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EACH COMPACT ORIENTABLE SURFACE OF POSITIVE
GENUS ADMITS AN EXPANSIVE HOMEOMORPHISM

THOMAS O'BRIEN AND WILLIAM REDDY

It is known that the torus and the orientable surface of
genus 2 admit expansive homeomorphisms. In this paper it
is shown that all compact orientable surfaces of positive genus
admit such homeomorphisms. It remains unknown whether S2

admits such a map. By taking products expansive homeomor-
phisms on higher dimensional manifolds are exhibited. Finally
dynamical properties of these examples are discussed. Among
these are occurrence and nature of periodic points, topological
entropy and existence of interesting minimal sets.

A homeomorphism / of a compact metric (d) space X onto itself
will be called expansive with expansive constant c > 0 (or just ex-
pansive) provided that for each pair of distinct points x, y in X there
is an integer n such that d[fn{x), fn(y)] > c. We denote by Mk the
compact orientable surface of genus k. In [8] Reddy exhibited an
expansive homeomorphism, /, on the torus, Mx. This mapping is
that induced on the torus by the linear mapping of the plane whose
matrix is:

1 1

In [6] O'Brien exhibited an expansive homeomorphism, g, on M2.
This map was obtained by lifting / 3 through a branched covering
mapping, φ, from M2 onto the torus. If we consider these spaces as
spheres with handles imbedded in Rz then in each horizontal plane φ
is the mapping which sends z into z% (z a complex number). Thus
the expansive homeomorphism g is a lift of the expansive homeomor-
phism on Mλ induced by the matrix.

Λ^ί1 Λ'J* 8

\1 2/ \8 13

The triple iterate of the torus homeomorphism has a fixed point, m,
which is not a branch point image. In [6] this point is chosen as a
base point. The lift to M2 can be chosen to leave n e φ~ι(m) fixed.
We will use n as base point for the fundamental group of M2 in §2.

2* The examples* In this section we prove the existence of
expansive homeomorphisms on many compact manifolds. The technique

737



738 THOMAS O'BRIEN AND WILLIAM REDDY

is to exhibit, for any n > 2, an expansive homeomorphism of M2

(which will be an iterate of the above-mentioned map on M2) which
lifts through a covering map to Mh. According to [5, Corollary 3.5]
the lift will be expansive. Then since the product of expansive
homeomorphisms is expansive, it will follow that any product of
orientable surfaces of positive genus admits an expansive homeomor-
phism.

THEOREM 2.1. Each compact orientable surface of positive genus
admits an expansive homeomorphism.

Proof. Let /, g and φ be the maps mentioned in the preliminaries.
Choose generators a, β for πJJΛu m) where a is covered by the seg-
ment from (0, 0) to (1, 0) in the plane and β by the segment from
(0, 0) to (0,1). This represents π^M^ m) as Z@Z (where Z denotes
the integers) in such a way that f*:π1(M1,m)—*π1(M1,m) is given
by the matrix

1 1

.1 2

An easy induction shows that, for each positive integer j , flj is given
by the matrix

where /< denotes the ith Fibonacci number (f = 1, /2 = 1, fi+1=
Now choose generators aly a2, βiy β2 for πγ{M2, n) such that ψ^{a^ = a
and φ*(βi) = β. Define a homomorphism P: πt(M2, n)—>ZφZby P(Ύ) =
(α, b) where a is the sum of the exponents of ax and a2 and b is the
sum of the exponents of βL and β2 in a word representing 7. Because
of the defining relation for the group π^M^ n), P is independent of
the word representing 7. Now if P(7) = (α, 6) then ^(7) = aaβ\ Also

flj{aaβh) — (af6i-ia+f63bβf6ia+f6ΐ+lb)

Thus by commutativity (f3jφ = φgj) and the fact that kernel P =
kernel φ* it follows that P(gί(Ύ)) = (f6j^a + f6jb,f6ja + f6j+1b).

Let a surface Mk+1(k ^ 2) be given. Consider the normal sub-
group Gk of TΓiC&fa* n) given by

Gk = {7 G π,{M2, n): P(Ύ) = (ka, b)} .

The index of Gk is k. Thus g{(Gk) is also a subgroup of index k in
n^M21 n). We now determine conditions on k such that gi(Gk) — Gfc.
When this happens, gJ lifts to the covering space of M2 associated
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with the subgroup Gk. Through consideration of the Euler charac-
teristic, we infer that this space is Mk+1.

