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ON A CERTAIN GENERALIZATION OF 4 SPACES

JEANNE LADUKE

An &, space is a product of finite-dimensional ¢, spaces
with a weighted , norm on the product. The first theorem
of this paper yields an isometric embedding of &, into an
appropriate ¢, space, From this theorem, known results about
¢, are used to deduce, among other things, the Clarkson in-
equalities for &,, 1< p < o, and hence, the uniform con-
vexity of &, for 1 < p < .

The second theorem characterizes the conjugate space of
&, for 0 < p < 1. This result is then used to describe some
spaces of multipliers, Let .7 and <% be &, spaces, 1 <
p=oo,or &, The spaces - # (., <7 ) of multipliers from
7 to <Z have previously been identified with certain sub-
spaces of & (I) and determined precisely in some cases, The
third theorem is a complete description of these multiplier
spaces: the cases 0 < p <1 are included and the spaces
A (S, ) are determined precisely for all pairs &7, <7 .

1. Definitions. First, we repeat the definition of ¢, (called C,
by Dunford and Schwartz [1], S, by Gohberg and Krein [2], and ¢,
by McCarthy [6]). See also [3, D. 37] for the case where H is finite-
dimensional.

DEFINITION 1.1. Let H be a Hilbert space and let X be a compact
operator on H. Then XX* is positive and compact and hence has a
unique positive square root which is also compact. We denote this
square root by |X|. Now let y, be the, at most countably many,
nonzero eigenvalues of |X| enumerated with their multiplicity and
arranged in a decreasing sequence as p, = g, = +-- =0. For 0 <
p < o, we define

e i/p
1X1le, = (5 12)
whether finite or infinite; and we define
I Xl = sup {tai 1 =0 < oo} = 1, .

Equivalently, [1, p. 1089], || X||,. is the operator norm of X. Then
¢, consists of all compact X with || X||, finite.

See [1], [2], and [6] for a detailed treatment of ¢, spaces and for
additional references. Also, [3, Appendix D] contains a number of
results in case H is finite-dimensional.
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We proceed to define &, spaces. These spaces were introduced
by R. A. Kunze [5] primarily for the purpose of having analogues of
7, spaces in the study of harmonic analysis on compact non-Abelian
groups. They have been studied and exploited for this purpose espe-
cially by Hewitt and Ross [3].

DEFINITION 1.2. Let I be an index set. For each cel, let H,
be a finite-dimensional Hilbert space and let a, = 1. We let ()
denote the x-algebra [[.., <% (H,) with all operations defined coordi-
natewise. Let £ = (F),.,€ & (I). For 0 < p < <, we define

1B, = (SalElz)"
we also define
Bl = sup (| E.ll:ce 1) -

For 0 < p < o, &,(I) is defined to be the set of all £ e & (I) for which
| E||, is finite. In addition, #,() is the set of Eec & (I) for which
{teI: E, + 0} is finite; and &,(I) is the set of Ke & (I) for which
{ecI: ||E, ||, = ¢} is finite for all ¢ > 0. Frequently we write Z, in
place of &,(I). We notice that if each H, is one-dimensional, then
Z(I) is just the {a,}-weighted ~, space which we will call L,; namely,
{¢}.c.;e L, if and only if ¢, ¢ K foreachce I and |[¢||, = e, ale D)V <
o, In addition, if each a, =1, then =,(I) is just £ (). Also, it is
convenient to think of &, as a product of ¢, spaces with a weighted
4, norm on the product.

2. An embedding theorem and some consequences. In Hewitt
and Ross [3], several basic facts about &, for 1 < p < - are proved.
There it is shown that Holder’s inequality, Minkowski’s inequality
and certain generalizations of these hold. The major result of this
section is (2.2), a theorem describing a linear isometry of &, onto a
subspace of an appropriate ¢, space. The theorem is then used to
derive a number of inequalities for 2, from results known about e¢,.
We begin with a description of the setting.

