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MACDONALD’S THEOREM FOR QUADRATIC
JORDAN ALGEBRAS

ROBERT E. LEWAND AND KEVIN MCCRIMMON

Macdonald’s Theorem says that if an identity in three
variables x, y, 2 which is linear in z holds for all special
Jordan algebras, it holds for all Jordan algebras. We show
this is equivalent to saying the universal quadratic envelope
W 2 (3%) of the free Jordan algebra J'* on two generators
2, y is canonically isomorphic to the universal compound linear
envelope Z & % (3®). We generalize Macdonald’s Theorem
from the case of linear Jordan algebras over a field of char-
acteristic +#2 to quadratic Jordan algebras over an arbitrary
ring of scalars, at the same time improving on the results in
the linear case by presenting Z7 & % (J®) in terms of a finite
number of generators and relations, Similarly we generalize
Macdonald’s Theorem with Inverses concerning identities in

xz, 27, ¥,y ', 2. Finally, we prove Shirshov's Theorem that

I jg special,

PART I. MACDONALD’S THEOREM.

1. Free algebras and free products. Throughout this paper @
will denote a fixed ring of scalars (=unital commutative, associative
ring), and “linear space”, “linear map’”, etc. will always mean linear
with respect to @.

Recall [4, p. 000] that a unital quadratic algebra Q= (%, U, 1) is
a linear space X together with a quadratic mapping « — U(x) = U, of X
into Hom, (%, X) and a unit element 1 ¢ % satisfying Uz =« and {x 1 y}=
{x y 1} for all z, y (where, as usual, {x y 2} =U,,,.y={U,..— U,— U}y
is trilinear). A homomorphism @: Q — L is a linear map satisfying

P(1) =1 oUy) = U,p) -

An iddeal is a subspace R € Q such that UyQ R, UgR C R, {RQQ} R,

Given any set X we can construct a free unital quadratic algebra
7 @(X) on X with an imbedding i: X — & & (X) having the fol-
lowing universal property: any (set-theoretic) map ¢: X — Q of X into
a unital quadratic algebra Q extends uniquely to a homomorphism
o 7 &(X)—Q, i.e.,, @ =goi. The construction goes as follows
[1, p. 116]. We recursively define monomials in the elements of X,
starting with the empty monomial 1 of degree 0 and the monomials
xe X of degree 1, and using monomials m, n, p of degrees 4,5,k to
form new monomials (m; n) of degree 2¢ + j and (m, n; p) = (n, M; D)
of degree 7 + j + k; we identify (1; m) with m, (m, n; 1) with (m, 1; n),
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and (m, m; n) with 2(m; n). Then & & (X) is the free module with
the monomials as basis and U-operator

Usam; 20 Biy = 25 @B i(my; ;) + ) o ;8,(my, my; ny) o

Thus (m;n) = U,n and (m, n; p) = U,,.D.

A unital quadratic Jordan algebra is a unital quadratic algebra
satisfying the axioms

weJ 1) U=1I

(vQJ 1) Uyw, = U.U,U,

(UQJ 1II')  Upiyy,vianny = UUU,,, + U, U,U,

(UQJ II”) UU(a:)y,U(z)w + UU(z,z)y = UwaUz + UzUyUx + Ux,zUyUx,z

(v@J 11 u,v,,=V,U, and (V,, =V, V,— U, V.= U,,)

(UQJ IIII) Uu.v,.+ Uw,sz,x = V..U, + Vx,yUx,z-

If & denotes the ideal in & & (X) generated by all Uy ¢ — U, U, U,e,
etc. corresponding to UQJ II, ete. for a,b,¢ in & & (X) then
& _F(X)= «&(X)/® and the map i: X — 7 & _# (X) constitute
a free unital quadratic Jordan algebra on X in the sense that they
satisfy the universal property that any mapp: X— I of X into a
unital quadratic Jordan algebra factors uniquely through a homo-
morphism @, $oi = @.

