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CHARACTERIZATION OF THE STEINER POINT

WALTER J. MEYER

Let / be a mapping which associates with each compact
convex set in En a point of En. If / is linear (in terms of
the vector addition of convex sets), uniformly continuous and
commutes with a substantial enough set of congruences of
En, then f(K) is the Steiner point of K for all compact con-
vex sets K.

Let J%Γn denote the collection of compact convex sets in En,
endowed with the algebraic structure of vector addition [1, p. 29]
and the topology of the Hausdorff metric [1, p. 34]. For each
Ae 3ΐ~% we define its Steiner point, denoted s(A), by

S(A) = — f h(A, u) udm

where m is Lebesgue measure on Sn~1, the unit n—1 sphere centered
at 0, the origin σn is the volume of the unit %-ball; u is a variable
vector ranging over Sn~ίm

f and h(A, u) is the support function of A,
defined as [1, p. 23]:

h (A, u) — sup x u .
xeA

It is apparent that the mapping from 3ίΓ% to En which associates
with each set A the point s(A) is linear, continuous, and commutes
with congruence transformations of En. In 1963 Grunbaum [3, p. 239]
asked whether these properties characterize the Steiner point map-
ping. Shephard answered this affirmatively for the case n = 2 [7].
K. A. Schmitt made an attempt [6] at the general problem but his
paper contains an error (in proving the continuity of a certain
function-see p. 390) which is apparently serious. Our contribution
is the following.

THEOREM. Let T denote a set of orthogonal transformations of
En onto itself such that:

(a) T is transitive on points of <S%~\ that is, if u19 Ur,e Sn~ι

then there exists t in T such that t{u^ = u2.
(b) For each u0 in S^1 there exists a nonempty set

T(u0), T(uo)czT,

such that each t in T(u0) fixes u0 and, on the other hand, if u is
fixed by each t in T(u0) then u must be \u0 for some scalar λ.
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(1) If f\J%/~n-+En is linear, uniformly continuous and
satisfies

f(t(K)) = t f(K) (*)

for each t in T and each K in J?Γn then

f(K) = Xs(K)

for some fixed λ.

(2) // (*) also holds for each KeJ%Γn and t a reflection in

some point 6 ^ 0 , then λ = 1.

2* In outline the proof goes as follows. Instead of dealing
with the space SΓn, we imbed 3ίΓn into a normed vector space
Sίfn. We extend / to /* a linear continuous mapping of 3ίfn into
En and then follow this by projection mappings to get /* a set
of n continuous linear functionals. We represent each of these as
integrals with respect to measures μι and then show that the vector
valued measure μ = (μlf , μn) has commutativity properties analog-
ous to those assumed for /. To apply the commutativity properties
we need to consider a derivative, Dμ, of μ with respect to Lebesgue
measure m and show it has certain commutativity properties. This
derivative is a point to point mapping of Sn~ι to En and for this
reason we can characterize it from its commutativity properties. As
this last fact is the point of our method we do this first and then pro-
ceed in the order indicated by the outline.

(1) LEMMA 1. Let f:Sn-1->En be such that f(tu) = tf(u) for
each u in S71'1 and each t in T, where T is as described in the
theorem. Then there exists λ so that f(u) = λ% for all u in S71*1.

Proof. Suppose f(u0) Φ 0 for some u0 in Sn~\ For each t e T(u0),

tf(u0) = f(tu0) = f(u0)

whence f(u0) = X(uo)uo where λ (uQ) is some scalar possibly depending
on u0. Now let uγ be any other member of Sn~γ. Then there exists
t in Γ so that tu0 = ut. Then

= f(u,) = f(tu0) = tf(u0)

= t [X(Uo)uo] = X(uo)tuo =

whence λ(^) = X(u0).

(2) The mapping A —> h(A, u) is an isomorphism of ^Γ% onto
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the space of support functions of compact convex sets in En [1,
p. 26, 29.]. Because support functions are positively homogeneous
we can consider instead their restrictions to S71"1 and define an
isomorphism of 3ίΓn onto this class in the obvious way. Let Sίf%

denote the set of all differences of these restricted support functions.
Because the support functions are closed under addition and scalar
multiplication, g(f* is a vector space in which JίΓ* is isomorphically
imbedded. If we provide £%fn with the supremum norm, this
isomorphism is an isometry [1, p. 35]. (A slightly different description
of this can be found in [4].) Now we can extend / to /*, a linear
function on §ίfn by defining

f*(9) = /(Λx) - f(h2)

whenever g = hι — h2 where h19 h2 are restricted support functions.
The uniform continuity of / yields continuity for /*. Composing
this with the projection mapping onto the ith coordinate of En we
have ff, a real continuous liner functional on the space J%fn. Now
J%fn is dense in the space of real continuous functions on Sn~ι

[2, p. 10]. Let ff be extended to be defined on this larger space so
that we may apply the Riesz Representation Theorem [5, p. 131] to
get, for i = 1, 2, , n, real regular Borel measures μ{ on Sw~x with
the property that :

f*(g) = \ β(u)dμi(u) .