Let I be an index set and let H, be a finite-dimensional Hilbert
space for each ccI. Also, let @, =1 for each ¢ccI. For 0 < p < oo,
|E|l, and &, will be as in (1.2). Now from the Hilbert space direct
sum @..; H,; namely

@ H = {{e)e I Hi S lalr< =

with addition and scalar multiplication defined coordinatewise and with
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an inner product defined by {{&}, (n.}> = 2. (&, »p. It is well known
that @..; H, is a Hilbert space under these definitions.

DEFINITION 2.1. Let 0 < p < « and let £ = (E),.;€ &,. Define
T,(E) = Ty where Tx({¢}) = {a/?E (¢} for all {£}e@..; H,. If p= oo
and Ec &, let T.(E) = T, where T,({£})) = {E.(£)}.

If p= o, it is known that T,e Z(@..; H,) and || T:|| = || E||e.
In general we have the following theorem.

THEOREM 2.2. Let 0 < p < o and let T, be defined as above.
Then T, is a linear, x-preserving isometry of &,(I) onto the subspace
e, = {Tcc,(@..; H): H, is invariant under T for all tc I} of ¢,(@..; H,)-

Proof. First, let &= {£}e@®..; H so that Ty({5)})) = {a/?EE}
for £ = (E)..;€ &,. Then using [1, p. 1093, 9 (a)] to obtain the
second inequality below, we have

I TSNP = 3 la B @ I
=S AT
< S @ | B 11
= 3 @l )&
< SB[ l6F
= 1Bl 1¢1F -

Therefore, Ty({s}) € @..; H, and || T:({ED) ]| < [[E]l, [|£]]. Also, Ty is
clearly linear. Hence, Tz € & (@..; H,) and || T:|| < ||E|l,- It is easy
to check that T, is linear and x-preserving.

We must now see that T, is compact for Fe &,. Since £ — T
is continuous and &, is dense in &,, we need only note that T} is
compact for Fe &,. This is obvious since T, has finite-dimensional
range for Fe &,.

To see that T, is an isometry, we make the following observation.
Suppose {¢i:5 =1, 2, ---, d;} is an orthonormal basis for H, of dimen-
sion d, for each xeI. For each neJland 5=1,2,---,d;, let ¢*' =
(679).c1€ @..; H, be defined by

¢M={¢§ if c=x
‘ 0 if e#N.

Then it is easy to see that {¢*: e l,j = 1,2, --., d;} is an orthonormal
basis for @..; H.. Now, let Fe &, and let {8{:5 =1,2, ..+, d;} be
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the eigenvalues of |E,| for each ne€I. For each eI, we choose
{$p:7=1,2,.+-,d;} to be an orthonormal basis for H; consisting of
eigenvectors corresponding to the eigenvalues (8y)* of E,E%; that is,
EEf¢; = (BY")*¢]. Letting ¢*/ be as above, we have that T,T}¢* =
Ty Tyx™’ = {n}..; where 1, = a}?E,E}¢] = ai*(BY)¢3, if ¢=x and
7, =0 for ¢ = . That is, T,TF¢* = (a¥?BY)’e*%; or {¢*:nel,j =
1, .-+, d;} is an orthonormal basis for @..; H, consisting of eigenvectors
corresponding to the eigenvalues (ay?5{)* of T>T#. Hence, by defini-
tion, we have
IT:lE= 3 (@spy

§=1,2,2+,d;

d2
S a; Z (B)?
el =1
Sa
AeI

B, = [ E]E .

Thus, T, is an isometry.

Finally, we show that T, maps &, onto ¢,(@..; H,). Consider S
in e,(@..; H). For each ccl, we let E, = a;"?S|;,. Since H, is in-
variant under S, E, e <#(H,) for each ce I. Also, we notice that H, is
invariant under S* for each ¢ I. Hence, for &, 7 € H, we have

KEE, ) =<a7*S |6, 1)
= a;77E, S*|a, >
=&, a7 S* |4,

and so Ef = a;"/*S*|,, for each ccI. Now we essentially repeat an
earlier argument. Namely, let {8{:5 =1,2, ---, d;} be eigenvalues
of |E;| for each nel and let {¢i:5 =1, ---,d;} be an orthonormal
basis for H, consisting of eigenvectors corresponding to the eigenvalues
(B3 =1,---,d;} of E;Ef. Then, as above, SS*¢* = a¥?(B{")*¢*?
so that ||S||5 = ||E||; where E = (E,),.;, and hence Ee &,. Clearly,
S(&) = Tx(§) for all éc H,, ce I; thus, by linearity, S(§) = Ty(¢) for all
fe@...H, with & = 0 for only finitely many ¢e I. By the density of
the latter set in @..; H, S(§) = Tx(&) for all e @®..; H,. Hence
T, (E) =S and so T, maps onto e,(@®..; H.).

