PACIFIC JOURNAL OF MATHEMATICS
Vol. 35, No. 1, 1970

REGULAR BOUNDARY PROBLEMS FOR A
FIVE-TERM RECURRENCE RELATION

C. E. BILLIGHEIMER

We consider in this paper boundary problems for the five-
term scalar recurrence relation

(1.1) dnyn+2 + CunYn+1 + (bn - lan)yn + Cn—1Yn—1 -+ dn—zyn—z =0
0=nz=m)

where the coefficients a,, b, ¢., d. are real, a,, d, > 0 and 2 is
a complex parameter, with boundary conditions of the typical
form

1.2 Y2 =Y-1=0
and
1.3 Ym+1 + k(CnYm + dm—12/m—1) =0, Ynsz + hyn =0

for some integer m = 0, and real numbers 7, k.

We derive oscillation properties, orthogonality relations and
associated eigenvector expansion theorems for solutions of
1.1), (1.2), (1.3), and then discuss the solution of boundary
problems for the corresponding inhomogeneous recurrence re-
lation in terms of a Green’s function,

Atkinson [1] has discussed the connection between two and three
term scalar and matrix recurrence relations and Sturm-Liouville dif-
ferential equations and first order systems of differential equations.

On this basis the five-term recurrence relation here discussed
appears as the analogue of a fourth order differential equation or
first order system of dimension four.

The self-adjoint second order differential equation for which the
fundamental limit-point, limit-circle distinction for the singular bound-
ary problem first given by Weyl [12] plays an important part is dis-
cussed in detail for example in the work of Coddington and Levinson
[5]. The analogous three-term recurrence relations were studied by
Stone [11] in the setting of Hilbert space theory.

The extension of the theory to the case of the general even order
differential equation was given by Kodaira [9] Glazman [8] and
Everitt [6], [7] who studied also in particular the fourth order case.
A fundamental study of the oscillation theory of the fourth order
differential equation was made by Leighton and Nehari [10] and
Barrett [2], [3].

We discuss in this paper regular boundary problems for the five-
term recurrence relation (1.1). In a subsequent paper (Billigheimer
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24 C.E. BILLIGHEIMER

[4]) we consider singular boundary problems for the recurrence re-
lation (1.1) with (1.2) as m — co.

2. The boundary problem. We discuss firstly fundamental
properties of the boundary problem for the recurrence relations (1.1),

1.2), (1.3).
We define the fundamental solution vectors p,(\), ¢.(\), s.(\), 7,.(\)
of (1.1), polynomials in A with real coefficients, by

P_(M) = p_(A) = 0, p(V) =1, p,(M) = 0;
q—zo\') = Q—-l()") =0, QOO\') =0, Q1(7\') =1;
s\ = 0,5_,(0) = 1, 5(0) = (M) =03
() =1L r_(A) = 0, 7(x) = 7(A) = 0.
The vector y,(\) = ap,(\) + Bg.(\), where a,3 are constants,

satisfies the recurrence relations (1.1) and the initial conditions (1.2)
and is the most general such solution. ,(\) will satisfy the boundary

conditions (1.3) if

a{pm+1(7\’) + k[cmpm()‘) + dm—lpm—lo\’)]}
+ B{gnrs(N) + Elengn(N) + dui@n (W]} =0

P2V + ADa(N)} + Bldms(V) + hg(M)} = 0.

2.1)

We now define for two vectors u = {u,}™% v = {v,}™'* the form
[uv|.(n = —1) by
Wiy + (€t + AU y) Vs +E(Co00 + AV
(2.2) lu?}ln — +1 ( 1 1) +1 ( 1 1) (n ; —1) .
U sz + Iy, Vnia + A0,
Then for «, 8 not both zero in the above equations we require
that the polynomial in \, 0,(M)(m = 0), defined by

(2.2a) Ou(V) = [P |w  (m = 0)

should be zero. We shall refer to the polynomial p,(\) as the charac-
teristic polynomial for the boundary problem (1.1), (1.2), (1.3).

On(X\) is a polynomial of true degree m + 1 in A\ with real coef-
ficients. Hence there are always m + 1 roots, counted according to
multiplicity, of the equation p,(A) = 0. We call those roots eigenvalues
of the boundary problem (1.1), (1.2), (1.3) and the associated solution
vectors of the recurrence relations eigenvectors.

We show later that the eigenvalues ), are all real and that for
repeated roots A, of p,(\) =0 we have two linearly independent
eigenvectors. We call single roots of p,(\) = 0 simple eigenvalues
of the boundary problem (1.1), (1.2), (1.3) and double roots double
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eigenvalues. We shall see that triple eigenvalues are not possible.
We now define two vector polynomials in A in terms of which
eigenvectors of the boundary problem (1.1), (1.2), (1.3) can be expressed.
We form for general ), not necessarily an eigenvalue, the solution
vector y™(\) of the recurrence relations (1.1) satisfying (1.2)

2.3)  yN) = {@nex(V) + 2 (IDAN) — DV + AP (M)}(N)

for n = —2.

y™(\) is a polynomial of true degree i(m + m + 1) if precisely
one of m, n is odd and of apparent degree i(m + n) if both m, n are
odd or even. We see that

2.4) Ynta(V) + by (M) = 0

for all \, and hence in particular also

2.5) Yuts(N) + Ry '(A) =0 .

Also

(2.6) YN + Elenyn’ (V) + duyni(M)] = 0n(M)

and is hence zero for eigenvalues \, of the boundary problem (1.1),
(1.2), (1.8).

Hence if at least one of p,..(\,) + A0,(\)s @uie(N) + R (N,) 1S
not equal to zero, the vector y™(\.)(—2 < n < m + 2) furnishes a
nontrivial real eigenvector for the boundary problem (1.1), (1.2), (1.3).

We also form the vector polynomial
@) 20N = {@uei (M) + Elengn(V) + dpei@uai(MN]}LN)
— {DntiN) + ElenDn(N) + doposPms(V]}.(V)

for n = —2.

2f™(\) is a polynomial of true degree i(m -+ m) if both m, n are
odd or even and of apparent degree i(m + n — 1) if precisely one of
m, n is odd

(2.8) Zah(N) + klenzi” (V) 4 dpoizii (V)] = 0

for all A, and hence in particular

(2.9) 2 i(N) + Klea2i ' (V) + dpziti(V)] = 0.
Also
(2.10) Zus(N) + hzgP (V) = —0,(N) .

Hence if, for X\, an eigenvalue of (1.1), (1.2), (1.3) for which
On(\,) =0, at least one of p,..(\,) + klcapa(\) + oD (M)],
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@iV + RlCw@n(N,) + dpei@mi(X)] 1S not equal to zero, the vector
ZMA)(—2 £ n < m + 2) furnishes a nontrivial real eigenvector for
(1.1), (1.2), (1.3).

At values of N\ other than roots of p,(\) = 0, yi™(\) and z{™(\)
are two linearly independent solution vectors of the recurrence rela-
tions (1.1) satisfying (1.2), provided that they are not trivially zero
vectors. At an eigenvalue A, of (1.1), (1.2), (1.3) they are propor-
tional unless one or both are trivially zero. At a simple eigenvalue
N, at least one of the vectors y™(\,), 2{™(\,) provides a nontrivial
eigenvector as we see from (2.2). At a repeated eigenvalue M\, both
ym(n,) and z{™(\,) are the trivially zero vector as we shall see from
later results. In this case p,(A,), ¢.(A,) are linearly independent real
eigenvectors. We shall see that at most a doubly repeated eigenvalue
can occur.