Henceforth we will concern ourselves only with unital quadratic
Jordan algebras, so we refer to them simply as Jordan algebras. As
usual, any Jordan algebra is a homomorphic image (or quotient) of
a free one. Also, if XC Y then the canonical homomorphisms ex-
tending p: X— 7 & _#(Y) and v: Y — F & _F(X) by @) = i(x),
P(x) = i(x) if te XCY and ¥(y) =0 if y¢ X have Vop =1, (5,
and the canonical mapp: & & £ (X)— 7 & _#(Y) is injective:

(1) Fg& FX)cg @ F£(Y) if XcY.

The free composition [1, p. 113] of Jordan algebras &, . is a
Jordan algebra xS, together with homomorphisms @;: & — ¢, such
that any pair of homomorphisms V,;: & — & into a Jordan algebra
factors uniquely through a homomorphism ¥: xS, — J (.e., Yop; =
¥;). The free composition always exists; if J; = .7 & _#(X,)/R; for
X, X, disjoint sets then Jx*J, = F & _F(X,UX,)/R® for & the ideal
generated by & and R,. In particular, note that if X, Y are disjoint

(2) F@ FXwg e FY)= e FXUY).

We denote by J[z] the free composition JxF & _F(2), with
homomorphisms ¢.: § — J[z], .: & & _F (2) — J[z].

THEOREM 1. For any unital quadratic Jordan algebra I the
canonical homomorphism Z @& () — A4 (J|J[z]) is an tsomorphism.
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We refer to [4] for the basic results about representations,
multiplication algebras, and quadratic envelopes. We begin with a
preliminary result.

ProrosiTION 1. If o S—»?} s an epimorphism of unital quad-
ratic Jordan algebras then we have an induced homomorphism
ANP): A(J) — A &) sending U,— U,,,. If & & are subalgebras
of ﬁ},\g respectively with PR then by restriction we obtain a
homomorphism 7 (@): A (8| — 7 (&|F).

Proof. The only possibility for _Z (@) is the map sending T =
U, - U, in 2 into T=3 T,y oy in o2 (). This
works if it is well defined, and T = 0 implies 0 = o(Tx) = T(p(x))
for all ®, hence T kills (&) =& by surjectivity, so T=0. If
P(R) c K then .7 (@) maps Z(R|S) into .ZR|.

Proof of the theorem. The homomorphism 901:8—>8‘[z] induces
a unital multiplication specialization «— U, of S in A2 (I[J[2]),
hence a unital quadratic specialization p(x) = U, and this factors
through the universal specialization 4 of Z&& (J): 1t = flouw for
bz @& () — 42 (F13[2]) a homomorphism of associative algebras.
Clearly /i is surjective, so we need only prove it is injective.

Suppose me 2% () is in the kernel of fi. 7 = @& ()
is a cyclic 3-bimodule with generator ¢ = u(1) relative to the quadratic
representation u,(x) = L,.,, and the associated homomorphism f, of
Z &% () into Hom, (7, #') is just the left regular representation
a— L, of ZZ 2% (J). Wehave a homomorphism v of J[z] into the split
null extension € = P M synthesizing the homomorphisms +: F—
JCCand vy 7 @ _F(2)— M CE by ¥(2) =e. v is an epimorphism
since its range contains the generators & and ¢ of €. By Proposition
1 we have a homomorphism _Z(¥): Z(I|J[z]) — -~ (J|E), and a
restriction homomorphism 7: 7 (J|€) — 2 (J|M) since M is a J-
bimodule. The resultant homomorphism zo Z (V¥)off: Z% @& () —
A (I|IN) coincides with 4, since on the generators u(x) of ZZ & (Y)
we have 7(_Z (V) (Z(u(®))) = ©(#Z (¥)(u,|J[2]) = 7(U,|€) = u,(v). Thus
0 = {wo_Z (W)}f{m)) = @, (m) = L,, implies m = L,e = 0, and /£ is in-
jective.

