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REAL C*-ALGEBRAS

T. W. PALMER

Several variants of the classical Gelfand-Neumark charac-
terization of complex C*-algebras are here extended to charac-
terize real C*-algebras up to isometric*-isomorphism and also
up to homeomorphic ^isomorphism. The proofs depend on
norming the complexification of the real algebra and applying
the author's characterization of complex C*-aIgebras to the
result. L. Ingelstam has obtained similar but weaker results
by an entirely different method.

An involution on 91 is a map (*): Sΐ —»2ΐ which is a conjugate
linear involutive antiautomorphism. A generalized involution is an
involution except that it may be either an automorphism or an
antiautomorphism (Generalized involutions have been considered pre-
viously by B. Yood [12]. If Sΐ = 3ΐ°φ Sΐ1 is a Z2 graded real algebra,
then x° + x1 —• x° — x1 is an automorphic generalized involution, and
conversely the sets of hermitian and skew hermitian elements in a
real algebra with an automorphic generalized involution give a Z2

grading.) An algebra §1 with a [generalized] involution is called a
[generalized] *-algebra. If Sί is also a Banach algebra and the norm
and involution satisfy || x* x || = || x ||2 for all #eSΐ then Sί is called
a [generalized] JB*-algebra.

If ά is a real or complex Hubert space, then [^], the Banach
algebra of all bounded linear transformations from ά into ά, is a J3*-
algebra when the involution is defined as the map assigning to each
element its Hubert space adjoint. A subset of a generalized *-algebra
is called self adjoint if it is closed under the involution. A self ad-
joint subalgebra is called a *-subalgebra. Obviously a norm closed
*-subalgebra of \*c\ is also a J3*-algebra. A homomorphism φ from
an algebra Sί with generalized involution into \«c\ is called a ^repre-
sentation if φ(x*) = φ(x)* for all #eSΐ. A Banach generalized
*-algebra Sί will be called a C*-algebra if there is an isometric
^representation of Sί on some Hubert space. In this case the general-
ized involution is in fact antiautomorphic. A generalized *-algebla Sΐ
is called hermitian if and only if — h2 has a quasi-inverse in SI for
each hermitian element h in Sΐ, skew hermitian if and only if j2 has
a quasi-inverse in Sΐ for each skew hermitian element j in Sί. A
*-algebra is called symmetric if and only if — x* x has a quasi-
inverse in Sΐ for each x in Sΐ. Complex B*-algebras are necessarily
symmetric and therefore hermitian. However the complex numbers, C
considered as a real Banach algebra with the identity map as
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involution are an example of a nonhermitian real U*-algebra. The
existence of an involution or generalized involution is a much weaker
condition on a real algebra than on a complex algebra since the
identity map is an involution on any commutative real algebra and
a generalized involution on any real algebra.

It is well known that any complex Z?*-algebra is a C*-algebra..
See [4] for a proof and further references (cf. [2], [11]). The analo-
gous result for real i?*-algebras is false without further restriction..
In fact we prove the following theorem which extends results of L-
Ingelstam [5, 17.7, 18.6, 18.7, 18.8].

THEOREM 1. The following are equivalent for a real Banach
generalized *-algebra 21:

(1) % is a C*-algebra.
(2) | M | 2 ^ \\x*x + v*y\\ for al l x,y in 31.
(3) 21 is a hermitian generalized B*-algebra.

A complex *-algebra SI with an identity is a C*-algebra if and
only if | |s*| | | | s | | ^ | | s*s | | for all normal elements z in 21 [3, 2.5],
and any complex *-algebra §1 is a C*-algebra if and only if the same
inequality holds for all elements x in 21 [11]. It is not known whether
these results generalize to real hermitian *-algebra.

We call a generalized *-algebra C*-equivalent if and only if it is
homeomorphically *-isomorphic to some C*-algebra. Thus a generalized
*-algebra is C*-equivalent if and only if it has a homeomorphic ^re-
presentation on some Hubert space.

THEOREM 2. The following are equivalent for a real Banach
generalized *-algebra 21.

(1) SI is C*-equivalent.
(2) There is a constant C such that \\ z* || || z || ^ C \\ z* z + w* w ||4

for all commuting pairs of normal elements z, w in SI.
(3) SI is hermitian and there is a constant C such that \\z*\\ \\z\[\

<£C\\z*z\\ for all normal elements z in SI.
(4) 21 is hermitian and skew hermitian and there is a constant

C such that || k ||2 ^ C || k2 \\ for all hermitian and all skew hermitian
elements k in SI.