We state several corollaries which follow immediately from results
for ¢, spaces found in [1, XI, § 9], [2, III, § 7] and [6]. Also, compare
[3, §28].

COROLLARY 2.3. Let 0 <p=gq=c. Then &,(I)C &) and
El, < [ E]],.

COROLLARY 2.4. Suppose 0 < p =1; let E, Fe &,(I). Then
B+ Fl; < ||E|;+ IF| .
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Thus, £,(I)is a metric space with metric o where p(A, B) = ||A — B|]5.

Inequalities (i) and (ii) in the following are due to McCarthy [6,
Th. 2.7] for ¢, spaces.

COROLLARY 2.5. (Clarkson’s inequalities). Let K, F e & (I). Then,
for 1/p + 1/p" = 1, we have

(1) 2YIEl; + [|IFI) S IE+Fl;+|1E—Fl=2(| 2|} + [[F3)
0<p=2,

(ii) [[E+F|F + [|EF—-Fly =2(1E\;+ |1Fp)"""1<p=2,

(i) 2([&[; + IFIP) = E+Fl+ |E—-Fl =2 E|; + [| FII})
B p < oo,

(iv) 2(1E(; + IFIp)*"”* < |1E+ FI} +||[E~F|f 2= p < .

COROLLARY 2.6. For 1< p< o, &,(I) is uniformly convex.
(Recall that a normed linear space X is said to be uniformly convex
of 0(e) = inf{l — 12|x + yl|: || = |y| =1, | — y| = €} 1s strictly posi-
tive in some range 0 < & < &,.)

Proof. TUse the Clarkson inequalities (2.5) (ii) and the right hand
half of (2.5) (iii) to obtain

B+ Flf =2 — ||[E—-F|f for 1<p=2
and
1B+ Fl; =2° — |[E— F|} for 2= p < o0
when ||E||, = ||F||, = 1. If, in addition, ||E — F'||, = ¢, we have
1— %[|E+ Fll,=1- _;.(2?' ey for 1< p=2,
and
1 1 1
1——2—IIE+FH,,21—-2—(2"—81’)“’ for 2<p < .
The uniform convexity of &, for 1 < p < « is now clear.
COROLLARY 2.7. (Radon-Riesz theorem). Let 1< p < . Let (E™)
be a sequence in &,(I) and Ee &,(I) such that E™ — E weakly and
WE™ |, = | El|l,. Then ||E™ — El|,— 0.

Proof. &,(I) is locally uniformly convex; see [4, 15.17 (a)].
Hence, apply [4, 15.17 (a)].
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3. The conjugate space of &, for 0 < p < 1. Theorem (3.4)
below is a characterization of the conjugate space of &, for 0 < p < 1.
The conjugate spaces of &, for 1 < p < « are described in [3, § 28].
We first state and prove some easy results which will be used in the
proof of (3.4).

LEMMA 3.1. Let H be a finite-dimensional Hilbert space and let
0<p,qg=co. For each Ac <F(H), there exists Be <& (H) such that
l|Blls, =1 and ||All;, = ||AB]ls, = tr (AB).

Proof. (Compare [3, D.54].) Let a be the eigenvalue of | A| such
that a = [|4]|,,. By [3, D.30] there is an operator V in %/ (H) such
that AV = |A|. Let {{, ¢, -+, {,} be a basis for H such that |A|{, =
al,. Let P be the operator on H such that P{, = , and P{; = 0 for
j >1. Finally, let B= VP. By [1, p. 1090, 4 (c)], we have || Bl|,, =
IIPll;, = 1. Since AB= AVP = |A|P, we have AB = aP, and hence

| ABll,, = llaPll,, = a = [|All,. ,
and
tr (AB) = tr (@P) = a = || A||,_ .