Taking I to be the free Jordan algebra J" = 7 & _#(x,

-+, ,_,) on n—1 generators, and noting J"V[z]= SW—“*ﬁ“ & _FR)=

ﬁd@j(a’u . ,xn_l)*ﬂd@/(q,n) —ﬁ‘Q/(xu ] xn) _——8(”) by (2)’
we have

COROLLARY. The universal unital quadratic envelope for the free
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unital quadratic Jordan algebra I on n — 1 generators is isomor-
phic to the multiplication algebra of JF™ on J™:

% @E @) = A FIZ)

The free special Jordan algebra &7 & _Z (X) on a set X is easier
to construct: it is the (Jordan) subalgebra generated by the elements
xe X of the free associative algebra & .o (X) on X. It has the
universal property that any map o: X— &, of X into a special
Jordan algebra &, extends uniquely to a Jordan homomorphism
P 7 _F(X)—J,. If we denote the free special Jordan algebra
on n generators by 3™, and similarly for the free associative algebra
A, then

Sgn-—l) C S;n) C s)l(n)+ .

THEOREM 2. The universal unital compound linear envelope of
the free special unital quadratic Jordan algebra JF"™ on n — 1 gen-
erators 1s canonically tsomorphic to the multiplication algebra of "=
on J™:

HEE ) = A @) -

Proof. We know [4, p. 000] that & & (J{"") is the subalgebra
of Y1 QA" generated by all x ® = for xe Ji < A" since the
universal unital linear envelope for J" is ¥ & (Jm V) = A1,
Now A QA" js isomorphic to the (associative) multiplication
algebra _Z (A" |A") = Lywn-vRyw-n under a@b— LK. (*the
reversal involution on 2"%), and the subalgebra generated by all
L.,R,= U, for x = x* in "% is just the (Jordan) multiplication
algebra _Z (0 |A™*). Now J™ is invariant under F{"~, and the
restriction epimorphism _Z(JV|A+) — 2 (J|F™) is an iso-
morphism: for any ae U™+ there is a homomorphism @,: J™ — Y=+
fixing 3" but sending %, into a, so if Te _Z(J"V|A™+) restricts
to zero on I (T(JF™) = 0) then 0 = @ (T'(x,)) = T(P.(2,)) = Ta,so T
kills 2{*, and T is zero as a transformation on 2+, Thus

%Kgg(sgn—l)) =~ ///,('\O)S.(gn_” ls)l(n)) =~ %(Sén—l) lsgn)) .
2. Equivalent forms of Macdonald’s theorem. Let J™ and
Q" denote the free and free special Jordan algebras on » generators

Xy v+, &, By (1) we may assume JI™® cJ™ if n < m. We have
the canonical epimorphism

oY x
pmy Yy

determined by v™(2;) = »; (1 <14 < n). The kernel of v is an ideal
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& = Ker y™

in ™. We let 3™, 8 denote the subspaces of J™, I respectively
consisting of elements homogeneous of degree one in the variable x,.
(For n = 3 we write z, y, z for x,, 2,, #;, so 3%, 8 are homogeneous
of degree one in z). The original form [3] of Macdonald’s Theorem
was that

(I) R(n)n,B(n) =0
when # = 3. Since y™(8™) = B¢, this is equivalent to

1) y™: 8™ — 3™ ig bijective.

These two forms say that if some identity in «, .., x, which is
linear in 2, (corresponding to an element of 3™) holds in all special
algebras (its image under v™ is zero) then it holds in all Jordan
algebras (it is zero in B™). This is the most practical form of
Macdonald’s result. Since identities are harder to prove in the case
of quadratic Jordan algebras than for linear Jordan algebras, an
algorithm like this is a great laborsaving device.

