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A CONDITIONALLY COMPACT POINT SET
WITH NONCOMPACT CLOSURE

Davip E. CoCcK

Sometime in 1930, Leo Zippin showed that there exists a
complete Moore space that contains a conditionally compact
point set whose closure is not compact. It is the object of
this paper to show that if the hypothesis of the continuum
is true then there exists a separable, complete Moore space
which contains such a point set and, furthermore, satisfies
R. L. Moore’s Axioms 2, 3,4, 5, and 6. Theorem 1, concerning
the existence of certain subsets of the Cartesian plane, is
fundamental to the construction of this example and its proof
constitutes a major portion of this paper.

A complete Moore space is one satisfying Axioms 0 and 1 of [1].
The terms compact and conditionally compact are as defired in [2]
and other definitions and notation are as in [1].

In a Cartesian plane FE, let J denote the point set to which the
point P belongs if and only if each coordinate of P is a positive
integer. Let H denote the collection of point sets to which the
point set h belongs if and only if the points of % are the points of
an infinite sequence P,, P,, P, --- of points of M such that (a) P, is
the point (1,1) and (b) for each positive integer n, P,., is at a distance
of 1 from P, and either above it or to the right of it. For each
integer %, let T denote a translation in E such that T,(0, 0) = (k, —k).
For each point set » of H and each point P of M, let A,, denote
the set to which X belongs if and only if X is a point of M-T,(h)
where k is the integer j such that 7,(h) contains P. For each
point set h of H, let G, denote the collection to which g belongs if
and only if for some point P of M, g is A,p.

LEMMA 0. If h ts a point set of H and P and Q are two points
of M, then cither A,p = Auq or A,p and A, do not intersect.

LEMMA 1. Suppose h arnd b’ are two point sets of H such that
k' does mot contain infinitely many points of any point set of G,.
Then if 9 and ¢’ are two sets of G, and Gj, respectively, g does mot
contain infinitely many points of ¢'.

Proof. Suppose P is a point of g.¢’. There exist integers j
and k such that T,(P) is a point X of & and T\(P) is a point Y of
h'. There exists an integer 4 such that Ty(X)= Y. If P’ is any

313



314 DAVID E. COOK

point of g.-¢’, Ty(T,;(P’)) is a point of &/, thus if g contains infinitely
many points of ¢’, then A’ contains infinitely many points of the set
Ti(T(9)) of G,.

Let A,(h,) denote the set of all points of M with abscissa (ordinate)
1. Suppose % is a point set of H, P, P,, P, -+ are the points of a
point set ¢ of G,, and P and @ are two points of M not in g. Let
R denote the point set to which the point X belongs if and only if
X is a point of either (a) the straight line ray with endpoint P, and
slope 1 which contains no point of M — P, or (b) the straight line
interval from P, to P,,, for some position integer 7. Then P and Q
are said to lie on opposite sides of g or to lie on the same side of g
according as R does or does not separate P from @ in the plane.

LemmaA 2. Suppose (1) H' is a finite subcollection of H such
that (a) h, and h, belong to H' and (b) if h and b’ are two point
sets of H', mo point set of G, has infinitely many points in common
with any one point set of G,., (2) P is a point of M, and (3) K 1is
an infinite subset of M such that for mo point set h of H' does any
point set of G, contain infinitely many points of K. Then there
exists an infinite subset K' of K and a point Q of K’ such that (1)
for each point set h of H', each point of K’ lies on the same side of
A,» as Q, (2) for each two point sets h and b’ of H', each point of K’
lies above and to the right of every point of (A,p)-(Asp), and (3) if
Q' s a point of K’ distinct from Q, there exists a point set h of H
conteining Q and Q' such that no point of h between Q@ and Q' lies
on the opposite side of A, p from Q for any point set h' of H'.

Proof. Let hy, hy hyy «+-, h, denote the point sets of the collec-
tion H’. Let K, denote some infinite subset of K such that each
point of K, lies to the right of A4,,. There exists a sequence
K,K, K, .-+, K, such that K, is an infinite subset of K and for
each positive integer ¢ greater than 1 but not greater than =, K, is
an infinite subset of K, , and each two points of K; lie on the same
side of A4, p.

Let W denote the point set to which the point w belongs if and
only if for some two point sets » and A’ of H’, w is a point of
(A,p)-(A, ). Since no point set of G, has infinitely many points in
common with any one point set of G,, it follows from Lemma 1 that
W is a finite subset of M. There exist points P, and P, of W such
that no point of W is above A4, ,, and no point of W is to the right
of A, . Let K, denote the set of all points of K, which lie above
Aup, and to the right of A4,,. Since no point set of G, + G,,
contains infinitely many points of K,, K, is an infinite point set.
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Let @ denote some point of K, and let K’ denote the set whose
points are @ and those points of K, which lie both to the right of
Ao and above A, ,.