LEMMA 8.2. Let H be a finite-dimensional Hilbert space, and let

Ae Z(H). Then
(i) For 0 < p=<q < o, we have

| All, = sup (|| AB|, : Be 2 (H) and ||Bll,, <1} ,

and
(ii) for 0 < p £1, we have

I[Alls,, = sup {|tr (AB)|: Be &Z'(H) and ||Bll;, =1} .
Also, the supremum is attained in (i) and (ii).
Proof. Let a = sup {||AB|l,: || Bll;, = 1} for 0 < p < ¢ < . Then
by [1, p. 1093, 9 (d) and 9 (a)],
IABll;, = [|Alls. [1Blls, S | Alls, [1Blls, = [ 4lls., »

so that a < ||A]l,...
For 0 <p =1, let 8 =sup{|tr(4B)[:[|Blls, =1}. By [3, D.46],
we have
|tr (AB)| < [|ABll,, = || All,, | Blly, < | All,. [IBlls, < [|All,.

so that B < ||Alls..
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The opposite inequalities and the fact that the supremum is
attained in (i) and (ii) follow from (3.1).

LEMMA 3.3. Let 0< p<1,Ee &(I) and Fe &£.(I). Then EF
and FE are in &,(I),
(i) [EF|, =|[E],||F|le and

(i) [[FEl, = || F]- [ &,

Proof. Use [1, p. 1093, 9 (d)] to write
I1EF|; = 3 e[| BF., = 3 all BRI F.E.,
= IFI2 X allEAR, = [1Fll= [1E] .

Assertion (ii) follows similarly.

THEOREM 3.4. Let 0 < p <1, and let Fe &(I). If there exists
a real number ¢ > 0 such that ||F,||; < ca®™~* for all ¢cc I, then T,
defined on &,(I) by Te(E) = {E, F> = 3,0, tr (B F}),is a continuous
linear functional on &,(I). Conwversely, if T is a continuous linear
functional on &,(I), then T = T, for some Fe &) such that
| F.|ls, < ca™®=* for some ¢ >0 and all ce L.

Proof. First, suppose there exists ¢ >0 such that ||F,|; =
cat for all ¢cel. Then, for Fe &,I), the number TH(E) =
Svera, tr (E.F*) is well-defined (the series converges absolutely) since
by (3.2) and an observation below, we have

| To(E) = % a, tr (EF¥)
= % a,|tr (B FF)|
< Sy al|Bll, | F.ll.
=3 cal| B,
= o3 @Bz,

(1)

< S allBl,]" =B,

The last inequality follows since 1 < 1/p so that [/b],, <|||b]; for
be 4, and in particular for b = {b,} where b, = al| B3,

The linearity of T follows immediately from the linearity of tr
[3, D.16]. The inequality (1) also shows that T, is continuous at 0,
hence on &,(I). (Recall that &,(I) is a metric spaces with o(4, B) =
|A — B|j5.) Thus, Ty is a continuous linear functional on &,(I).
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Conversely, let T be a continuous linear functional on & ,(I). Let

7/, ={Ee &,(I): E; =0 for A #¢. Then .27, is isomorphic with

% (H). Restricting T to .27, we use elementary algebra to see that

there exists F,e <% (H,) such that T(¥) = a,tr (E F*), for all Fe .o/
The linearity of T shows that

T(E) = 3 a, tr (B.F)

for all Ee &,(I). Let F = (F)..;, so that T = T, on &,(I).

Now suppose that for every real number ¢ > 0, there exists ¢cel
such that || F,|[;, > ca”~'. In particular, for ne{l,2, ---}, let ¢,
be such that ¢, # ¢, for m = »n and || F, |, > n*al/P~, where k is a
real number greater than zero and such that 2/(1 + k) < »p.

For each n € {1,2, ---}, let B, ¢ &Z(H,,) be such that ||B, ||,, =
1 and [|[F, |l;, =tr(F. B,) as in (3.1). Let b, = (a,n°)~"* for each
n, and define K = (E),.,, where E, = b,B} if ¢ =¢, for some n, and
E, = 0 otherwise. Then

1EWE = X allE IS, Zaznlle 1%,

= S a,BlB, I, = 3 a, (@00
n=1 n=1

oo

= n? < oo

1

)

so that Fe &,().

