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A NOTE ON COMMUTATIVE INJECTIVE RINGS

VICTOR CAMILLO

The purpose of this note is to determine necessary and
sufficient conditions for a commutative injective ring to be a
product of local rings. This reduces the study of such rings
to the study of local rings, since a product of rings is in-
jective if each factor is.

Throught R will be a ring with unit, J will denote its Jacobson
radical, and if M is R module E{M) will denote its injective hull.
A ring R is right (sesp. left) self injective if it is injective as a
right (resp. left) module over itself. One may easily verify that if
R = πRif then R is right self injective if and only if each Et is.
Given an injective ring of a given type one would therefore like to
realize it as a product of simpler rings. One example of a right
self injective ring is the full ring of linear transformations on a
vector space over a division ring. Faith [2] determined all rings
which are products of full linear rings in the following:

THEOREM A. The following are equivalent:
(1) R is a product of left full linear rings.
(2) R is a right self injective semiprime ring with large socle.

If R is commutative the above theorem characterizes those rings
which are products of fields. Our purpose here is to determine when
a commutative injective ring may be written as a product of local
rings. We prove two theorems:

THEOREM 2. If R is a commutative injective ring with large
socle then R is a product of local rings.

THEOREM 6. Let R be a commutative injective ring, then R is
a product of local rings if and only if R/J has large socle and if
x G R, and x1 denotes the right annihilator of x then x1 + J/J is not
large in R/J.

We will make use of the following easily available theorem [4]:

THEOREM B. // R is injective then
(1) R/J is a regular ring
(2) Idempotents left modulo J)
(3) J = {r e R \ r1 is large}.
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The following lemma will be of central importance and may be
found in [1], though we will outline a proof.

LEMMA 1. Let R be a commutative injective ring, Vx and V2 two
distinct simple R modules and E(V^), E(V2) their respective injective
hulls, then Horn* (E(VL), E(V2)) = 0.

Proof. Let Vί = RjMι and V2 = R/M2 where Mt and M2 are
maximal ideals. Using Theorem B, one can show that there is an
idempotent eeM1 — M2. Then E(VΊ)e = 0, for if not, we can find
an xeE(Vj) such that xe = 1 + M1 and this would imply that
1 - ee M19 a contradiction. Now let /eHomΛ(£ r(F1), E(V2)). If /
is not zero, by the definition of injective hull there is an xeE(Vt)
such that f(x) = 1+ M2. But xe = 0 so 0 =f(xe) = f(x) e = (1 + M2)e9

which says that e e M2, a contradiction which establishes the lemma.
We now prove

THEOREM 2. If R is commutative injective and has large socle
then R is a product of local rings.

Proof. The proof uses the same basic method as that of Theorem
A. We let S be the socle of R, and write S = 2 0 7 { where the
Vi^R/Mi are simple. Let V= Σ®E(Vi). We first observe that
V is a faithful module for, if reR, by hypothesis there is an se R
such that rse S. Write rs = Σvi9 v{e Vi9 and at least one of the vi9

say vk Φ 0. Then, rL czvt, and the map f:rR—>V given by f(r) =
1 + Mk is well defined, and extends to a map f:R~>E(Vk). If
/(I) = x, then xr Φ 0 and V is faithful.

Next, observe that S is a large submodule of V, for if x = (x19 , xn9

0, ) is an element of VΊ then we can fine an reR such that xλrλ

is contained in Fx and x1r1 Φ 0. If x^ Φ 0 we can find an r2 such
that xirιr2 e F< and ^r^a ̂  0. Continuing in this manner we can
find an s so that xse S and xs Φ 0 by the choice of the last rk.