To compactify our notation we can write :

f*(g) = \ g(u)dμ(u)

where μ denotes the vector valued measure defined by

(3) To investigate the effect of the hypothesis requiring com-
mutativity with certain orthogonal transformations, note that if t
is orthogonal,

h(tA, u) = h(tA, tit-1 u))

= sup [x t{t~x u)\
xetA

= sup [ty t (t-1 u)]
yeA

= sup [y t~ι u]
ye A

= h(A, t-1 n) .
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Consequently for each g e 3ίf%

f*lgt>] = tf*[g]

where gt*(v) — git"1 v). In terms of our integral representations,

t I g(u)dμ(u) = I git"1 u) dμ{u)

= I g(u)dμ(tu) .

But since t is linear and continuous, for any function g,

t\ g(u)dμ(u) = I g(u)d(tμ)(u) .

Therefore, for each ge£έfn:

1 g(u)d(tμ)(u) = I g(u)dμ(tu) .

Since <^ w is dense in the space of continuous functions on Sn~\ the
last equation shows that for each Borel set E,

tμ(E) = μ(tE) .

(4) The next step is to consider a Lebesgue decomposition of μ
with respect to m, and then to show that the derivative of the
components of μ with respect to m and a suitable Vitali covering
have the appropriate commutativity property. For each of μ19

μ2i •••>£*» write its Lebesgue decomposition :

μi{E) = vf(E) + μf*{E)

[8, p. 187] where μf is absolutely continuous with respect to m and
μ** is singular with respect to m. We can then write

μ(E) - μ*(E) + μ**{E) (**)

where μ* and /*** are vector measures whose respective components
are the μ* and μ**.

We will now consider derivatives of μ* and μ** with respect to
Lebesgue measure m and the Vitali covering of S71"1 consisting of
spherical caps of the form {x e S^1 \ x a ̂  r}, o < r < 1, α e S11"1

using the derivation process described below [8, p. 221].

DEFINITION. (1) If E19 E2, is a sequence of Borel sets, they
are said to converge regularly to x provided there exists a sequence
of Vitali sets Alf Ai9 such that: xe A{ and Et c A{ for each i,
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m{Ai) —> 0, and there exists a fixed constant c > 0 such that
m(E ) ^ cm(Ai).

(2) Let v be any countably additive set function (real or vector
valued). Then

Dv(x) = li

where E4 is any sequence reqularly converging to x, provided the
limit exists and is independent of the choice of the Et.

LEMMA 2. Let v be any vector valued measure on S71"1 where
v(tE) = tv{E) holds for a set of orthogonal transformations which is
transitive on Sn~1. Then Dv(x) exists for all x and Dv(tx) = tDv(x).

Proof. First observe that our Vitali system is closed under
orthogonal transformations. Moreover, so is the family & of Borel
sets. For this reason, and because m(tE) = m(E) for any orthogonal
t, it Ei converge regularly to x, tE«: converge regularly to tx. Fur-
thermore, any sequence converging regularly to tx arises this way.

Now suppose Dv(x) exists and y is any other point of Sn~\
For some t we have tx — y and:

tDv(x) = t li
m(Et)

= ^ W i E i )

= lim

= Dv{tx) .

However Dv(x) exists except for a set of Lebesgue measure 0 [8,
p. 222]. This proves the lemma.

Now, to make the connection between this derivative and (**),
we have [8, p. 222]:

μ(E) = μ**(E) + ( Dμ{u)dm .

Dμ{u) satisfies the hypotheses of Lemma 1 so this becomes :

μ(E) = μ**(E) + [ Xudm .
JE

Comparing this with (*) we see that the first assertion of the

Theorem will follow if u** is identically 0.
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The measure I \udm(u) is regular since m is regular, and also
JE

inherits the commutativity properties :

I Xu dm{u) = 1 \{tu) dm(tu)
JtE JE

= \ t(Xu) dm(u)
JE

— t\ Xudm(u) .
JE

Consequently μ** is regular and commutes with all t in T. Being

a singular measure, Dμ**{u) = 0 except for a set of Lebesgue

measure 0. But by Lemma 2, this means that Dμ**(u) = 0 every-
where. Now the following lemma completes the proof of the first
assertion of the theorem.

LEMMA 3. Let μ be vector valued measure on S71*1 such that:

(1) Dμ(x) = 0 for all x in Sn~\
(2) μ is regular.

Then μ is identically Q.

Proof. The idea of this long-winded proof is rather simple.
Because of the regularity, it is enough to consider sets of positive
Lebesgue measure. If E is a set of positive Lebesgue measure for
which I μ(E) \ = arn(E) > 0 then we use a Heine-Borel type argu-
ment (partitioning sets into subsets of equal Lebesgue measure) to
find a nested sequence of subsets Ez> ELZ) E2> •• where

I μ(Ei) I > αmffi) > 0 ,

and where the E{ converge regularly to a point α. Then

I Dμ{a) I ̂  a .