For each positive integer N, define BV = (E%),.;, where E¥ =
E, if ¢ =¢, with n < N, and E® = 0 otherwise. Then E® ¢ &,(I)
and ||EY |5 < ||E|5 for each N. However,

TE™) = To(E™) = 3, a. tr (BVFY)
tel

- ﬁ a. tr (B, F7)

Il
M= 1

a,, tr (b,BEF%)

3
Il
-

Il

a5, tr (F,B.,)")

Il

a.,b, tr (F, B,) B.)

a. (@, )P,

VAR
”Mz M= 1M- iM< TM=

a (aln 2)—l/z>,n allp)—l

n"‘z’? > Z 1/n .
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A simple argument now shows that T is discontinuous, a contradiction.
Therefore, there exists ¢ >0 so that [[F,||; < cal®" for all ce L.
Thus, Tr and T are continuous linear functionals on &,(I) which
agree on Z,(I), a dense subspace of &,(I), so that T = T, on &,(I).

Several easy corollaries follow and will be stated without proof.
The notation is as in (3.4).

COROLLARY 3.5. If 0 < p <1 and if sup..;a. < o, then &7 =
{Tr: Fe &..}.

COROLLARY 3.6. Let 0 < p <1 and let L, be a weighted 4, space;
say [|b]l, = Clera.|b.?)V? for {b}e L,. For b= {b}eL, and ¢ = {c},
let T,0) =>c;abc,. Then

Ly = {T,: |e.| £ kat™~* for some k >0 and all ceI}.
COROLLARY 3.7. If 0 < p <1, then 4* = {T,:ce 4}

4. Some multiplier theorems. Theorem (4.2) is a collection of
results concerning (&,, &,)-multipliers. We use the following defini-
tion: Let .7 and <Z be subsets of & (I). We say that E in & (I)
is an (&, &#)-multiplier if EAec <# for all Ac.o7. The set of all
(&7, &)-multipliers is denoted by 7 (v, ).

Clearly, multipliers may be discussed in a context much wider
than that of &, spaces. For example, it is known that 4 = _Z(4, 4)
for 0 < p < q < oo withl1/r=1/p—1/q. Also, it is shown in McCarthy
[6, Ths. 2.3 and 5.1] that _#(c,, ¢,) = ¢, for p, ¢ and r as above.

In Hewitt and Ross [3, 35.4] _Z(57, &) is described for any
pair (&%, &) chosen from the spaces &,, &, &, &» With 1 < p <
q < o with the following exceptions: if sup..;a, = oo, it is shown
only that 7 (57, &) 2 &., where & = &, and & = &, or ZF = &,
with 1 < p < ¢ < . Our theorem which follows extends the results
of [3, 85.4] to all p and ¢ with 0 < p < ¢ < . Also, it identifies
(S, &) precisely in the exceptions mentioned above when
sup,.; @, = . The major tool used in the identification of 7 (.&7, &%)
in the cases where sup,.;a, = o is (3.4), our characterization of &,*
for 0 < » < 1.

Before stating our theorem we note that the following lemma
may easily be verified using [6, Th. 2.3] and the generalized Holder
inequality.

LEMMA 4.1. Let 0 < p,q,r < o with 1/p+ 1/q=1/r. If Ee
&), Fe &), then EFe &.(I) and ||EF|, < ||E|,||F|l,.
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THEOREM 4.2. Let 0 <p<qg< o and let r be so that 1/r =
1/p — 1/q. For each space &7 listed to the left of the matrix below
and each space B listed above the matrix, the corresponding entry
of the matrix is exactly 7 (7, F).

g P g q go goo
gw g)p g}q go goo
gO gp gq goo goa
&, &, & s s=_4

1+gq 1+q
& e s—__ P s—_D s—_ P
q—p+pq 1+p 1+»

The proof of the above theorem will be broken into several parts.
Part I. For 0 < p £ o, A(Ep &) = L

Proof. In case 1 < p £ «, we use the proof of [3, 35.4, Part
II] with d,, replaced by a,, throughout.