3. Fundamental identities. We now obtain for the polynomials
previously defined certain relations of the type of the Christoffel-
Darboux relations for orthogonal polynomials analogous to the Lagrange
identities for differential equations.

We define for two sequences % = {u,}, v = {v,}(n = —2) the form
[wv].(n = —1) by

Un+1 Vpta Un+1 Vptr

Up  Vn

+ d,,

un+2 vn+2

(3.1) [wv], = d,

'M/n ,vﬂ n—1 vn-—l

Then we have

LEemMMA 3.1. For u(\), v(¢) any two solution wvectors of the re-
currence relations (1.1) with parameter \, pt respectively, we have

(32 (= M3 aw,Me = k() 3@l — L) @l (2 0).
Proof. We have
Aty 1aN) + Ctys(V) + B = 2,0 + €0ty (V) + dt, (V) = 0
A0, + e, (1) + (b, — pa)v(p) + ¢, (1) + d, v, (1) = 0.

Multiplying the first equation by »,.(#) and the second by u,.(\), sub-
tracting and summing over » from 0 to = we obtain (3.2).
Similarly we obtain

LEMMA 3.2. For u(\) any solution vector of (1.1) with Imx # 0
we have

(3.3) é %N, = (20 Im M) H{uMuM)], — [u()uV)]-) (= 0)
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Proof. Consider equation (1.1) and its complex conjugate for
#(\) as in the proof of Lemma 3.1.

From Lemma 3.1 we deduce

LEMMA 3.3. For u(\), v(\) two differentiable solution wvectors of
(1.1) we have

3 au, (Mo, = WMTO, — [ ()T

= —[uMT'W)]. + [T’V (= 0).

(3.4)

Proof. Use I'Hospital’s rule or differentiate (3.2) with respect to
A and let g2 — .

From Lemma 3.1 we also obtain setting ¢ =

LEMMA 3.4. For u(\), v(\) any two solution wectors of (1.1) we
have

(3.5) [MTM], — [TV =0 (n= —1).

Hence we can define for two solution vectors u(\), v(A) of (1.1)
for fixed A the function independent of =

(3.6) [u7] = [uMTV)] = [kM)TM)]. (0 = —1).

We see from (3.1) that [u#] = 0.
In particular for the solution vectors p(\), g(\), (A) and s(») de-
{ fined in (2.1) we have

@.7)  [pq] =0, [pT] = d_o [pS] = ¢, [¢7] = 0, [¢5] = d_, [r5] = 0.

We now use the above relations to deduce the following lemma:

LEMMA 3.5. Let u(\), v(\) be two differentiable solutions of the
recurrence relations (1.1) with a,, d, > 0 which are real for real )
and which satisfy the initial conditions u_,(\) = 0, u_,(\) = 0, and
v_,(\) = 0, v_,(\) = 0 for all \.

Let N be an eigenvalue of the boundary problem (1.1), (1.2), (1.3)
for some m = 0 with u(\), v(\) both eigenvectors. Suppose )\ is real.
Then we have the inequality

Umsr T E(Cntom + AeiUmy) Vs + K€V + Ay Vi)

3.8 Ao
®.8) s + hul, Vs + hol

um—l vm-—l

v

0

Um Um
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where equality holds if and only if the solutions u(\), v(r) are pro-
portional.

Proof. We use the algebraic identity

(Z ami)(Z a3v§> — (Z a,u,v,)z = > a,0,(u,v, — 0.2 = 0.

Using the identity (8.4) with the relations (1.1), (1.2), (1.3) satisfied
by u(\), v(A) we have

(20 amﬁ)( éo asvﬁ) — (TE:‘]O arurv,)z

= [Wa].[v' 7], + [WT]W[ud"].

. d u;z+2 ,v;n+2 dmum+2 + CnWmt1 dmvm+2 + CnVm+1
- m
Uy Vo || % Vi
u, Vo[ Uhmre + Cut AUz + Cn¥
+ d m+1 m=+1 mAm+2 mPm+1 mYm+2 mYm+1
—1
g V|| Unes I
+ e u;n+1 ’D;n+1 dmum-\-z + cmu’m+1 dm/vm+2 + cmvm+1
"lul, v ||t U,
Umtz Vnio|[Um  Um
+ d'mdm*l ’ ’
m+1 /vm+1 um—l vm—l
u':n+2 /U',m+2 Um+1  Vmtr
+ dmdm-l ’ ’
Mm—1 vm—l um vm
’
Ld Umts  Vmetr||Ymss Vm+1
'm~1
Upey  Vna||Cnlm + CpeiUmy  CnVm + GV
7//;,, ’U:,,, um+2 vm+2
+ dudus|
m—1 ’Um——l um+1 vm+1
P e O s A iWine1)  Vintr + E(CnVin + ApsVrs)
- mYm—1
Utz + AUy, Vs + AV,
Um—1 Vm—r m
"= Y aa,(u,v, — U0, =0
Um Vm 7,8=0

for real solutions u, v, with equality if and only if the solutions u, v
are proportional.

We note that by Theorem 4.1 of the following section the eigen-
values of the boundary problem (1.1), (1.2), (1.3) are real.

The lemma yields the corollary:

COROLLARY. If the fundamental solution wvectors p,(\), ¢.(\) of
(1.1), (1.2) satisfy for some real N also the boundary conditions (1.3)
with m = 0 and the same h, k, then we have the inequality
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Dss + k(CnDm + dueiDns) Qs + K(Cnln + dpi@rny)
Dtz + hDy Gtz + Qo

pm—l qm——l
DPw

B.9)  duldn

X >0.

Proof. The vectors p(\), ¢(\) are not proportional for any A since
po()\') =1, px()") =0, qu") =0, Q1()") =1. Hence taking w = pO")v v= q()")
in Lemma 3.5 we obtain the statement of the corollary (8.9) with
strict inequality.

4. Properties of characteristic roots. We now use the funda-
mental relations obtained in the preceding sections to derive some
fundamental theorems concerning the eigenvalues and eigenvectors of
the boundary problem (1.1), (1.2), (1.3).

THEOREM 4.1. The eigenvalues of the boundary problem (1.1),
(1.2), (1.3) are all real.

Proof. Assume ), is a root of the characteristic equation
- (4.1) On(V) =0

where p0,,(\) is defined in (2.2).

Then X, is an eigenvalue of the boundary problem (1.1), (1.2),
(1.3). Thus we have a nontrivial eigenvector u(:,) of the boundary
problem.

Assume ), is nonreal. From Lemma 8.2 with A =), and with
n = m we obtain that the right-hand side of (3.2) is 0 and hence
the left side is also 0. Since a, >0 we have u,(A,) =0(» =0,1, .-+, m)
and hence u(\,) is the trivially zero vector. This is a contradiction
to our assumptions.

Hence we must have Im (\,) is zero and ), is real.

THEOREM 4.2. If A\, is a repeated eigenvalue of the boundary
problem (1.1), (1.2), (1.3) then p,(\,), q.(\,) are linearly independent
eigenvectors of the boundary problem (1.1), (1.2), (1.3), and conversely.

Proof. Assume
(4.2) On(Ne) = Pn(X;) =0 .

