ERRATA

Correction to

TRIVIALLY EXTENDING DECOMPOSITIONS OF E^{n}

Joseph Zaks

Volume 29 (1969), 727-729
The proof of Theorem 1 is incomplete, hence Theorem 1 should have been stated as a conjecture. Theorem 2 was also proved by M. E. Hamstrom "A decomposition Theorem for E^{4}, Ill. J. Math. 7 (1963), 503-507.

I would like to thank Professor S. Armentrout and the Editor of this journal, Professor B. Gordon, for their remarks concerning the error in my "proof" of Theorem 1 and the work of M. E. Hamstrom.

Correction to

SOME RENEWAL THEOREMS CONCERNING A SEQUENCE OF CORRELATED RANDOM VARIABLES

G. Sankaranarayanan and C. Suyambulingom

Volume 30 (1969), 785-803
In Theorems 3.1 and 3.2 it is assumed that the sequence of random variables $\left\{x_{i}\right\}, i=1,2, \cdots$ has unit variance. We have not formally mentioned this in the statement of the theorems. However it is evident in the course of the proof (see equations 3.1.16 and 3.2.13).

Correction to

THE ADJOINT GROUP OF LIE GROUPS

Dong Hoon Lee

Volume 32 (1970), 181-186
The argument which reduces the proof of Theorem B to the proof of Theorem B^{\prime} on p .184 is incorrect. Thus Theorem B should be read under the added hypothesis that G is simply connected.

Also in the final remark on p. 186, the group should be the universal covering of the group of rigid motions instead of the group of rigid motions.

Correction to

TWO-GROUPS AND JORDAN ALGEBRAS

James E. Ward, III
Volume 32 (1970), 821-829
The figure summarizing the inductive definition of A_{k+1} when A_{k} is known which appears on page 824 of my paper is wrong. It should be:

If the $2^{k+1} \times 2^{k+1}$ matrix A_{k} is known and is given in block form by

$$
A_{k}=\left[\begin{array}{c|c}
B_{1} & B_{2} \\
\hline B_{3} & B_{4}
\end{array}\right]
$$

where the $B_{i}, 1 \leqq i \leqq 4$, are $2^{k} \times 2^{k}$ matrices, then A_{k+1} is the $2^{k+2} \times 2^{k+2}$ matrix given in block form by

$$
A_{k+1}=\left[\begin{array}{c|c|c|c}
B_{1} & B_{1}+I+2^{k} & B_{2} & B_{2}+2^{k} \\
\hline 0 & B_{1} & 0 & B_{2} \\
\hline B_{3} & B_{3}+2^{k} & B_{4} & B_{4}+I+2^{k} \\
\hline 0 & B_{3} & 0 & B_{4}
\end{array}\right]
$$

Here O and I are the $2^{k} \times 2^{k}$ zero and identity matrices, respectively, and if $C=B_{i}$ or $B_{j}+I, i=2,3, j=1,4$, then $C+2^{k}$ denotes the $2^{k} \times 2^{k}$ matrix obtained by adding 2^{k} to each subscript of the matrix C under the conventions (1) $a_{0}=b_{2}$ in B_{2} and B_{3}, and (2) if an entry of C is zero then the corresponding entry of $C+2^{k}$ is also zero.