Now let 0 < p < 1. The fact that &.C _Z(&,, &,) follows from
(3.3). The proof of the opposite inclusion is similar to the proof of
[3, 35.4, Part II]. Namely, suppose E¢ &.(I). Then there is a
sequence {¢,}r., of distinct elements in I such that [|E, ||, > n for
each n. By (3.1), there exists B, in & (H,,) such that ||E B, ||;, > n
and [|B,|l;, =1. For ne{l, 2, ---}, let a, = (a,,n'**)7"/*. Define Ae
& () as follows: A, = a,B, for ne{l,2, ---} and 4, = 0 for all other
¢’s in I. Since

141z = 3 o, lla.B, i,
= i P < oo

we have that Ae &,(I). On the other hand, EA does not belong to
&,(I) because

IEAlL = 3, o, || .B, B, |2, 2 3 a,(,n)"w

|

Ms

1/n = o .

I
-

n



ON A CERTAIN GENERALIZATION OF » SPACES 165

Thus, E¢ #(&£,, &, and so Z(&£,, &, C &.(I). Hence, entries
@, 4), 8,2), and (4, 1) are verified.

Part II. For 0< p < «, we have that &, = _#(&, &,) =
A (Ewy &,p). This will verify entries (1, 1), (1, 2), (2, 1), and (2, 2).

Proof. Using (3.3) we see that, for 0 < p <1, &, C . Z (&, &,)C
(%, &,). The rest of the assertion is proved in [3, 35.4, Part
VII] if we replace d, by a, throughout.

Part III. Let 0 < p < g < o and let s = pg/(¢ — » + pg). Then
& = %(gp’ gq)'

Proof. Consider T,ec &* with s as above. Then 0 <s<1 so
that by (3.4), there exists a real number ¢ > 0 such that || F,||, <
cal"=". Let Ee &,. The following is seen to be true by using || ||, =<
[ ll,, for 0 <p<g<eo and the results (3.3), [3, D.52.i.], and (2.3).

IFE|, = | S @ IFEIL)]"

A

B tp
S, @ | F.E,) |
- tp
SR ATREATY
| ceT
- ip
S, azieralro || E 7, |
| ceI
=S el

=cl[E]l, .

Thus, FEe &, so that Fe 7 (%&,, &,). Hence, &FC #(%F,, &,)-

On the other hand, suppose T ¢ &.*. Again, by (3.4), we have
that for every ¢ > 0, there exists ¢e I such that [|F|; > cal/®.
Or, in particular, for each ne{l,2, --.}, let ¢, be such that ¢, = ¢,
for n == m and

IA

IA

1/p

F, Il > nfai2™

where k is a real number satisfying k = 2/p — 1/¢q; that is, 1>
q@2/p — k). For each ne{l,2,---}, let B, e Z(H,) be such that
(|B,lls, =1 and ||F, B, |l;, = [|F,ll;, as in 8.1). Let b, = (a,n°)""
and define E, = b,B, if ¢ = ¢, and E, = 0 otherwise. Let E = (E)..,.
Then

I1BI; = 5, a,,11b.B., 15,



166 JEANNE LADUKE

= i a,(a,n)™" = i 1/n® < o,
n=1

n=1

so that Fe &,. However,

IFB; = 3 a, || F,b.B, i,

Il
||M8

a.(a,n )" F, |}

n

= ;l a, (a, m*) ="t
(=) o

=3, w1 = 3 1 e = ee
n=1 n=1

Thus, FE¢ &, so that Fe 7Z(%,, &,). We have, therefore, that
AL, &, C &F and (4, 2) is verified.