Assume ,,..(A,) + hp,(\,) and gq,..(\,) + hg,(x,) are not both 0.
Then y™(»,) as defined in (2.3) is a nontrivial eigenvector of the
problem (1.1), (1.2), (1.3). y™(\,) satisfies (2.4), (2.5) and (2.6) and
we hence have in this case using (4.2) that
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YnitaNe) + Ay (V) = 0, ymi(N) + Ry’ (N) = 0

Yns(M) + Elenyn” V) + due¥mi(V)] = 0, yni(V) + kleayn (V)
+ A ¥ i(N)] = 0

If we now set N =, u.(\) = v,(0) = y™),n =m in (3.4) we
obtain a contradiction sinece the right-hand side becomes 0 while the
left-hand side is positive. Hence we deduce that

(4'3) pm+2()“s) + kpm()"s) = O and qm+2(>"s) + hqm()\'s) = O M

Now assume p,.,(\,) + k[cnDu(Ne) + dnosPps(M)] and g (h) +
klen@n(Ne) + dpi@m_(\,)] are not both zero. Then z{™(\,) as defined
in (2.7) is a nontrivial eigenvector of the problem (1.1), (1.2), (1.3).
2i™(\,) satisfies (2.8), (2.9) and (2.10) and we have hence in this case
using (4.2) that

2 i(N) + Eleazi? (V) + dpi2i?, (V)] = 0,
2N + Elenzi™ (V) + dmoiZi™i(N)] =0,
Zia(Ng) + haim (V) = 0, 25m5(N) + haiM'(N,) =0 .

If we now set A =X\, #,(A) = v,(0) = 2™(\,), n = m in (3.4) we
obtain again a contradiction. Hence we deduce that

DPmri(Ne) + ElCaDn(Ne) + dpiDms(Xs)] = 0

4.4) and
( ) qm+1(7\'s) + k[chm()"s) + dm—-lqm—-l()"s)] = O .

Hence from (4.3), (4.4) we deduce that p,(\,) and g,(\,) are both
eigenvectors of (1.1), (1.2), (1.3) and are of course linearly independent.

The converse is obvious as from (2.2) the equations (4.3), (4.4)
quarantee 0,(A,) = 0 = o, (\,).

THEOREM 4.3. The boundary prodlem (1.1), (1.2), (1.3) can have
at most a double eigenvalue.

Proof. At a repeated root )\, of the characteristic equation (4.1)
with 0,(x,) = 0 = o,(x,) we have from (2.2)

On(N) =
Drtr(Vs) FE[CnDn(Ns) + Aoy D s (V) @i (N5) F B[ €@ (Ns) + Ao s Qs (N5)]
p{m-l-z()"s) + hp',m()"s) qzn+2(7\’a) + hq"m(y\’s)

By the corollary to Lemma 3.5 and since A, is real by Theorem
4.1 we have that p,(\,) # 0 and hence we can have at most a doubly
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repeated root of (4.1). Alternatively from (1.1) it follows that there
can be at most two linearly independent eigenvectors.

5. Oscillation and separation theorems. We use the relations
of §3 and the theorems of §4 to obtain some results concerning the
oscillation and separation properties for solutions of the boundary
problem (1.1), (1.2), and (1.3) in the special case » = 0 = k. We first
derive the following lemmas:

LEmMmA 5.1. It is not possible for real N that p,.,(\) = @u(N) =
Pmi2(N) = @uiz(d) = 0 and also p,(\) = ¢,(\) =0 for m = 0.

Proof. We use the corollary to Lemma 3.5. We note that this
lemma is a particular case of the general result of Lemma 5.4 which
is valid for all . Hence the statement of Lemma 5.1 is also true
for nonreal .

LEMMA 5.2. It s mot possible that ¥,(N) = Ypi(N) = Yuro(V) =
Ynss(V) = 0 (m = —2), for any nontrivial solution y,(\) of the re-
" currence relations (1.1).

Proof. We see directly from (1.1) that a solution with four con-
secutive components equal to 0 must have all components equal to 0.

LEMMA 5.3. It is mot possible that Y,\) = Ypii(V) = Yuia(V) =
Y =0 (m=0) if y,(\) s a nontrivial and real differentiable
solution of the recurrence relations (1.1) and (1.2) for real \.

Proof. We use formula (3.4) and Lemma 5.2 to demonstrate the
lemma. TUnder the assumptions the right-hand side of (3.4) for n = m
is 0. Hence the left-hand side is 0 and ¥, =%, = :-+ = ¥, = 0 with
m=0. For m=1 we US€ ¥,s, = Ynsz = 0 and for m = 0 also from
1.2) y_, = y_, = 0 to deduce from Lemma 5.2 that in each case y(\)
is the trivially zero vector.

LeEmMMA 5.4. If two solution wectors of (1.1), (1.2) have three
successive components in common then they are proportional.

Proof. From (1.1) we see that a solution with three successive
zero components is determined uniquely by the value of an adjacent
component.

We now have the following theorems also for the special case of
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the problem (1.1), (1.2), (1.3) with . =k = 0:

THEOREM 5.1. If A, is a repeated root of p,(\) for m =1 then
A, 18 @ simple 100t of Pn_i(N) and of Omr(V).

Proof. At a repeated root A, of p,(\) we have from Theorem
4.2 that p,+,(V) = @uei() = Dmro(Ns) = Qni(X;) = 0. Then we see from
(2.2) that also p,_,(\) and p,.,(\) are 0 at » = \,.

By the corollary to Lemma 3.5 we have that

PmaNe)  Grs(Ns)
Pa(h)  @u(N)
Using (1.1) we see that this implies that

pm+3()\'s) Qm-i-s()\’s)
0
i) gt |

and it is impossible that 2,(A;) = ¢.(A) = 0 OF Dpis(Ny) = Quis(Vs) = 0.
Hence 2, is a simple root of p,_,(A\) and of p,..,(\).

THEOREM 5.2. If 9, (N) = @uii(X) = 0 (m = 1) then 0,(0,) = 0 =
Om—s(Ng) and there is a common eigenvector y for the corresponding
boundary problems (1.1), (1.2), and (1.3) for m and m — 1 respectively
such that Yn(Ns) = Ynii(Ns) = Ymia(h) = 0.

Proof. If 9,.(0) =0 = ¢,..(\,) obviously from (2.2) we have
that 0,(\,) = On_.(\,) = 0. If now A, is a simple root of p,(\) then
Dmsrs(N) and @,..(\;) are not both zero and y{™(\,) defined in (2.3) is
a nontrivial eigenvector for the corresponding boundary problem.
This vector is also zero at n = m if and only if

Pu(Ns)  Qu(Ny)
Duro(N)  Cura(N)| = 0 -

This is so by relation (3.5) since p,,.,(Ny) = 0 = ¢,.(\,). Thus y™\,)
furnishes a common eigenvector for the boundary problem (1.1), (1.2)
and (1.3) for m and for m — 1.

If A, is a double root of p,(\) then we have p,.,(\,) = ¢ns,(V;) = 0
and also Pn.o(Vy) = @uis(N) =0 by Theorem 4.2. Hence y,(\) =
ap,(\) + Bq,(\) for any constants @, 8 not both 0 provides an eigen-
vector for the boundary problem (1.1), (1.2) (1.3) for m. Since by
Lemma 5.1 here p,,(\,), ¢.(A,) are not both 0, the nontrivial vector
YN = €u(V)D.00) — Da(V).(A)  will then provide a common
eigenvector for the boundary problem for m and for m - 1.
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THEOREM 5.3. If 0,(A) = 0 = 0,_,(\,) then p,(N) = 0 = @pii(Ny)
(m = 1).