Suppose @' is a point of K’ distinct from Q. @’ lies above and
to the right of Q. Let Q” denote the intersection of A4, , with A4,
If no point of M between @ and Q" belongs to A4, , for any point
set n' of H’, let Z denote the subset of M whose points are Q",
the points of M, if any, between @ and Q”, and the points of M, if
any, between Q" and @’. If, however, for some point set 4’ of H’,
A, » contains a point between @ and Q”, let P’ denote the lowest
such point. Since @ is above and to the right of every point of W,
h' is the only point set & of H’ such that A,, contains P’. Since
Q' lies on the same side of A4, , as @, some point of A, , belongs to
A, and all such points lie to the left of Q. Let P” denote the
right-most point of (A4, ,)-(4se). In this case, let Z denote the
subset of M whose points are P’; the points of M, if any, between
Q and P’; the points of A4, ., if any, between P’ and P”; P”; and
the points of M, if any, between P” and @’.

There exists point sets h, and h, of H containing @ and Q'
respectively. There exist positive integers ¢+ and 7 such that @ and
Q' are respectively the ¢ point of 4, and the j™ point of A,. Let
Z' denote the point set whose points are the first 7 points of 4,
Let Z" denote the point set whose points are those points of A,
other than the first j — 1 points. The point set Z + Z’ + Z" is a point
set o of H such that no point of & between @ and Q' lies on the
opposite side of A4,., from @ for any point set 2’ of H'.

LEmmA 3. Suppose (1) H' is a countable subcellection of H such
that (a) h, and h, belong to H' and (b) if h and h' are two point
sets of H', no point set of G, has infinitely many points in common
with any one point set of G, and (2) K is an infinite subset of M
such that for no point set h of H' does any point set of G, contain
wnfinitely many points of K. Then there exists a point set h of
the collection H such that (1) h contains an infinite subset of K and
(2) h does mot contain infinitely many points of any point set of
G, for any point set h' of the collection H'.

Proof. If H’ is infinite, let Ay, hsy, ks, -+ denote the point sets
of H'. If H' is finite, let h,, hy by, -+ -+, k, denote the point sets of
H' and for each positive integer ¢ greater than u, let h; denote the
point set 4,. For each positive integer 4, let H, denote the collec-
tion whose members are the first 7 - 1 point sets of the sequence
hiy hsy hgy +++. Let P, denote the point (1,1) and let K, denote the
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point set K.

It follows from Lemma 2 that there exist sequences K, K,, K, -« -
and P, P, P, --- such that for each positive integer 7, K; is an
infinite subset of K;_, and P, is a point of K; below and to the left
of each point of K; — P; such that (1) for each point set h of H;, K;
lies on the same side of A,,,  as P;, (2) for each two point sets %
and ' of H;, each point of K, lies above and to the right of every
point of (4,p, )-(Awp, ), and (3) if Q; is a point of K; distinct from
P;, there exists a point set h,(Q,) of the collection H containing P;
and @; such that no point of #,(Q;) between P, and Q; lies on the
opposite side of A,,, , from P; for any point set i of H,.

There exists a sequence Z,, Z,, Z,, --- such that (1) for each
positive integer 1, Z; is a point set whose points are P,_,, P;, and
those points of h,_,(P;), where &, is some point set of H containing
P, and P, between P, , and P, and (2) no point of Z;,, between P;
and P;., lies on the opposite side of A,, , from P; for any point
set h of H,.

Z + Z,+ Zy+ --- is a point set h of the collection H which
contains the infinite subset P, + P, + P, + .- of K.

Suppose h contains infinitely many points of some point set g of
G, for some point set A’ of H’. For some positive integer j, A’ is
the term %; of the sequence hy, hy, kg +--. Ahj,,j, Aiipiip A,,jpm, ce
is an infinite sequence such that for each positive integer ¢, A, »,,;
and A,,J.Pjﬂ,+1 lie on the same side of Aup; and Z;,;;, lies on the
same side of Au;p;ii, 88 Py Thus for each positive integer 1, only
finitely many points of 2 are on the same side of App;.; 8S P;_.
Therefore, contrary to supposition, no point set of Ghj contains
infinitely many points of h.

LEmMA 4. If H' is a countable subcollection of H, ther there
exists an infinite subset K of M such that for each point set h of
H’, no point szt of G, contains infinitely many points of K.

Proof. et G denote the collection to which ¢ belongs if and
only if for some point set h of H’, g is a point set of G,. Let
91y Uy U5y + +» denote the point sets of the collection G. There exists
a sequence P, P, P,, --- such that for each positive integer 17, P; is
a point of M which does not belong to any point set of the sequence
9,0, +P,g+ P,y +oo,9;+P,_,. P+ P,+ P,... is an infinite sub-
set K of M such that no point set of G contains infinitely many
points of K.

THEOREM 1. If the hypothesis of the continuum 1is true, then
there exists am umcountable subcollection of H' of the collection H
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such that (1) of h and b’ are two point sets of H’', mo point set of
G, contains infinitely many points of any one point set of G, and
2) of K is an infinite subset of M, there exists a point set h of H'
such that some point set of the collection G, contains infinitely
many points of K.