Before proceeding we need some preliminaries. Let En~ι denote
a subspace of En. If x e S*1-1 we give it a coordinate representation
x = (%it •••>#») where xlf •••, xn^ are coordinates with respect to a
fixed orthogonal basis of En^ and xn is measured along the ortho-
gonal complement of En-\ Denote by Nε the set {xe S^1 \ xn ^ ε}.
Henceforth let ε be fixed and suppose 0 < ε < 1. Let p denote the
projection map onto En~ι in the direction of the axis of the nth

coordinate. We will show that subsets of Nε have μ measure (ί. The
result then follows by covering S71*1 by finitely many caps of this
type.
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We now define a net on Nε, that is, a countable collection of
partitions, Ω19 Ω2, « ,of Nε into countably many Borel sets such
that: Ωi+ί is a refinement of Ωt and where, if Bt e J2* and B{ΏB{Z>

we have ΠΓ Bt is a single point. Rudin [5, p. 49, 50] describes a
net {£?•} for E71'1 which has the further property that each set of Ω\
is an n — 1 cube of side 2~ι and n — 1 dimensional Lebesgue measure
2-»(»-υ a n ( j j s composed of 2n~1 sets from ί3 +1. By intersecting all
these cubes with p(Nε) we get a net for p(Nε). Those cubes con-
tained entirely in p(Nε) (and are not truncated by intersection with
p(Nε)) are called proper. We can " lift" this net to a net for Nε by
the inverse mapping p~\ Call these partitions Ωίf Ω2, •••, and dis-
tinguish by the term proper those cubes which arise from proper
cubes in p(Nε).

Now define a new measure m on Sn~ι by

m(E) = m'(p(E))

where m' is Lebesgue measure in En~ι. Since m(E) = \ dm'
JP(E) Xn

and 1 ^ :g — we have :
xn e

m{E) = m'(p(E)) ^ m(E) ^ — m'(p(E)) = — m(JS?) .
β s

Consequently m and m are absolutely continuous with respect to one
another and our earlier defined Vitali system for m is also one for
m.

Now if we calculate a derivative Dμ of μ with respect to m in
the usual way, with respect to the same Vitali system, namely,

Dμ(x) -

we have:

Dμ(x) I ̂  — I Dμ(x) | .
ε

Hypothesis 1 then gives Dμ{x) = 0.
The machinery for the proof has now been set up. By regularity,

it is enough to show μ is 0 on open sets. But open sets are disjoint
unions of countably many proper cubes Bi from Ωγ (J Ω2 U where
m(Bi) = 2~j{n~1] whenever Bζ e Ωά (this follows easily from the cor-
responding result for the net {£# for E71'1 [5, p. 49, 50]). Therefore

we need only show that μ is 5 on proper cubes. Suppose the con-
trary, that is, there exists a proper cube Bo e Ωk with | μ(B0) \ > am(BQ)
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for some positive a. Since Bo is the union of 2n-1 proper cubes from
Ωk+1, each with the same m measure, we can find Bι e Ωk+1 where

Proceeding in this way we find B0Z) B^ B2- . with 1 ^Bί) I ^ a > 0.
(A)

Now ΠΓ #* is a single point, say α. If we can show that the B{

converge regularly to α, then | Dμ(ά) | ^ a > 0, a contradiction.
To establish the regular convergence, we examine the numbers

f(i) = m(S(a, ri))/m(Bi) where S(α, r<) is the smallest closed cap cen-
tered at a containing Bt. It is sufficient to show that lim sup f{%) < oo.

i-oo

The proof of this, although straight-forward, is tedious and we omit
the details. This concludes the proof of Lemma 3 and the first part
of the Theorem.

Concerning the second assertion of the theorem, suppose ί is a
reflection through the point b where b Φ 0 and suppose that / com-
mutes also with t. By part 1, / is of the form Xs so Xs(tb) — £[λs(δ)].
But t has 6 as its one and only fixed point so this gives Xs(b) =
t[Xs(b)] whence Xs(b) = 6. But s(b) = b Φ 0 so λ = 1.

REMARKS. For n ^ 2 the set T of the theorem must include
indirect (orientation reversing) congruences if it is to satisfy the hypo-
theses on T. For n = 1 the only orthogonal transformation is reflec-
tion in 0. If we drop the commutativity with this reflection and
assume instead commutativity with all translations we do not get
the result of the theorem. The mapping [α, b] —> b is a counter-
example. For n = 2, although our method of proof does not yield
the representation f(K) = Xs(K) if we only require commutativity
with rotations, we have been able to deduce the same representation
by connecting the problem with the uniqueness of Haar measures on

Concerning the continuity requirements, Shephard [7] has shown
that continuity (as opposed to uniform continuity) suffices when n = 2.
If n = 1 even continuity is unnecessary. For we can represent a closed
interval as a pair of real variables representing the endpoints and
then / becomes a linear function of these variables and we can write
/(#, y) = ax + βy. We can easily show a = β by using com-
mutativity with reflections, and this gives the result.
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