Proof. Let A\, be a simple root of p,(\) and of p,_,(\), and as-
sume PDp,1(Ne)s @uii(N;) Were not both 0.

Then y{"(\,) defined in (2.8) furnishes a nontrivial eigenvector
for the boundary problem for m — 1 satisfying ¥ Y(\,) = ¥y (\,) =
yimab (N,) = 0. Also here from (2.3) we see that y"3"(\,) = — O.(X,) = 0.

We now obtain a contradiction by the use of relation (3.4) of
Lemma 3.3.

We take in relation (3.4) A =\, n = m, u.(\) = y™(\), v.(\) =
ymY(\) and obtain that the left-hand side is positive, and the right-
hand side is 0.

We deduce from this contradiction that y{"~(\,) must be a trivial
vector and P,+,(\) = @ur(N,) = 0.

If A, is a double root of p,(\) or of p,_,(\) the result is obviously
true by use of Theorem 4.2.

THEOREM 5.4. Between two successive 2eros of 0O,_,(\) (m =1)
which are not zeros of p,(\) there lies at least one zero of 0,(\), and
vice versa.

Proof. Let \, N\, be consecutive zeros of o,_,(\) which are not
zeros of p,(\). Thus they are both simple zeros of p,_,(\) and
Dmi1(N)s @ns:(\) are not both zero at either A, or )\, as we see from
formula (2.2). y{™(\) is a nontrivial vector for x = A\, Ao Y (N) =
Om-i(\) is zero at n, N, Also o,_(\), 0m_.(\,) have opposite signs.
From (2.3), (2.2) we see that y"3"(\) = —p.(\). We now make use
of relation (3.4) for u,(\) = v,(\) = y™P(\) and n» = m. We obtain
using (2.4), (2.5), (2.6)

30l O = dalyis ) — R (g ()

since the left side >0 since m = 1 and y"~"(\) is not the trivially zero
vector. Now p,_,(A) =0 at A, A, and p],_,(\) has opposite signs at A, \,.
Hence we deduce that p,(\) has opposite signs at ), A, and hence
On(\) has at least one zero and in general an odd number of zeros
between A, and \,.

In the case of two consecutive zeros \,, A, of p,(A) which are not
zeros of p,_,(\) and hence are simple zeros of p,(\), with »,.,(\),
. Qm+:(A) not both equal to zero at either ), or \,, we have similarly
that o;,,(\) has opposite signs at » = A, 1,. From the same relation
obtained above we then deduce that p,_,(\) has opposite signs at
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My A, and hence p,,_,(\) has at least one zero, and in general an odd
number of zeros, between A, and \,.

6. Orthogonality and expansion theorems. We now obtain
orthogonality relations for the eigenvectors of the boundary problem
(1.1), (1.2), (1.8) and corresponding expansion theorems.

We consider the set of eigenvalues \; (¢t = 0,1, ---, m) of the
boundary problem (1.1), (1.2), (1.3), roots of the equation 0,(\) =0
where p,,(\) is defined in (2.2), where multiple eigenvalues are counted
according to their multiplicity and written a corresponding number
of times. We note that the eigenvalues \; are all real by Theorem
4.1 and only double eigenvalues at most can occur by Theorem 4.3.

We take

(6'1) koé)‘qé)\lz§"°§7\'m-

We obtain with the aid of Theorem 4.2 a corresponding set of
m + 1 mutually orthogonal eigenvectors. The form will vary in
various cases and according to whether \; is a simple or double
eigenvalue.

We consider firstly the case where )\, is a simple root of equation
OuN) =0 and pu(Vi) + 2Du(N)y Qi) + hg.(N;) are not both 0.
Then as seen in §2 the vector y™(\;) defined by (2.3) furnishes a
nontrivial real eigenvector of the boundary problem (1.1), (1.2), (1.3).
Consider a similar root »; = \; and corresponding eigenvector y™(\;).

We now make use of relation (3.1) of Lemma 3.1 with X\ =X,
¢ =x; and w, (V) = g™ (M), v,(2) = y,"(\;) and obtain

N ~ k’j)qga a, Y Ny (ny) = 0.
Using N; # N; we obtain the orthogonality relation
(6.2) §=10 a, Yy )Y () = 0.

We see that (6.2) is trivially true if A\, or X\; is not a simple root
using Theorem 4.2 or if p,,..,(\) + Ap,,(\) = 0, ¢p (V) + Rg,(\) = 0 for
X =N\ OF A = \;.

Similarly if \; is a simple root of po,(\) = 0 and

pm+1(k’i) + k[cmpm()"z) + dm—lpm—lo\‘i)] ’
Qniz(Ni) + E[Cn@n(V) + dpes@ns(M)]

are not both 0, we can use the vector z{™(\;) defined by (2.7) as a
nontrivial real eigenvector. Then relation (38.1) furnishes similar
orthogonality relations.

In the case of a double root »; = \;;;, of p,(A) = 0 we obtain by
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Theorem 4.2 two linearly independent real eigenvectors p,(\;), q,(\;)
and from these we can form two orthogonal eigenvectors, for example
by taking

2 A:D:ds

(6.3) Br= Do Go = o —
>, a,p;
§=0

Dr

We hence can form for a given boundary problem (1.1), (1.2),
(1.8) for given m = 0 a set of m + 1 mutually orthogonal real eigen-
vectors corresponding to the set of eigenvalues Ng, My ++ ) Ao

We let {w;}r*?, ¢1=0,1,---,m) be defined as the normalized
nontrivial real eigenvector corresponding to the eigenvalue \; which
is formed, in the case that A, is a simple eigenvalue with p,..(\;) +
hD0n(Ni)s Qmae(N) + Ra,(N;) not both zero, from y™(\;), while, if \; is a
simple eigenvalue with p,,.,(\;) + 20,0\ Quis(Vs) + 2@, (N;) both zero,
from z{™(\;), and, in the case that \, = \,;, is a double eigenvalue,
from 7,(\;) and §,(\;) respectively, by scaling in each case by division
by a positive factor so that w3 + w? = 1.

For the real eigenvectors {w,,}r*?, (¢=0,1, .+, m) we define

(6.4) Bi= 3 aul, .
The vectors {w,,} satisfy the orthogonality relations
(6.5) 3 @i, = By
We now replace the vectors {w,,} by the normalized eigenvectors

(6.6) {wa} = (w7} .

Then we have the following theorem:

THEOREM 6.1. The boundary problem (1.1), (1.2), (1.3) for given
m,hyk has a set of m + 1 real mutually orthogonal eigenvectors
{2, (6 =0,1, ---, m) corresponding to the real eigenvalues X,
0 =17 = m) where vy N SNy £ oo« Z N, wWhich satisfy the orthogon-
ality relations

Mz

(6.7) 00T 50 = O 0o=4,5=m).

n=0

We now obtain an expansion theorem for an arbitrary sequence
in terms of the eigenvectors and a corresponding completeness theorem:

THEOREM 6.2. If {f.}ro is an arbitrary vector we define
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(6.8) v= 30 i, (G =0,1,---,m)
n=0

where the {x;,}722, (1 =0,1, .-+, m) are the real orthogonalized eigen-

infn=—2

vectors of the previous theorem. Then we have the expansion

m

(6.9) Jo = 20‘ Villiy, n=0,1,:-,m).

Also the Parseval equality or completeness relation holds
(6.10) Sl = S alfl.

Proof. Let
(6.11) fo= ﬁ‘g ax, (m=0,1,.--,m).