The real group algebra of Z2 with ^-norm and an involution
given by (a + 67)* = a — by where 7 is the generator of Z2 satisfies
condition (4) except that it is not skew hermitian. Also the algebra
C of complex numbers with the identity map as involution satisfies
(3) and (4) except that it is not hermitian. The equivalence of (1)
and (4) can be regarded as a real and noncommutative version of B*.
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Yood's result [12, 4.1(4)] or as a real version of his Theorem 2.7 in
[13] as extended by a remark in [10]. Notice that condition (2), (3),
<4) do not assume the continuity of the involution nor do they put
any restriction on nonnormal elements of 21. In these respects
Theorem 2 significantly strengthens Theorem 17.6 of L. Ingelstam in

15].
S. Shirali and J. W. M. Ford have recently shown [10] that a

complex Banach algebra with a hermitian real linear involution is
symmetric. Their arguments also show that a real hermitian and
skew hermitian Banach *-algebra is symmetric* Although the full
force of the real version of this result could be avoided in our
arguments it is noted in Lemma 1 because of its general interest.

The theorems are all proved by embedding the real algebra in a
complex algebra and using a recent result of the author on complex
C*-algebras:

THEOREM A ([7]). A complex Banach algebra 21 with an identity
element 1 of norm one is isometrically isomorphic to some complex
C*-algebra if and only if 2ί is the linear span of

In this case each element of 2ί has a unique decomposition x — h + ik
with h, ke 2ίH. Furthermore the map h + ik—>h — ik is an invo-
lution on 21 and any isometric isomorphism of 2Ϊ into a C*-algebra
is a *-isomorphism relative to this involution.

2. Embedding in a complex C*-algebra* The fundamental tool
used in this paper is described in Proposition 1 at the end of this
section. For convenience we establish some notation to use throughout
the paper.

If 21 is a real algebra, we shall denote the associated complex
algebra by 33. That is, 95 is the set of formal expressions x + iy
with x and y in 21 and the obvious algebraic operations. Recall that
the spectrum of an element in a real algebra 21 is defined to be its
usual spectrum in 33. Notice that with this convention a real algebra
2ί with generalized involution is hermitian if and only if each her-
mitian element in 2ί has real spectrum, is skew hermitian if and
only if each skew hermitian element has purely imaginary spectrum,
and a *-algebra is symmetric if and only if x*x has nonnegative
spectrum for each element x in 21 [8, 4.1.7 and 4.7.6]. Clearly a
complex *-algebra is skew hermitian if and only if it is hermitian.
If 21 has a generalized involution, then 93 will be endowed with the
generalized involution (x + iy)* = x* — iy*.
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If 21 is an algebra without an identity then 2Γ will represent the
algebra (under the obvious operation) of all formal expressions x + t
with x in SI and t a scalar. If SI is normed 2P is given the norm
\\x Λ- t\\ = \\x\\ + \t\ unless 21 is assumed to be a generalized B*-
algebra in which case the norm

|| x + t\\ = s u p { | | . τ w + t u \ \ : u e % \\u\\ = 1 }

is used instead. If 21 is a Banach algebra the first norm on 2Ϊ1 is
complete, and if 21 is a B*-algebra so is 2I1 with the second norm
[8, 4.1.13].

It is also convenient to introduce once and for all the following
notation for the sets of hermitian, skew hermitian, unitary, normal
and positive elements in a generalized *-algebra:

2ίH = {Λe3t : h = A*}, % = {je%: -j = j*} ,

SIff = {u e 21: uu* = u*u = 1}, 21^ = {z e 21: z* z = z* z) ,

2I+ = {h G 2ί7/: h has nonnegative real spectrum} .

Notice that this is only one of several possible notions of positivity.
It will be convenient to use 2IG to denote %H \J 2Ij in a (real or
complex) generalized *-algebra. Denote the spectrum and spectral
radius of an element x in a Banach algebra by σ(x) and v(x),
respectively. Note that σ(x*) = {X:Xeσ(x)} so that v(x) = v(x*) for
all x in 21.

LEMMA 1. (Shίrali and Ford [10].) A real hermitian and skew
hermitian Banach *-algebra is symmetric.