The multiplication algebra _Z(J™2|J™) of J* on JF™ is
generated by the transformations I, V,, U,, Uspoj for 1 =4, =n
by [4, p. 000]. By Proposition 1 the epimorphism p*:JF™ — JiM
induces an epimorphism .z (™): _Z (" V|F™) — 2 (I V|F™). We
have a linear map z: .7 (J"?|J™) — 3™ sending T — T(x,). Thisis
surjective by the definition of 83" as the space spanned by all Jordan
products of z,, ---, x, which are linear in z,, and it is injective since
if T(x,) = 0 then T(x) =0 for any x in I by the usual argument
(there is an endomorphism @ of J™ fixing «; for 1 <71<n — 1 but
sending =z, to z, so 0 = o(T(z,) = T(p(x,) = Tz), and T =0 as a
transformation. We have a similar bijection z,: _Z (I | ) — J™,
and since z,0.Z (V') = v™oz we see (II) is equivalent to

) ZzE"): Z (G0 |I™)— 2 (0 J) is an isomorphism.
This formulation is due to N. Jacobson [2, p. 47].

We have already seen (in the corollary to Theorem 1 and in
Theorem 2) that _Z (I |J™) is canonically isomorphic to the
universal envelope Z¥ @& (J*) and 7 (I |J) to the universal
compound linear envelope ZZ & (J" ) of J» . Thus (III) leads
to the formulation

(IV) the canonical homomorphism Z & & (I3 ) > & & (F"™)

is an isomorphism.
Since it is easily checked that the universal linear envelope of both the
free Jordan algebra -V and the free special Jordan algebra i
is the free associative algebra %A"~Y, and since [4, p. 000] for an arbi-
trary algebra 2 & & (J) is the subalgebra of ZZ ¥ & () QK % L& ()
generated by all l(z) ® l(x) for I: J— % ¥ & (J) the universal linear
specialization, we see Z & & (J" ") = &z & (I ). Thus (IV) is
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equivalent to ZZ£2& (J" V) - ZZ & (I ") being an isomorphism,
so by [4, p. 000] to
(V) all unital quadratic representations of the algebra I are
special.
So far we have established.

EQUIVALENCE THEOREM. The following conditions are equivalent
for a given m:
(I) R(n)n'?)(n) __:0
(IT) v™: B™ — 8™ s bijective
Iy 27 @™): Z(F* VI — 2KV [IM) is an isomorphism
AV) the canonical homomorphism z &% (F" ) — w & & (F"V)
18 an tsomorphism
(V) all unital quadratic representations of the algebra ™Y
are special
where J™, Y™ denote the free and free special wunital quadratic
Jordan algebras on the generators x,, ««+, &,, &™ the kernel of the
canonical homomorphism v™: Y™ — ™ and ™, B™ the subspaces
of ™, Xim yespectively consisting of elements linear in the variable x,,.

Macdonald’s Theorem says that these (equivalent) conditions hold
for » < 3 (an example due to Glennie [2, p. 51] shows they fail for
n = 4). We choose the formulations I and II as the most convenient
in practice.

MACDONALD’S THEOREM (Practical Form). If an identity in the
variables =, y, 2 s linear in 2z and holds in all special quadratic
Jordan algedbras then it holds in all quadratic Jordan algebras.t

Next we turn to the problem of finding a presentation of
Zw 2% (J®) by generators and relations. Let & denote the free
associative algebra on the five generators a,b,c,d,e. We have a
homomorphism

F— #@&(JY)

mapping a¢ — v(x), b — u(x), ¢ — v(¥y), d — u(y), e — u(x, y). Since 1, v(x),
u(x), v(y), u(y), w(x, y) generate ZZ&Zx (I?®) if 1,x,y generate J?®
[4, p. 000] we see this is an epimorphism.

As special cases or linearizations of the axiom UQS IIL

w(@)v(w, 2) = v(z, w)u(z)
for quadratic specializations [4, p. 000] we have the following rela-

1 This result has been obtained independently by Professor John Faulkner.
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tions among the generators of Z &% (J?):

(1) w@v@) = v@)u@), u(y)vy) = vy)u(y)
(i)  w(@)v(y) + w@, Y)v(@) = v(y)u@) + v@)u, y) ,
w(y)v(x) + uw(y, 2)v(y) = v@)u(y) + v(y)u(y, )
(3) (i)  w(@)v(y, @) = v, Yu@) , u@v, y) = v(y, 2)u(y)
(iv)  w(@)v(y, ¥) + ulx, Yoy, 2) = v{y, Yu() + v(x, Y)u, y) ,
w(y)v(@, ©) + wy, 2)v(@, y) = v(@, V)u(y) + v, 2)uy, )

(v)  w@o’ o) = v, ¥)u@) , w@v’ y) = vy, 2)u(y)
(vi)  uw@)v(@’, v) = v(@, P)u@) , w@mv@®, y) = vy, )uly) .