Now there is a monomorphism i : S-+R, which may be extended
to a map g: V—>R by the injectivity of R. The above paragraph
shows that g is a monomorphism. Let T = Endβ V. Since Hom5

(E(Vi), E(Vό)) = 0 if i ^ i it is easy to see that T^πT, where
Γ; = EndΛ jE7(Fi). It is well known that the endomorphism ring of
any indecomposable injective module is local [2, 4], so that each Tι
is local. Now, there is a natural ring map G: R—> T given by
G(r) = rd and rd(x) = #r. The faithfulness of V guarantees that
this map is a monomorphism. We will prove the theorem if we can
show that G is an epimorphism. To do this we let fe T and consider
the following diagram which may be completed by the map h:
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R

A'
h/ v

R < V< 0 .
9

Then if ve V we have hg(v) — gf(v). But

hg(v) =

Thus we have 0(1; h(l) — f(v)) — 0, but since g is a monomorphism
f(v) = v fc(l) and the theorem is proved.

COROLLARY 3. If R is commutative and injective then R = Px Q
where P is a product of local rings, each with simple socle, and Q
has zero socle.

Proof. Let S be the socle of R and P = E(S), then apply
Theorem 2.

A ring R is quasi-frobenius (Q.F.) if R is artinian and injective.
If R is commutative and Q.F. then R is a product of a finite number
of local rings, each with simple socle. In relation to this we have:

COROLLARY 4. If R is commutative, then R is a product of
local Q.F. rings if and only if the socle of R is large, and the in-
jective hull of every simple ideal has finite length.

Proof. Write R = P x Q as in Corollary 3. Then Q = 0, and
P = πPt where the Pt are local and have simple socle. Since the P,
are local, each is equal to the injective hull of its socle, which is
simple, and hence must have finite length.

Before we proceed to the next theorem we introduce the notion
of the bi-endomorphism ring of a module. If M is a right R module,
then M is S-R bi-module where S = ΈndBMB. The ring T = ΈndsM
is called the bi-endomorphism ring of M. There is a natural map
G : R-* T where Gr = rd and (m)rd = mr. If the map G is an
isomorphism, M is said to be balanced. A well konwn theorem asserts
that every module of the form R 0 A is balanced [3].

Next, a lemma which will enable us to compute an important
endomorphism ring.
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LEMMA 5. Let M = izMi, and suppose that for each i there is
an Ti such that Mtfi = 0 for i Φ j and for mf G Mt m^i = ra*. Then
S = EndΛf^ πEnάMi p& πT{. The map is given by (t19 , ti9 •)
(m19 • ••, m< ) = (Umi, •••, ̂ m ί ? •••)•

Proo/. Let / G S and f(x19•••, #*,•••) = (yl9 9 #»,•••)• Then, by
multiplying by r* we have / (0 , , a?», •) = (0, , yi9 •). If we let
Wi denote the injection wt: Mi-^M and ^ the projection M-»Mi9

and let έ { εEndikΓ { be given by πjwi9 we have /0&i, , a?Λ, •••) =
(ί #!, •• ,tixi, •••) and the lemma is proved.

THEOREM 6. Lei R be a commutative injective ring, then R is a
product of local rings if and only if socle R/J is large and for all
x ε R xL + J/J is not large in R/J.

Proof. Sufficiency. If R — πRi then it is easy to see that
J = TzJi where J{ is the Jecobson radical of R{. So, R/J is a product
of fields and has large socle. Now suppose (xlf , xif ) 1 + J is
large in R/J. Let a{ be that element of R which is 1 on the ith coor-
dinate and 0 everywhere else. Since these a€ are simple modulo / ,
(#!,• •,&*,• •)•*• +JBdi + J. Thus, there is an element (r19 ,r<, )e xL

such that (n, , ri9 •) — α< G J, so, (rx, , r<, •) = (jL, J2, , jrl,
ii+u )> 3i£J> a n ( i we have (rjί9 •• ,r<0>l)> •••) = ° This implies
that r< = 0, for all i and the contradiction establishes the sufficiency.