Proof. Ford's square root lemma [1] is proved for a real Banach
* -algebra 21 by applying the original proof to the complexification @
of a closed maximal commutative *-subalgebra of 21 which contains
h, and noting that u = lim hn lies in the natural image of 21 in Gc.
Lemmas 1 through 5 of [10] now follow for real ^-algebras without
essential change. The proof is completed by constructing the real
commutative *-subalgebra @ as in [10] and noting that θ is defined
on the complexification of @.

We note that the proof of Ford's square root lemma holds even
for real Banach generalized *-algebras.

LEMMA 2. Let 21 be a (real or complex) Banach generalized *-al-
gebra. Let there be a constant C such that \\ k ||2 ^ C || k2 \\ for all
k e %G. Then

(a) || A || ^Cv(k) for all ke%G.
(b) The involution is continuous.
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( c ) / / S I is hermitian and lacks an identity then \\k + t\\2 ^
9C 2 || (fc + ί)2 | | for all k + te (21%.

(d) Let 21 be hermitian and if the involution is antiautomorphic
let 21 be skew hermitian. Then 21+ is closed under addition.

Proof, (a) || & || ^ (CC2-. .C2*"1)2"* || ^ | | 2 ~ w

(b) This follows from Theorem 3.4 in [12].
(c) If SI is real (21% = SÎ  and if St is complex the inequality for

elements in (21% follows from the inequality for elements in (21%.
Thus let heWiH and teR. By replacing h by — h if necessary we
can assume that v(h) is the greatest real number in σ(h). Let the
convex hull of σ(h) be [ — r, s]. Then r and s = v(h) are nonnegative
since 31 lacks an identity, and σ(h -M) § [—r + ί, s + t].

C a s e 1 . ί ^ 0 . T h e n C v ( h + t) = C ( s + t) ^ \\h\\ + \ t \ = \\h + t\\.

Case 2. 0 > t ^ r-s/2. Then 3C v (A, + t) = SC (s + ί) ^ 3C

(s + ( r - s / 2 ) ) ^ 3 C ( S / 2 ) ^ C ( s - ( r - s / 2 ) ^ C(β + \t\) ^ \\h + t\\.

Case 3. r-s/2 > t. Then 3C v (fe + ί) = 3C (r - t) ^ 3C(r-(2/3)
(r-s/2) - 1/3 ί) ̂  C ( s - ί ) ^ || λ + ί ||. Thus in any case 3C v (h + t)
^ || Λ + ί || so that || ft + 11|2 ̂  9C2 v(h + ί)2 - 9C2 v(h + ί))2) ̂  9C2

(d) If the involution is antiautomorphic this follows from
Lemma 1 and [8, 4.7.10] and in any case is an intermediate step in
the proof of Lemma 1. If the involution is automorphic then StH is
a *-subalgebra of SI in which every element satisfies | |Λ||2 ^ C| | h2\\
and has real spectrum. Then SIH is semisimple by [12, 3.5] and thus
is commutative by [6, Th. 4.8]. Thus 21+ g 2 I H is closed under addition
since the spectrum is subadditive in a commutative algebra.

The existence of C such that | | & | | 2 ^ C II&ΊI for all ke$iG is
equivalent to the existence of B or D such that 11 k \ \ ̂  B v (k) for all

*)) = 2Cv(z).

PROPOSITION 1. Let 31 be a real hermitian and skew hermitian
Banach generalized *-algebra. Let there be a constant C such that
|| k ||2 ^ C || k21| for each ke%G. Then there is a complex C*-algebra
S3 and a homeomorphic ""-isomorphism of St into S3.

Proof. SI1 is hermitian and skew hermitian. Thus using Lemma
2(c) we may assume SI has an identity element. We will define a
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norm on 93 which makes it a complex Banach algebra satisfying the
hypotheses of Theorem A. The norm || \\π for 93 is defined to be
the Minkowski functional of the convex hull of 93^, or directly:

II x + iy \\u = inf {Σ?=i tji x + iy = Σ ?
(This norm has been used previously by Russo and Dye [9]).

In order to prove that this expression is always finite and in fact
a complete norm, it is easiest to introduce another norm ||| || | on 93
which is obviously finite and complete and then compare || ||^ and
HI . | | | . Let HI x + iy ||| = ||a; || + \\y\\ for all x, y e 21. With respect
to this norm 93 is a real Banach generalized *-algebra.