Here

(2, w) = v(R)v(W) — Uz, w)
V(2% = v(z, 2) = v(2)" — 2u(?)
(2% = v(z)* — 3v(R)u(z)
w(z?, w) = uz, wyvz) — v(w)u(z) = vR)u(w, 2) — uR)v(w)
w(2%, w) = (2% w)viR) — u(z, w)u(z) = vE)u(w, %) — wE@)uz, w) .

These correspond to the following relations among the generators:
R1) ab = ba, cd = de
(R2) ae + ¢b = ea + be, ce + ad = ec + da
(R3) bi{ca — e} = {ac — e}b, d{ac — ¢} = {ca — e}d
(R4) b{c* — 2d} + efca — e} = {¢* — 2d}b + {ac — ele,
d{a® — 2b} + e{ac — e} = {a* — 2b}d + {ca — e}e

(R5) b{(c* — 2d)a — (ce — da)} = {a(c* — 2d) — (ec — ad)}b
d{(a* — 2b)c — (ae — be)} = {c(a® — 2b) — (ea — cb)}d
(R6) b{(c* — 3cd)a — c(ce — da) + de} =

{a(c® — 8ed) — (ec — ad)c + ed}b,
d{a® — 3ab)c — al{ae — be) + be} =
{e(a® — 3ab) — (ea — cb)a + eb}d.
If & denotes the ideal in & generated by the relations R1-6 (i.e.,
by the elements ab — ba, ae + ¢b — ea — be, ete.) then we have an
induced epimorphism

0:FIR— ZZZ(I?) .

Our proof of Macdonald’s Theorem will have as a consequence the fact
that o is an isomorphism. Thus o affords a presentation of Z¥ & % (J?)
by means of a finite number of generators and relations.

PRESENTATION THEOREM. The wuniversal unital quadratic en-
velope z &£ (J®) of the free unital quadratic Jordan algebra J®
on two generators x,y 1s given abstractly by the six generators
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1, v(), u(x), v(y), u(y), w(x, y) and the six pairs of relations (3. i-vi).

That these relations are enough to characterize the quadratic
envelope again indicates the importance of the axiom UQJ III for
Jordan algebras.

3. The crucial lemma. The following lemma is crucial to our
proof (and also the proofs using an infinite number of generators
and relations [2], [3], [5]). By abuse of notation we continue to
denote the images of a,b,¢,d, ¢ in the quotient F/& by the same
symbols.

LEMMA 1. There exist elements ay, by, ciy Ay 61,0 (B, 1 = 0) an /R
satisfying the relations

(i) ag=co=¢€,=2b,=d, =1
o =e,=a0=¢,=¢b=0bd =4d,e,=c¢
(i) bb; = by did; = diyj
(4) [a;, ;] = [a:, b;] = 0, [¢;, ¢;] = [eir d;] = O
(i)  esivjr = Wiirje — Di€jr = €iyjuli — €540
Crziti = Ci€hit; — Qi€ = €1,i4;C; — €4,50;
(iv)  @isjlin + Qi€irjn = ba;c, + 26505,
CitiCri T Ciriv; = 4iCi0y + 264,515 «

Proof. The first step is to define the ¢;;. We can use the
recursion relations

Co=2¢6,=06,=C¢Ce,=2=¢

Civaj = Uity — D€ = €54,,;0 — €;,;b
€1 = CEi iy — Qs = €;,51.C — €;,;d

as long as these are consistent; that is, before we can define e;; by
the above we must know

