): Lemma 5, Corollary 2 and Lemma 3.

Note that without changing this proof, condition (2) of Theorem 1
can be weakened to: ||| <||«* x| for all xe A and there exists a
constant C such that ||z*||||z]| < C||2*2 + w* w|| for all commuting

pairs z and w in A,. This is essentially the condition Dc* in [5,
18.6].

Proof of Theorem 2. (1)= (2): Theorem 1 and Lemma 2b.
(2) = (8): Lemma 4.

(38)=(4): Lemma 5.

(4) = (1): Proposition 1 and Lemma 3.

The following corollary bears the same relationship to Theorem 2
that [5, 18.7] bears to Theorem 1 or [5, 18.6].

COROLLARY 8. Let U be a real nmormed generalized *-algebra.
Let there be a constant C such that ||2z|*ZC|la*2 + y*y|| for all
x and y tn A. Then A has a homeomorphic *-representation on some
Hilbert space.

Proof. The generalized involution is continuous since ||z|* <
Cllz*z|| < C|l«*|| ||«||l. Thus the completion of A is a generalized
*.algebra which satisfies the same inequality and hence satisfies
Theorem 2.

The author wishes to thank 8. Shirali and J. W. M. Ford for
supplying a prepublication copy of [10], C. E. Rickart for telling him
of reference [5], and the referee for pointing out an error in the
original version of Lemma 1.
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