Necessity. We first deal with the hypothesis that R/J has large
socle. Now R/J is a regular ring by Theorem B, so each simple
ideal of R/J is generated by an idempotent. If reR denote the
image of r under the canonical epimorphism in R/J by f. Then,
since idempotents lift modulo J by Theorem B we may assume that
every simple submodule of R/J is generated by e where e is an idem-
potent in R. If S is the socle of R/J we have S = Σee{ R/J where
the βi are idempotents. Now βiR/βiR Π J = v< is a simple module.
Let v = ΣQ)E(Vi), we claim that V is a faithful module. To see
this, we note first that if x e R, then there is an e4 such that xβi Φ 0.
If not, we would have xL + Jz) S contrary to the hypothesis. It is
also true that e{R Π J is the unique maximal submodule of e{R. To
see this, let e4r e βiR and suppose e r̂ g / . Then the simplicity of
βiR/βiR Π / implies that there is an S and j e J such that et = e^s +j.
We then have that e< — 1 = e^s + jΛ and we get 0 = e{rs + ^(i-1).
Or, 0 = βivsil-j)-1 + e whence e< = -^rs(l-i)"1 or efR = e^R. Now let
Mi be that maximal ideal with ejs/li c J. Using the commutativity
of R9 if x G R we have a;1 = eji Π a?1- © (β*-l)i2 ΓΊ ̂ x Now a?^ ^ 0
implies that e{R n ^ c / , and the definition of Mt yields that



A NOTE ON COMMUTATIVE INJECTIVE RINGS 63

(erl) e Mi9 thus x1 c Λf<. Using the representation of v{ as R/Mi9 we
may define a map / : xR—>E(R/Mi) by f(χ) = l + Mt. Extending
this map to all of R we let /(I) = y and we have yx = 1 + Λfi =£ 0.
Thus, F is faithful.

It is easy to see that an R module is faihful if and only if there
is an index set I and a monomorphism 0 —> R —> Λf7 where If1 denotes
the direct product. Clearly if there is such a monomorphism M is
faithful, and conversely, if M is faithful there is a collection of
elements m{ e ilί with Πw<" — 0. Then simply send 1 e R to
(m19 , m<, •) in M1. Thus, there is a set I and a monomorphism
0 —> J? —> MJ, or, using the injectivity of R, we have F 1 ^ ϋ? 0 A.

By grouping the JE?(F<) together we may write F = TΓC/̂  where
Ui = E{Vi)J for some index set J. Let A — End^ F, then we claim
that A — πAi where A* = End Z7<. We wish to apply Lemma 5, and
our choice for the r< are the e«. Suppose i =£ i, then we must have
Uj βi = 0. If this is not true, we have an a?e2£(Fy) such that
xβi = 1 + Mj. But since the et give a direct sum modulo / we have
βi ed e J, which implies that et e Mj9 but this contradicts the above
equation since (xe^βj = 1 + M3 = e< + Λfy = 0. We also have that if
yeE(R/Mi), then #e4 = T/. For if not, let (y — ye^ r = 1 + Mif then
get βi e M{ by multiplying both sides by ei9 but this is a contradic-
tion, since 1 — e* e ilί*. This establishes our contention.

Consider the module A V and let T = End A V. The above has
established that each Ui is a left A module, and if we let T{ denote
the biendomorphism ring of Ui9 then Lemma 5 applies if we take
Ti = 7Γ,., the ith projection, so Γ = πTi. But F is of the form R®A,
so R = T = πTi. To complete the proof we need only establish that
each Ti is local. It is clear that every biendomorphism of Ut is
given by right multiplication so that Ti — RjUi, and we will be
finished if we show that Ti is local. To do this it suffices to deter-
mine E(R/Mi)i-

Claim : E{RIMi)L = {reR\rλ g Mi}.

If r1 £ Mi and yr = 1 + Mi we have a contradiction. If E(R/Mi)
r = 0 then r 1 g£ ilf< or else we have / : rR—>R/Mi given by f(r) —
1 + Mi and extending to all of R gives a y such that τ/r =
1 + Mi Φ 0.

Now let I = E(R/Mi)i- We claim that Λ/I is local. First, J c ΛΓ4.
Now if I a Mi we show ikf* = Λf4. Let m e Mi9 then m = ê m + (l-ê )
m^i. First, ê m e J r and second (l-e^m e I. The former assertion is
true by the definition of Mi and the second is true by the remarks
above, since (1-e^m1 9 β* and e4 e Λf4 Thus, Mi = J + I. But if Λf< 3 1
then Mi D / so Λfi D J + J" = Λf4 and the theorem is proved.
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