This expansion is possible since we have m + 1 linearly independent
eigenvectors {x;,})", (¢ = 0,1, -+, m) in the m + 1 dimensional vector

space by (6.7).
Multiply (6.11) by a,x;, and sum over n from 0 to m. We obtain

m m m
2 a’nfnmjn = 2 anx:in(z aixin)
n=0 n=0 1=0
m
ai( 2 anxmxin)

|

S
I
o

Il

I
Ms
I
>

o,
Il
=)

I
K)-Q

using the orthogonality relations (6.7).
Hence from (6.8) we see that

aj:’vj

and from (6.11) we have (6.9).
To prove (6.10) we have, using (6.9), (6.7),

m

m m m
Salfl = 3 a3 ownd) T )
n=0 =0 J=0

=0

m _ m
= 2% j< > anxmxm)

I
M
s

Hence the proof of the theorem is complete.

We also have dual orthogonality relations:
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THEOREM 6.3. For the real eigenvectors {w;,}7+2, (1 = 0,1, +++, m)
of Theorem 6.1 we have the dual orthogonality relations

(6.12) gxi,xis = a;'0,, 0=r,s<m).
Proof. Substituting (6.7) in (6.8) we obtain

w(EZJO a.,fswis)

a, fs<$§7:‘3 xi,x,-,,) .

Il
M

f’f

?

1l
=3

M=

Since the vector {f,}r, is arbitrary we deduce
i xi’rwis = a/:lafrs .
=0
We derive the dual expansion theorem:

THEOREM 6.4. Defining for an arbitrary vector {v;}i-, the f.(n =
0,1, -+, m) by (6.9), the expansion theorem (6.8) is true.

Proof. The vectors {x;,}™ (n = 0,1, ---, m) for different n are
orthogonal by (6.12) and hence linearly independent. Hence we can
express an arbitrary vector {v;}m, in terms of them. The proof now
follows by use of (6.12) analogously to the proof of Theorem 6.2.

7. Spectral functions. The preceding orthogonality relations
and expansion theorems can be expressed in terms of a spectral func-
tion defined for the boundary problem (1.1), (1.2) (1.3). This is es-
pecially useful when later considering the boundary problem in the
infinite case m — o and the corresponding expansion theorems.

We define the row matrix of functions of )

(1.1) Y.\ = [0V (M) (n = —2)

satisfying the recurrence relations

(1.2) doYoio + C¥ors + (bn = M) Yo + 00 Yo + 4,3 Y, s =0 (n20)
with the initial conditions

(7.3 Y_.(\) =(0,0), Y_(») =(0,0), Y,(\) =(1,0), Y,(\) = (0,1).

The vectors {z;,}2, (1 = 0,1, -- -, m) defined in §6 may be expressed
by
Tin = TioDa(Ns) + Tis@a(Ns)

T4 — Y. 0u

where the vectors «, (¢ = 0,1, ---, m) are defined by
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X,

(7.5) w; = ( ’°) .
Ly

Then, denoting by an asterisk the complex conjugate transpose
of a matrix, the orthogonality relations (6.7) can be written in the
form

(7.6) S Y e Y. =0 045 m).
The dual orthogonality relations (6.12) become
1.7 z: Y, 0wl YA = a6,y (0 <7, s<m).
These may be written in the form
(7.8) [" v om0 = a9, 0= rs s m)
where the two-dimensional spectral function 7, ;,,(\) is defined by
Twaa(N) = 3 uui (W= 0)

0<73=2

= — > uuf <0

<230

(7.9)

where \; (¢ = 0,1, ---, m) are the eigenvalues of the boundary problem
(1.1), (1.2), (1.8) satisfying (6.1).

Thus the spectral function in this finite case 0 £ m < « is a
right-continuous matrix step-function with finite jumps at simple
eigenvalues \; of amount uu} and at double eigenvalues A; = A;,, of

amount wu} + U, U,
The expansion and completeness theorem Theorem 6.2 of §6 can
now be rewritten as follows:

THEOREM T7.1. If {f.} n=0,1, .-, m) is an arbitrary vector
we define the vector fumnction

(7.10) o) = 3 VM@, -
Then we have the expanmsion

fo= 3 VaJuato(n)
(7.11) . =
= |7 Vudrasae0) O Sn=m).
Also the Parseval equality or completeness relation holds

S alful = 310"l

(7.12) -
- S_wg*(x)drm,h,k(h)g(h) .
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Proof. We use in Theorem 6.2 relation (7.4) and note that the
vector {v;}, of (6.8) is given by v, = ufg(\;).

8. Inhomogeneous boundary problems. We now consider in
this section the solution of the boundary problem for the inhomo-
geneous recurrence relations

@Ynio + Clfnsr + (bn — MY, + ComiYuy

8.1
( ) + dn—2’!/n~2 = a’nfn (O é n é m)

where the coefficients a,, b,, ¢,, d, are real, a,, d, > 0, A is a complex
parameter and where {f,} (0 =n < m) is a given complex vector,
with the boundary conditions

(8.2) Yo.=0=19y_
and
(8.3) Yn+r + ElCalm + QuYus]l = 05 Ynie + h¥Y = 0

where h, k are real constants and m = 0.
The solution is given in terms of a Green’s functions for the re-

currence relations (1.1).
We first obtain some fundamental lemmas:

LEMMA 8.1. For m= —1,n = —1
[p7]4l a1 + [98]nl 7|0 — [DQ)nl 78 |m — [P5]alar]. — [97]aWl DS]a

where [uv], is defined in (8.1) and |uv|, in (2.2).
In particular

(8.4)

(8.5) dsfgsle + duilprls —cforl, =0 (= -1).

Proof. Using (3.6) we have
[7]nlasl. = [p7].l @51

Adding this and the similar relations for the terms on the left
side of (8.4) we obtain the expansion in terms of second order minors
of the sum of three fourth order determinants which sum to zero.

(8.5) is obtained from (8.4) by use of relations (3.7). We also have

LEMMA 8.2. For m= —1,n = —2

[07]m(@8)n + [28]n(D7)0 — [DQ]n(rS)n — [DS]a(@7)n

(8.6) — [q7]a(D8), — [75]a(PQ), = d_d_,
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where [uv], is defined in (3.1) and (uv), is defined by

8.7 (D), = AUV — Varsly)
In particular
(8.8) d_xgs), + d_(p7r), — c_(qr), = d_d_, . (n=-2)

Proof. TUsing (3.6) we have
[p7].(gs), = [PT].(gS),. -
Adding this and similar relations for the terms on the left side
of (8.6) we obtain the expansion in terms of second order minors of

the sum of three fourth order determinants of which two are equal
to zero and the third is equal to D, defined by

Do oy Tuer  Spar
®.9) D, =da, " ! . = -1

Put1 ot Ta+r Sn+1

Dotz Quiz Tate Su+z

Now substituting for D,is Quiss Tnrss Sure from the recurrence relations
(1.1) in D, we obtain D, =D, , (r =0), and by induction, using
D—-1 = d—zd—u

(8.10) D,=dd., (n=-1)

and thus we have the result (8.6). We obtain (8.8) from (8.6) by
use of relations (3.6), (3.7).