By Lemma 2(b) the involution in 21 is continuous. Let x
c o n s t a n t s u c h t h a t || α;* || ^ B\\ x || f o r a l l x e ^ L . I f xe% t h e n
x = h + j where h = (x + x*)/2 e %lH and j = (x — x*)/2 e %. Clearly
\\h\\ and | | i | | are bounded by (1 + B) | | α | | / 2 ^ J 5 | |α? | | .

Let s be a real number greater than B \\x\\. Then the power
series for V =o,o$rι(hls) and w = &mhr1(jls) converge and h — s [exp(iv)
4- exp( — iv)]/2, j — s[exp(w) + ( — exp( — w))]/2 with each exponential
in 33tf. Similarly iy can be expressed as a positive real linear com-
bination of elements in 93^. Thus ||a? + iy\\π is always finite and in
fact ||a? + i2/ | |^^2B( | |a j | | + \\y\\) = 2B\\\x + iy\\\ for all x,ye%.

It is obvious from the definition that || ||^ is a norm for a real
linear space. However 93 is also a complex normed algebra with
respect to || ||σ- since 93^ is a multiplicative group closed under
multiplication by complex numbers of norm one. Furthermore the
involution is an isometry.

Any element u e 93^ can be written as u = h + j + i (k + g) with
h, k e 2IH and j , g e Wίj. Taking the real part of the equations
%* u = 1 and uu* = 1 we get

h2 - f + k2 - g2 + hj - jh + ky - gk = 1

h2 - j 2 + k2 - g2 + jh - hj + gk - kg = 1 .

Thus h2 — j 2 + k2 — g2 = 1. Since 2ΐ is hermitian and skew hermitian,
h2, k2, -j2 and -g2 all belong to 21+. Thus by Lemma 2(d)
-j2 + k2 - g2e St+. Therefore σ(h2) ^ σ(l-(-j2 + k2 - g2)) ^ [0,1]
and v(h)^l. Similarly v{j) ^ 1, v{k) ^ 1 and v(g)^l. Thus

for all u e 93^. Thus if x + iy = Σ?=i * i %

then |||α? + i ! / | | | ^ ( Σ ? = i ί i ) III^-HI ^ 4 C Σ ? « i «i Therefore | | | x + ^ | | |
^ 4C || a; + iy\\π for all a? + iy in 93.

Since || \\π is equivalent to a complete norm it is a complete
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norm. Thus S3 is a complex Banach algebra with an identity element
of norm one. Furthermore S3 is the linear span of 33#. For each h
in S3H, exp(ΐίΛ) is in S3̂  and hence || exp(ith)\\u ^ 1. Therefore
(33, || \\u) satisfies the hypotheses of Theorem A and is a complex
C*-algebra with respect to its involution.

We must still show that the natural map of 91 into S3 is a home-
omorphism. This is true since, for all x in 21, || x \\u ^ 2B\\\ x ||| =

COROLLARY 1. Any generalized *-algebra satisfying the hypotheses
of Proposition 1 has an antiautomorphic involution.

COROLLARY 2. Let 21 be a real hermitian and skew hermitian
generalized B*-algebra. Then there is a complex C*-algebra and a
real isometric ^-isomorphism of 21 into S3.

Proof. Consider 21 as embedded in (S3, || ||^) as described in
Proposition 1. Using Lemma 2(a), Corollary 1 and the fact that a
C*-algebra is a 2?*-algebra we get

|| a? ||a = || a* a || - v(x* x) = \\χ*χ\\π= \\x\\*, for all a;e2ί .

Thus the embedding is an isometry.

3* Proofs of Theorems 1 and 2* We need three more lemmas.
The first one records the connection between real and complex ^re-
presentations.

LEMMA 3. Let φ be an isometric ""-representation of the [real,
respectively, complex] B*-algebra 21 on the [real, respectively, complex]
Hilbert space /C. Then there is a natural isometric *-representation
ψ of the [complex, respectively, real] algebra S3 associated with 21 on
the complex, respectively, real] Hilbert space St" associated with /C.