If P(7) - (fcα, b) then P{g%Ί) = (f^Jca + f6jb, f6jka + f6j+1b). Thus
a necessary and sufficient condition for g{(Ύ) to be in Gk is that k
divide f6j. Therefore, for existence of a lifting of an expansive
homeomorphism on M2 to the surface of genus k + 1 it is sufficient
that k divide f6j for some j . According to [9], for any k, the Fibonacci
sequence mod k is periodic and if j is the period then fs = 0 (modά).
Thus, by the periodicity, /6i ΞΞ 0 (modfc). Therefore k does divide
some 6jth Fibonacci number. It follows that gj lifts to a homeomor-
phism on Mk+1. This homeomorphism is expansive by [5, Corollary
3.5].

COROLLARY 2.2. Let M be a topologίcal product whose factors
are compact orίentable surfaces of positive genus. Then M admits
an expansive homeomorphism.

3* Properties* In this section we prove several propositions
concerning dynamical properties of the examples just constructed.

PROPOSITION 3.1. In all of the examples the set of periodic points
is dense.

Proof. For the torus case this is well known. See [7, p. 758].
Any lift to Mn through a pseudo-covering map must have dense
periodic points since the fibre over a periodic point will consist of
periodic points. For the higher dimensional manifolds the set of
periodic points is just the product of the periodic sets in the factors
and is therefore dense.

DEFINITION 3.2. A fixed point, x, of an expansive homeomorphism,
Φ, is called a saddle point if there exist p Φ x and q Φ x such that
p is positively assymptotic to x and q is negatively assymptotic to
x. If x is a periodic point with period m and x is a saddle point
of fm we will say that x is of saddle type.

PROPOSITION 3.3. For the examples in §2, all periodic points
are of saddle type.

Proof. According to Theorem 9 in [3] all periodic points will
be of saddle type if the homeomorphism preserves a continuous Borel
probability measure which is positive on open sets. Since an auto-
morphism of an abelian group space preserves Haar measure we have
our result in the toral case. We can use the pseudo-covering mapp-
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ings to lift the measure on the torus to the higher genus spaces so
that the lifted expansive homeomorphism preserves the measure.
Thus all periodic points on the Mk are of saddle type. Clearly when
we take products all periodic points will be of saddle type.

Next we show that all of our examples have nonzero topological
entropy. See [1] for definitions and results about topological entropy.

According to K. R. Berg [2] the entropy of our toral maps is
not 0. We wish to show that all of our examples have non-zero
topological entropy. The following is a special case of Theorem 5
in [1].

THEOREM 3.5. Suppose f: M—> M and g: N—> N are continuous,
M and N are compact and φ: M—> N is open and onto and that
gφ = φf. Then h(g) ^ h(f).

PROPOSITION 3.6. The examples of §2 all have nonzero topological
entropy.

Proof. It follows from the construction in Theorem 2.1., Theorem
3.5. and Berg's result that this conclusion holds for the homeomor-
phisms constructed on each of the surfaces Mk. Since entropy satisfies
the relation h(f x g) = h(f) + h(g) ([1]), the proposition is valid.

Finally we consider minimal sets. All of our examples have
nonperiodic minimal sets. For each space M we exhibit an expansive
homeomorphism (an iterate of one of those given § 2) such that some
subspace restriction is a Sturmiam minimal set [4; pp. 111-113].

PROPOSITION 3.7. Each space considered in §2 admits an ex-
pansive homeomorphism f with nonperiodic minimal sets.

Proof. Each of our examples / on Mk projects through a pseudo-
covering mapping, φ, onto a torus automorphism, g. According to
[7, Th. 5.5] there is a Cantor set AczMι and an integer m such that
gm(Λ) = A and gm restricted to A is topologically a shift automorphism.
There is a subset L of A which is totally minimal with respect to
gm [4, 12.63]. L is compact and contains no fixed points. In parti-
cular φ(Bφ) Π L is empty. Thus L is contained in a simply connected
subset U of Mι — φ{Bφ). Each arc component of φ~ι(U) in Mk — Bφ

maps homeomorphically onto U. There arc 2k — 2 such arc com-
ponents. Thus there are 2k — 2 copies, Lif of L in Mk. The set
UiiT2 Li is invariant under /. We can cover L by a finite collection
of disjoint elementary neighborhoods U5. These lift to open sets
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Vij such tha t Lid^Vij. The effect of / on the collection {Vis} is,
essentially, to permute these sets. Thus for some iterate fn of /
there is an invariant copy of L and fn is topologically an iterate of
the shift automorphism. Since the Sturmian minimal sets are totally
minimal we have exhibited nonperiodic minimal sets for each Mk.
For a product M x N we can choose a subset L x {x0} where L is a
minimal orbit closure of M and x0 is a fixed point. Thus all of our
examples contain nonperiodic minimal sets.
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