We now define two solutions ™ (\) (¢ = 1,2) of the recurrence
relations (1.1) in terms of the fundamental solutions p, q, 7, s defined
in (2.1). They are characterized by the following lemma:

LEMMA 8.3. The solutions ™ (\) (2 = 1, 2) of the recurrence re-
lations (1.1) satisfying also boundary conditions (1.3) and the relations

(8.11) [viB] = 1, [¥.3] = 0, [P] = 0, [¥7] = 1,

where the form [u¥] for two solutions of (1.1) is defined in (3.1),
(3.6), are given, for N mot an eigenvalue of the boundary problem
1.1), (1.2), (1.3), by

S N A | 27 |
fn))\'“—__—' n Qn_!_?ﬂn
®) d_z[ 200 " Tpdla |
Iém) X — c—-l r Iq/r|m Yy — ;.‘p/’"m " + n_'
®12) PN = T T T e
1T 1g8]n | 8 |
d_l[ |29 | [ 09 | jl (
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where the polynomials |pq|. are defined in (2.2).
The ™ (\) satisfy in addition

8.13) [Vt = 0.

Proof. We attempt to solve the equations (1.1), (1.3), (8.11) by
setting ¥,(\) = ap,(\) + Bg.(\) + vr,(\) + 0s,(\) where «a,B3,7,0 are
undetermined constants.

We then use first condition (1.3) and then conditions (8.11) to
derive the solutions ™ (\), ¥§™(\) in the form given by (8.12).

To prove (8.13) we use (8.12) and (3.7) and hence have that

-, 1 1 _ 1 _
it = —t] g%larls — lprl = ghlasl] = 0

by (8.5) of Lemma 8.1.
We now demonstrate the following lemma:

LEMMA 8.4.

(m) ) (m) (
"/flgn o + "/"é;ﬂ qn — "NZ‘ D — ZZ)Qz

(8.14) __1 [d Q; 7,

q: T

Qn Ty

¢ +d_, D:
p’ﬂ r’ﬂ

d_d_, =0

J

Proof. We use formula (8.12) and relation (8.5) of Lemma 8.1.
We have

n S”b

Sfor —2t,n<m+ 2.

VP, + VG,
_ __1_< 1q7 |m 0, — | D7 | d. +rt)pn+ Cy (lqv"lmp

|29 |n |29 |n d_d_;\ |pq|n
lp/rlm —2q, + t>Qn - L( 195 Pe — | P8 | q; + 'S't)(h
|29 | [ 29 | (09 |
1
A_i| Q7 |wDn + 1| Q7 |nQn — A5 QS |0l
Ip - d_ld_zl e igm ) 1@ G — A_5|q8]0.]
1
+ qt————[d_llmlmm — | P70, + d_5| DS |,0,]
l qlm A0,
+ d d [ d——l’rtpn + C_"4q, — d-—zstq'n]
Ll (A prlngs — doilqrnpe + @[ —dosl @S |upn
" Tl d~1d—z
+ €| QT [nPn — €| DT [0 + d_y| DS |[nq.]}
1
+ [— Ao, + c_i7q, — d_s8..] «

d_d_,



42 C.E. BILLIGHEIMER

Hence

(m) (m) (m) Ip(m)
50+ s Qn — Y — Yin'q,

Ll pe - padldlprl, + doiasl. — c_larl,]
T dldl, !10 lm
. 1 q: S P: Ty q: 1
T d Lod _
d_ld—z[ - Qn Sy o DPr Tu O qn Sy
1 ¢ . T @ "
= d_ d_ —c_
d—ld—zli : dn  Sa - ' P T O 9 Ta

using relation (8.5).
We now can obtain the following theorem:

THEOREM 8.1. The solution of the inhomogeneous boundary problem
(8.1), (8.2), (8.3) for N not an eigenvalue of the corresponding homo-
geneous boundary problem (1.1), (1.2), (1.3) is unique and is given by

(8.15) v.(N) = Z g (m2=r=m+2)

where the Green’s function g'(\) 1s given by
g (\) = e N)p(N) + e (Ve (r=9)
= a; PNV (V) + a s (MYr () (r =)

for 0Zi1=m, —2=r=<m+ 2, and where the solutions of (1.1)
2.\ ¢.(N) and P (N) (1 =1,2) are defined in (2.1) and (8.12) re-

(8.16)

spectively.
The solution y(\) = {y,(\)} (=2 = r = m + 2) for Im N = 0 satisfies
(8.17) Nyl = [Im N[ F ]
where
m . 1/2
(8.18) 1yl = (3 aulv. )
n=0

The Green’s function gi™(\) for Imx #= 0 is analytic in N and
has the following properties:

(8.19) 0 arg () = gy O =mi=m)
20 () JalerMFsImifta 0=ism)
(8.21) Gi) |g@0)| < |Imn|Zaa (0 <, § < m)
822) (V) NarlgPMF S (ImiFat  (0=i<m)
(8.23) (V) g + 00 + 0ugi + Cani8i + dasgi

=N, 9% + a0, (0=m, 1= m)
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(8.24) 9% =g =0 (0=1=m),

(8'25) Im+1i + klcmgmz + dm_1gm_11;] = 0
Intzi + hm; = 0 0=1=m).

Proof. The solution of the boundary problem (8.1), (8.2), (8.3)
in the form (8.15), (8.16) can be obtained by a method of variation
of parameters. We seek to find the Green’s function {g{™'(\)}r2, for
fixed ¢ satisfying 0 < ¢ < m given by the solution y = {y,}™* of (8.1),
(8.2), (8.3) taking for {f,}r the vector {d,;}r.,. The solution of (8.1),
(8.2), (8.3) for an arbitrary vector {f,}r will then be given by (8.15)
by superposition.

We set

8.26)  ¥.(M) = AP (V) + Bada(VN) + Vara(N) £ Gusu()  (nZ —2)

where @, 8,, V., 0, are complex constants and p,(\), ¢,(0), 7,(\), s, (\)
are the fundamental set of solutions of the corresponding homogeneous
boundary problem (1.1), (1.2), (1.3) given by (2.1).

Substituting in (8.1) from (8.26) and using the recurrence relations
(1.1) satisfied by ., ¢us 7. 8, We obtain the equations (if a; = 1)

Qu[(@niz — A)Duts + (Butz — Badure + Yate — Va)Tuse
+ (Ontz — 0n)Sutal T Cal(@nss — @W)Duss + Buts — Ba)uns
F Yotr = V)ass + Ot — 0u)S0ra] + Coi[(@ney — @)Dy
+ (Baes = Bu)las + (Vney — V)i + By — 00)Saci]
+ dpa(@ne — ) Dus + (Baz — Budaes + (Yae — Va)Tucs
+ (Onz — 0)80s] =0  (O=n=m).