Part IV. We verify entries (3, 3), (3, 4), (4, 3} and (4, 4) by show-
ing that for 0 < p < oo,

»

&= ALy &) = A&, &) Where s = .
1+9

Proof. Let T,e &F. We will first show that Fe _Z(Z,, &).
By (3.4), there exists a constant ¢ > 0 such that ||F,|; < ca!"™' =
ca,)” for all ceI. Let Ee &, so that 3., a.|[Ef, < . Then, for
e >0,allE | = (¢fe)? for all except finitely many ¢e I. Thus,

WFE ., = | F N Elle, = 1l 1 E.l,,

< || By, S o=

for all except finitely many ¢e I. Hence, FE e &, so that Fe 7 (%,
&,). Clearly Z(%, &) C #(&, &) so that it remains only to
show that 7 (&,, &.) < &

Suppose Ty ¢ &*. Then by (3.4), for each ne{l, 2, ---}, we can
choose distinct ¢, e I with the property that |[F, [[;, > n*""a;'?. As
in (3.1), for each ¢cel, let B,e =Z(H,) be such that [[B.|[,, =1 and
|F .= |FB.],. Foreach ne(l, 2, .-} let b, = (a,n’)"* and let
E = (E)..; where E, = b,B, if ¢=¢, and E, = 0 otherwise. An in
Part III, it is clear that Fe &,. However, ||F E, ||, =I||F.b B, |. =
b,[|F. ll,.>mn for nefl,2,---}. Thus, ||[FE|. is not finite so that
FEe¢ .. Hence, F¢ #(&, & and s0 2 (&, F.) C &i.

Part V. If 0<p<g< e and 1/p —1/qg = 1/r, then 7 (&,
g}») - gq"
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Proof. This result is proved for 1 < » < ¢ < « in [3, 35.4, Part
VI]. That proof does not carry over to our wider range for p, ¢ and
r, however.

The inclusion &,C #Z(%,, &, follows immediately from (4.1).
To see the opposite inclusion, suppose that F = (F),.,; is in & (I) but
not in &,. We will show that E¢ _7(%,, &,).

Let v, = a"||E.|l;,. Since E¢ &,, {v} does not belong to ~#(I).
However, since «4 = _# (4, ), there exists {8} € 4 such that {78} ¢
Z,. We may, and will, choose B, so that 8, = 0 for all ceI. Using
[6, Th. 2.3] choose F so that |[E.F.[,, = [|[E.|l; || F.|l,, for each cel
and such that E, = 0 if and only if F, = 0. [For example, let F, =
| E,|"e. That the above equality holds in this case may be seen directly
using conditions for equality in Holder’s inequality for «,.]

For our convenience below let @ = {te I: v, #+ 0}. Note also that
O ={el: E .+ 0}. For ce@, let ¢, = Ba;"||F,|;, otherwise ¢, = 0.
For all ¢ce I, let F) = ¢ F, and let ¥’ = (F/)..;» Then

IEMll: = 35 allFY 1, = 25 el (| Pl FIlR, = 35 B = X 81 < o0

by
since {8} € 4. Thus, F'e &,. However,
IEF'|l; = X a || EF/ |3,

=2 act || EFIS,

= 3% a8t || F. 152 IKE.I, || B,

AP A

= 3 @" || E.ll,)’6?

=2 (0B =3, (V.B) = oo

since {v.8.}¢ 4. Hence E¢ #(&, &, and (3,1) is verified.
Part VI. .,//( goy gg) = %( goy geo) = &

Proof. The proof in [3, 35.4, Part III] can be adapted to our
somewhat more general setting. However, an easy direct proof will
be given.

Since &, is an ideal of &., we have ¥.cC #(%, &,). Also,
clearly, Z(&,, &) C #Z(&, &»). Thus we need to show only that
MLy Ew) T Ewe Consider any E in & (I) that is not in &,.. Then
for each ne{l,2,---}, let ¢, be such that ¢, #¢, for n = m and
E. |l;, > n’ Let F = (F)., where F, = (l/n)Id(n for ¢ =¢,and F, =
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0 otherwise. Then we have Fe¢ &, and EF ¢ &.., so that K¢ 7 (%,
#.). Hence, entries (2, 3) and (2, 4) are verified.

Part VII. It remains only to verify (1,3) by showing that
v%(geoa go) = &

Proof. The proof is easy. Namely, &,C _#(Z., &, since &,
is an ideal in &.. Finally, suppose E¢ &,. If F,=1,, then Fe &..
but EF ¢ &, so that E¢ _# (L., &).
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