Proof. Let W denote the collection of all infinite subsets of M.
W is equally numerous with the number interval [0, 1]. Thus since
no uncountable subset of [0,1] is less numerous than [0, 1], there
exists a meaning P,, of the word precedes with respect to which W
is well ordered such that %, is the first point set of W, h, is the
second point set of W, and no point set of W is preceded by un-
countably many point sets of W. There exists a meaning P,, of the
word preceded with respect to which the collection H is well ordered
such that 4, is the first point set of H and %, is the second point
set of H.

It follows from Lemmas 1 and 3 that there exists a transforma-
tion T of W into a subcollection H' of H such that (1) T(w, = h,
and T(w,) = h,, (2) if w is a point set of W distinct from w, and w,
such that for some point set w’ of W preceding w, some point set
of the collection G, contains infinitely many points of w, then for
the first such point set w” of W in the P, sense, T(w) = T(w”) and
(8) if w is a point set of W distinct from w, and w, such that for
eacn point set w’ of W preceding w, no point set of the collection
G, contains infinitely many points of w, T(w) is the first point
set . of the collection H in the P, sense such that % contains
infinitely many points of w and for each point set w” of W that
precedes w in the P, sense, i does not contain infinitely many points
of any point set of the collection G, /.

It follows from Lemma 4 that H’ is an uncountable subcollec-
tion of H. The collection H’ fulfills the requirements of Theorem 1.

THEOREM 2. If the hypothesis of the continuum 1s true, there
exists a separable space satisfying Awxioms 0,1, 2, 3, 4, 5, and 6 of
[1] and containing a conditionally compact point set whose closure
18 not compact.

Proof. Let M, G,, h,, and h, be as previously defined. Let H’
denote some collection of point sets containing &, and %, and satisfying
conditions (1) and (2) of Theorem 1. Let G denote the collection to
which ¢ belongs if and only if ¢ is a point set of G, for some point
set h of the collection H’.

Suppose P is a point (x,y) of M. Let A, and B, denote the
endpoints of an interval I such that (1) A, is above B,, (2) P is the
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midpoint of I, (3) the length of I is (x + )™, and (4) I has slope
—1. For each number k& between 0 and 1 let A,, denote the point
X of the interval PA, such that the length of the interval XP is
the product of %k and the length of the interval PA,. Let B,
denote point X of the interval PB, such that P is the midpoint of
the sub-interval XA,, of the interval A,B;.

Suppose ¢ is a point set of G and k is a number between 0 and
1. Let L, denote the point set to which the point w belongs if
and only if for some positive integer ¢, w is either a point of the
interval A, ,Ap . . or a point of the interval B,,B», . where P; is
the ¢™ point of y. Let L, denote the point set to which the point
w belongs if and only if for some positive integer 7, w is a point
of the interval P,P;,,, where P; is the ** point of g.

Suppose ¢ is a point set of G, k is a number between 0 and 1,
and = is a positive integer. Let R,,, denote the set to which w
belongs if and only if either (1) w is L,, (2) for some number ¢
between 0 and k, wis L, or (3) wis a point of E which is separated
from (0, 0) by the point set consisting of L, and the interval A,B,
for the »'™ point P of g.

Suppose ¢ is a point set of G, k, and k, are numbers between 0
and 1, and # is a positive integer. Let R, denote the set to
which w belongs if and only if either (1) for some number k between
k, and k,, w is L, or (2) w is a point of E which is separated from
(0,0) by the sum of L, , L,. and the sub-intervals A, 4., and
By Bpi, of the interval ApB, for the »n™ point P of g.

Let T denote a space such that (1) P is a point of X if and
only if either (a) P is a point of E or (b) for some point set g of
G and some number k& between 0 and 1, P is either L, or L, and
(2) R is a region in X if and only if either (a) for some point P in
E and some positive integer %, R is the interior of a circle with
center P and radius 1/n, (b) R is R,, for some g, k, and =, or (c)
R is R, ,, for some g, k,, k,, and n.

The set S of all points of X is the sum of two mutually ex-
clusive point sets £ and F. If P is a point of F, then P is L, for
some ¢ and % (including % = 0); indeed, P is a limit point of the
infinite subset Ay, + Apy + Apy + -+ of E (in case k =0, Aij =
P,) where P, + P, + P,--- = g. Since each point of F is a limit
point of K, S is separable. For each point set g of G, let R, denote
the ray in X whose points are the points L, for each nonnegative
number k£ less than 1. If P is a point of R, for some point set ¢
of G and ¢’ is a point set of G distinct from ¢, no region containing
P contains a point of R,.

It follows from Theorem 1 that if K is an infinite subset of M,
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the set of all points P of E such that each coordinate of P is a
positive integer, then some point set g of the collection G contains
infinitely many points of K. Thus in X, L,, is a limit point of K
and M is conditionally compact. M — M is the set of all points L,
for all point sets g of G. If P is a point of M — M and R is a
region containing P, R does not contain any point of R, for any
point set g of G distinct from the one that converges to P. No
point of E is a limit point of F and M — M is a subset of F, thus
M — M has no limit point. Therefore M is a conditionally compact
point set whose closure is not compact.
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