(8.27)

We satisfy equation 8.27) for0 =n <=7 —-2andfori+3=<n<m
by choosing
Apipg = 00 = Oy = Qg F Q= Qg = 00 = O,
Buiz= 2+ =Birs =Binn #Bi=Bioy =+ =6,
miz = = Vi = T FVi =T = o0 =7,

5m+z= e =3i+2=55+1¢5i=5i—1= e =5—2

(8.28)

and setting
(8.29) a= Ay — Ay g = Bits — B ¥V =Yia — Y 6= Oipr — 0;
we obtain from equations (8.27) for ¢ — 1 < n =< ¢ + 2 the equations

&di-—lpi-ﬂ + gdi—-lqi+1 + ;v + 3di-—18'i+1 =0

(8.30) ~ ~o N
A(d:Dive + €Dirs) + Bdilive + €:Qiry) + Y(diTine + €7i10)
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+ 0(diSips + €:841) = 1
a(e:p; + diiDiy) + é(CiQi + diiQiy) + Vers + diyriy)
+ 0(es8; + diy8;y) = 0
ad;p; + //édiq'i + 9dir; + ddis; = 0

(8.30)

where we assume the third and fourth equations of (8.30) to be also
satisfied for ¢ = m — 1, m, and the first equation of (8.30) also for
2= 0. From (8.30) we obtain

a —é—_(qwsli/lpq%h, B = %Ipv'SIi/lpth :

(8.31)

9 —%}pqs;i/mqrslhﬁ = %]pqrii/lmrs}i

where
Dicy Qiy Ticy S
q; i S;

Pir Qsy Vi P
8.32) |pgrli=|p; @ 7 |lpgrsl; ="

p ¢ , it Qivr Tivr Sin
it1 Qi1 Pigs

Dive Give Titz Site
From (8.2), (8.28) we obtain using (2.1)
(8.33) Y=o =7,=0,0;=---=0_,=0
and then from (8.28), (8.29), (8.31), (8.33) we obtain

Tmig = *2+ =Yy =7 = ”El]%|pq3{i/lpq7”3|i
(8.34) '

5m+2: “ee :5i+l:§:

diil par /| pars|; .

From (8.3), (8.28), (8.34) and using also the fourth equation of (8.30)
for i+ = m and (8.29) we obtain

Uiy =+ = Qi = [—|pgslilqrl. + |parilgs|.l/d:| pars || pg|.
Buss =+ = Biwr = [|pgs il p7 | — | 0g7 il Ds|.]/d:| PaTs [i| PG |

where |pq|, etc. are defined in (2.2), and then from (8.29), (8.35),
(8.31), (8.28) we obtain

(8.35)

Q= -0 =a_, = [—|pgsllar|. + |pgrllgsin
+ lgrsli| palal/di parsli| pqln

Bi= o =B, = [|pgslilpr|n — [pr i ps|n
— |orsli| palal/di parsli| paln

We now see from (8.9), (8.10) that

(8.36)
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(8.37) |pgrs|; = ditdi'D; = ditdi'd_d_, (1= —1)
and expanding the determinant and using (3.1), (8.7) that

|pgr|; = —d_oqi/di_ys | PgS|; = —(c1q; — d_ypi)/d;y
lorsl; = — (e — dss))/diys |qrs]; = —d_yri/d;_, (= -1).

Using (8.37), (8.38) in (8.33), (8.34), (8.35), (8.36), substituting in
(8.26) and making use of relation (8.5) of Lemma 8.1 and (8.12) we
obtain Green’s function g{7’(\) in the form (8.16).

We now verify that (8.15), (8.16) is a solution of (8.1), (8.2), (8.3)
with the aid of Lemmas 8.1, 8.2, 8.3, 8.4 and then show that the
solution is unique.

Set y.(\) = g™ (\)f, in equation (8.1) for n. Then the left side
becomes, using the recurrence relations (1.1) satisfied by »,, q.,

(8.38)

{dugien + €00 + (by — NI + Cots0i1n + Dos0i2 0}
= APV inre T GVonsa) T Co(DuVintr + GV 2ntr)
+ by — M) (DaVin + @V20) + Coms(VinDns + Vanllas)
+ Gys(VinDucs + Veuln-)}@nfs = {Qu(DaVinse + €V ints)
+ Ca(PaVints T CuVenrr) — Qu(ViaDase + Veulurs)
= Co(ViaDuss + Veulni)}nfu = {[ViD] + [¥7]
= Qs (Vint1Pnt — Vino1Patr) — Gos(Van1Qas — Vanoi@as)}afn
=1 +1-1Da.fo=a.fa
using (8.14) of Lemma 8.4, (8.11) and relation (8.8) of Lemma 8.2,
Hence this term in the expression (8.15) for y.(\) satisfies equation

(8.1) for .
Set y,(\) = g™ (\)f._, in equation (8.1) for n. Then we obtain,

using the faect th::t 1the ¥, satisfy recurrence relations (1.1),
{dugions + CafiPines + (bn — MG _s + CoiGi i
+ dn—-zg;@%n—-l}f n—1 — {dn(pn—-lwln'l-z + Qn—x"/'m+2)
+ Ca(PnsVinsr + CuesViansr) + (bn — M) (DaesVin + QusVza)
+ Cos(PaciVines T GueiVonas) + ueos(VinsPacs + Veni@uo}Uns fus
= Apes(VinaiPuz + Venr@uz — VinosPus — Vens@n)Cnosfuoy = 0

using Lemma 8.4 and relation (8.5) of Lemma 8.1 for %,k = 0.

Similarly we see that y,.(\) = g™, ,(\)fs, in the left side of equa-
tion (8.1) for n gives 0. Also if we set y,(\) = g™ (\)f S < n — 2 or
s = n + 2, in equation (8.1) for », we obtain, using the fact that the
Jrim satisfy recurrence relations (1.1), that the left side of equation
becomes 0.

Hence we can state that y.(\) as given by (8.15) satisfies the re-
currence relations (8.1).
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Now y,(\) given in (8.15) can easily be seen to satisfy initial
conditions (8.2).

We now show that conditions (8.3) are satisfied.

Set y,(\) = g™ (\)f, in the relations (8.3). Then the left side of
the_first relation becomes for » < m — 1

Ynss + Klenn + dpiYms] = {0000 + Klengiin + dusgnl 1}
= {pn’]/flm-i-l _,_ an:l"Zm—!—l + k[cmpnql’,rlm + Cmqﬁwmn + dm—-lpnq/flm—»l
+ dm—~1q'/ﬂf,fzm—1]}anfn =0

since the (™ (1 = 1, 2) satisfy boundary conditions (8.3).
Similarly for » < m we have

Ymre + W = {0000, + R0}
= {pn#’mqtz + an/j‘Zm-!-z + hpnqylm + hanzm}a’nfn = O .

For n = m we have, using the fact that the ¥{i (+ = 1, 2) satisfy
boundary conditions (8.3),

Ymer + ElCaln + oYl = {900 m + Elengiin + dus9nnl}fm
= {DuVimsr + QuVomts + ElenDuVin + €0u@uVon + GpiPp Vi
+ Qs Qe Vom0 S = ko {V10Dms + Vomms
= VimaiPm — Vomilu)Omfm = 0

using relation (8.14) of Lemma (8.4) and (8.5) of Lemma 8.1 for i =
k=0.

Hence y,(\) as given in formula (8.15) satisfies conditions (8.3).

The uniqueness of the solution follows from the fact that, since
)\ is not an eigenvalue of the corresponding homogeneous boundary
problem (1.1), (1.2), (1.8), the difference of two solutions of (8.1), (8.2),
(8.3) must be the trivially zero solution.

To prove (8.17) we require the following lemma giving an identity
analogous to Green’s formula for differential equations:

LEMMA 8.5. For two vectors u = {u,}, v = {v,} (=2 = n = m + 2)
of complex numbers u,, v, we have the formula

m

(8.39) > (Pu), ¥, — wa(P)n = [uv], — [uv]-,

n=0

where the form [uv], is defined in (8.1) and the difference operator
P acting on a sequence v = {u,} (—2 < n < m + 2) of complex numbers
u, 18 defined by

(8‘40) (Pu)n = dnu’n—{-z + Cop Uty =+ bnun + Cop1 Wiy + dn—zun—-z (O é n é m)

The proof of (8.39) is immediate from the form of (8.40).
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We now can obtain (8.17) of Theorem 8.1. We set in (8.39) u =
v = y where ¥y is the solution of (8.1), (8.2), (8.3). Then from (8.2),
(8.3) we see that [yy],, = [yy]_, = 0 and from (8.1) (Py), = MY + Cpfr-
Then (8.39) may be written

2¢ Im ?»g QY P = Z’; ol fulhn — Fulln) -

We deduce with the aid of the Schwarz inequality

2]Im>"|n§‘6an|yniz =

0 |

=23 alrl) ( alvr)

n=0

and hence
Yllm = [Im N7 f ]

where ||y||. is given by (8.18), and we have the result (8.17).