Proof. If ά is real let J%Γ be the set of formal expressions
ξ + irj where ξ and η belong to /C. The inner product in J%Γ is
given by

(f + iq, C + iμ) = (£, ζ) + i(y, 0 - i(f, μ) + (y, μ)

and thus the norm in 3T is given by || ξ + iη ||2 = || ξ ||2 + || y \\\ The
complex ,B*-algebra S3 associated to the real J5*-algebra 21 is that
defined in the proof of Proposition 1. The typical element of S3 is of
the form x + iy with x and y elements of 21. Define ψ by

ίy)(ξ + irj) = φ(x)ξ + iφ(x)η + iφ{y)ξ - φ(y)y .
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It is easy to check that this is a ^isomorphism, and that the image
is closed in the norm of \J%Γ\. Thus the complex *-algebra 21 can
be provided with a J3*-norm pulled back through ψ. This norm must
agree with the i?*-norm defined in the proof of Proposition 1. Thus
ψ is an isometry.

Now consider the case where 21 and ά are complex. The associated
real algebra and vector space are obtained by merely restricting
scalar multiplication to the real numbers. The inner product and
norm in Jf are (ζ, TJ)%- = Re(f, η)^, || f |U- = || f IU Thus φ considered
as a ^-representation of a real algebra coincides with ψ.

LEMMA 4. Let 21 be a Banach generalized "-algebra. Let there be
a constant C such that \\z*\\\\z\\tί.C\\z*z + w*w\\ for all com-
muting elements z and w in %N. Then 21 is hermitian and skew
hermitian.

Proof. Any k e %G l i e s i n some closed maximal commutative
*-subalgebra @ [8, 4.1.3] where it has the same spectrum as in 2ί.
By Lemma 2(b) there is a constant B such that || z ||2 ^ B \\ z* \\ \\z\\
S BC\\ z*z + w* w || when z and w lie in Gf. Thus @ satisfies Theorem
4.2.3 in [8] so that it is hermitian and skew hermitian. Thus 2ί is
also.

LEMMA 5. Let % be a Banach generalized '"-algebra satisfying
|| z* || || z || ^ C || z* z |] for all ze %N. Then 21 is skew hermitian.

Proof. Let B be the bound for the generalized involution guar-
anteed by Lemma 2(b). Then the involution in 2I1 is also bounded by
B. For an arbitrary skew hermitian element j of 21, eύ(ej)* = eje~j —
1 - (e'")*(eJ) is 2I1. If z + t is in (2Ϊ1),,, then z* z + tz* + tz = 0 and
f = l . T h u s \\z\\2 ^ B \ \ z * \ \ \\z\\ ^ B C \ \ z * z \ \ ^ B C (1 + B ) | | s l | , s o
\\z + 11| ̂ BC(1 + B) + 1. Applying this to enj for neZ gives
v(ej) — v(e~j) = 1« Therefore the spectrum of ej lies on the unit
circle and the spectrum of j is purely imaginary.

Proof of Theorem 1. (1) => (2): Consider 2X as embedded in \*c\
for a suitable Hubert space ^. Then for x and y in

= sup {(x* x ξ, ξ) + (y* y ξ, ξ)} = sup {((«* x + y* y) ξ, ξ)}

^ || x* x + y* y \\

w h e r e e a c h s u p r e m u m is o v e r a l l f e ^ w i t h \\ξ || ^ 1 .
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(2) => (3): Lemma 4.

(3) ==> (1): Lemma 5, Corollary 2 and Lemma 3.

Note that without changing this proof, condition (2) of Theorem 1
can be weakened to: || x ||2 <̂  || x* x || for all xeWί and there exists a
constant C such that || z* \\ \\ z || ^ C \\ z*z + w* w || for all commuting
pairs z and w in UN. This is essentially the condition Dc* in [5,
18.6].

Proof of Theorem 2. (1) => (2): Theorem 1 and Lemma 2b.
(2) => (3): Lemma 4.
(3) => (4): Lemma 5.
(4) => (1): Proposition 1 and Lemma 3.

The following corollary bears the same relationship to Theorem 2
that [5, 18.7] bears to Theorem 1 or [5, 18.6].

COROLLARY 3. Let % be a real normed generalized *-algebra.
Let there be a constant C such that || x ||2 ^ C || x* x + y*y \\ for all
x and y in 2t. Then 21 has a homeomorphic *-representation on some
Hilbert space.

Proof. The generalized involution is continuous since | | ^ | | 2 ^
C || x*x\\ ^ C||cc* || | |# ||. Thus the completion of §1 is a generalized
*-algebra which satisfies the same inequality and hence satisfies
Theorem 2.

The author wishes to thank S. Shirali and J. W. M. Ford for
supplying a prepublication copy of [10], C. E. Rickart for telling him
of reference [5], and the referee for pointing out an error in the
original version of Lemma 1.
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