Now (8.19) of (i) follows from the form of g{™(\) given in (8.16)
with (8.12). (8.23), (8.24) and (8.25) of (v) follow from the form of
the solution y of (8.1), (8.2), (8.3) given by (8.15) and hence from the
fact that {g,;(\)}r22, satisfies (8.1) with {f.};" = {0.:}7,, and (8.2), (8.3).
Hence also (8.20) of (ii) follows from (8.17) using ||0,:||. = ai®>. From
(8.20) we easily deduce (8.21) of (iii). (8.22) of (iv) follows from (8.20)
using (8.19). This completes the proof of Theorem 8.1.

We obtain the following corollary:

COROLLARY 8.1. The solution of the imhomogeneous recurrence
relations (8.1) satisfying the inmitial conditions

(8.41) Yo=Y =Y =9=0
is given by y = y,(\) (n = —2) where

(8.42) Yu = i‘. <§2 'vkiaifi>¢kn

k=1 \1=0

where ¢, = {222, L <k < 4) are four linearly independent solu-
tions of the homogeneous recurrence relations (1.1) and the vectors
v, = {02 A=k < 4) are four linearly independent solutions
forming the adjoint fundamental systems of solutions of (1.1) and
are given by

v = {— [¢3$54]¢2~; + [¢2¢-§4]¢3i - [952953]¢4i}/D—1

Uy = {[¢3§54]¢1i - [¢19Z4]¢3i + [¢1§53]¢4i}/ D_,

Vs = {_[¢2954]¢1i + [951954]?52«: - [¢152]¢4z}/ D_,

Vy = {[¢253]¢14 - [¢1953]¢2i =+ [¢x§52]¢3i}/ D_, (= -2

(8.43)
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where D_, = d_,d_,|,0,0:0:|—1, and |p,¢.p:6:|_1 ts defined analogously to
(8.32) and the forms [4,$,] are defined in (3.6), (3.1).

Proof. We note that the solution of (8.1), (8.41) exists and is
unique for all A since the corresponding homogeneous equations (1.1)
with (8.41) can have only the trivial zero solution.

We solve the equations (8.1), (8.41) by the method of variation
of parameters setting

Analogously to the demonstration of (8.15), (8.16) of Theorem 8.1 we
obtain the solution y in the form (8.42) with

Vi = — | GuPsali/di| 1Pepsdali
Vo = | :0504]i/di| 91620504 i
Vs = —|0:0:0]:/di| 910250 i
Vi = |6:0:0s]:/di| 162504 s

where |6,6:6;|:) | #:6:0:6:]; are defined analogously to (8.32), and we make
use of the easily verifiable fact that

k2=‘1 vkn—-l¢kn = 0 (n —>_— —1)

(8.45)

Using recurrence relations (1.1) we obtain analogously to (8.37), (8.38)
that

B4 65:0:) = ——{sBlps — [bFdou + BFl0d (= -1

ete. and

(8°47) l¢1¢2¢3¢4|i = d—zd—1|¢1¢2¢3¢4|—1/d«:—1di (’0 = _1)

and hence obtain v,(1 <k < 4) as in (8.43).
We see from (8.43) that the v,(1 < k < 4) are solutions of (1.1).
From (8.47) or directly from (1.1) we deduce the following
corollary:

COROLLARY 8.2. If for four solution vectors ¢, = {prr 2,(1 <k £ 4)
of (1.1) we have |$,0.6:¢,|; # 0 for some i = —1 then we have | ¢,¢,6.¢,|;#0
for all i = —1. A mnecessary and sufficient condition for the solution
vectors of (L.1) ¢, (1 =<k <4) to be linearly independent is that
| §.:0:6:4l: = 0 for some © = —1.

We now verify that the v,(1 <k < 4) are linearly independent
by showing, as is sufficient in view of (1.1), that

(8.48) kzj Q=0 (6= —1,0,1,2)
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where the a,(1 < k < 4) are complex constants implies that «, =0
1<k <4). For we may write (8.48) in view of (8.45) in the form

¢1i—1 ¢2i—1 ¢3i—1 ¢4i—-1
i Pu Pu Pu

¢1i+1 ¢2i+1 ¢ai+1 ¢4i+1
a, a, A, A,

=0 (-1£i<92).

Using the recurrence relations (1.1) we deduce that

Prit Poim1 Pai-i P T
i Pu P P e
Pritr  Poirr Psirr Pur Vo =0 (t=0)
Ptz Pairz Paite Puve Vu
o, a, o, a, 0

for all complex constants 7, (1 <k < 4).

Since by Corollary 8.2 |4,4.6:6:]o 0 since the ¢,(1 <k < 4) are
linearly independent, we obtain for some set of complex constants
B:(1 £k £ 4) not all zero and independent of the 7, (1 < k < 4) that

Prics Poica Poica Puica i
P P P Pu T
Prits Poit1 Psivr Purs Vs =0 (G = 0)
Prite Poite Psite Puits Vs

o 0 0 0 kiv,,ﬁ,,

and hence, since |¢.¢.¢:6.], = 0 by Corollary 8.2, that >i_, 7.8, =0
for all v,1 <k <4). Hence B8, =0 (1 £k =4). This is a contradic-
tion and hence a, = 0 1 <k < 4) and the v, (1 <k < 4) are linearly
independent.

We now derive the solution of the boundary problem (8.1), (8.2),
(8.3) in an alternative form involving a different expression for the
Green’s function.

We obtain the following theorem:

THEOREM 8.2. The solution of the inhomogeneous boundary problem
(8.1), (8.2), (8.3), provided )\ is mot an eigenvalue of the corresponding
homogeneous boundary problem (1.1), (1.2), (1.3), is given by

(8.49) w0 = o0 (—2Sns<m+2)

where the Green’s function g{¥(\) 1s given by
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(8.50) 000 = | Yo0de ) Y ()l = )

Jfor —2=n=<m+2,0=1t=<m, where Y,\) are the matriz poly-
nomials defined in (7.1).

Proof. We use the dual orthogonality relations (7.8) and the
recurrence relations (7.2) and (7.3), as well as (7.4), (7.9).

Assuming (8.49), (8.50) we obtain with the aid of the recurrence
relations (7.2) that the left-hand side of equation (8.1) becomes

S0 = VY Y ) — ),

= S| Ve Y@

using (7.8).

Hence the y,(\) defined by (8.49), (8.50) satisfy the equations
(8.1) and, as can readily be ascertained using (7.3), the initial con-
ditions (8.2).

Also using the definition of 7,,,,,(\) given in (7.9) and relation
(7.4) we see that g{™(\) as given by (8.50) and consequently y,(\) in
(8.49) satisfy the boundary conditions (8.3).

In a subsequent paper (Billigheimer [4]), we consider the boundary
problem of the recurrence relations (1.1), (1.2) in the singular case
m — co, Both forms of Green’s function given in Theorem 8.1 and
8.2 are of use in these further investigations.
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