@) ae_,; —be,_,; = €_,,;0 —e_,;b (1=2)

(b) ae;_,,; — be; _s,; = €51 — 65,500 (1, ] = 2)
and their duals (obtained by replacing @, b, ¢, d, ¢;,, with ¢, d, a, b, ¢,,).
We induct on ¢ + j, assuming e, ; is given by the common value of
(a) and (b) for ¢ + 5 <+ j. Then (b) follows immediately:

ae;_y,; — be;_o; = afe;;.¢ — e;_,; A} — ble;_g,;_.¢ — €, ;_o0}
= {ae;_,,;_ — bei——z,j—l}c - {aei—l,j-—z — bei—-z,j—-z}d

= e.,;’j_lc - 6i,j_2d .

From this we see that for ¢, = 2 the validity of (a) and its dual
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for a given (4,7) implies its validity for (j,4). In particular, we
need only consider (a) for ¢ = j.
In (a), if © = 4 we have

ae;_,,; — bei_,; = afe;_, ;0 — e;_5 ;b — ble;s, ;0 — e;_y,;0}
- {aei_z,j - bei_3,]~}a - {aei_m- - bei_4,]~}b
- ei_l,ja - ei__g,jb

by induction. Thus only the cases 2 <7=<3,0 <5 <% remain. We
can easily dispose of the case j = 0 since the recursion relation shows
¢;, is a polynomial in the commuting variables ¢ and b (using R1).
When j =1 the relation for ¢+ = 2 becomes ae — bc = ea — ¢b (since
€, = C, €, =e¢), which is just R2, while for ¢ =38 it becomes
afea — cb} — be = {ae — bcla — eb (since e,, = ae — bec = ea — ¢b), which
follows from R3 after cancelling aea from both sides. This leaves
the three cases 2 <5719 < 3.

The case ¢ = j = 2 is a{ce — da} — b{c* — 2d} = {ec — ad}a — {c* — 2d}b
since ¢,, = ¢* — 2d; cancelling —ada and subtracting ¢* from both sides
results in R4.

The case 1 = 3, j = 2 is a{e, .0 — ¢,,b} — b{ce — da} = {ae,,, — be,.}a —
{ec — ad}b; upon cancelling ae,.a from both sides this becomes R5.

The case 1 = 7 = 3 is afe, ;a0 — e,:0} — be,; = {ae,; — be,sja — e,:b,
which becomes R6 upon cancelling ae,;a from both sides since e,; =
¢ — 3cd and e,; = ce,,, — de,,, = e,,¢c — e, d.

Once we have defined the e;,; we set

a, = €0 bk = bk C, = eo,k dk = dk .

The relations (i), (ii) are immediate consequences of our definitions
(and the axiom that a commutes with b, ¢ commutes with d), as are
the cases 7= 0,1 of (iii). If (iii) holds for a given 7=1 (and all
7, k) it holds for ¢ 4+ 1 since

Qi 1Citr+ 5,1 — bi+16j,lc
= {aa; — ba;_}e; 4., — bibe;, (by definition)
= a{@i6is 110} — Difbe; i} — b{aii6iy 10}
= 0{esisjie + Diljiint — bi{@€; 11 — €r0ut — B{bi_i€i10k T+ €nivjit
(by the induction hypothesis for ¢,1,7 — 1)
= 0yt ji1,e — Dy (bY (ii))
= @y10+5, (by definition)
and similarly for the other parts of (iii). For (iv) we again induct

on ¢+ j, and we can assume %, j = 1 since the result holds trivially
for =0 or § =0. Then
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Qivi€in + Wilirjp = {Q04 ;. — ba; s ;_ote:
+ a;{ae;r ;i1 — beiy; s} (by definition)

= {1 i + @it i) — O{@isjs€in + i€t s}
where if j = 1 this becomes

= a{ae;,, + e} — b{ai_.e. + a8}

= 2am;e;,, — b{b;,_,a.c, + 2e,_,,} (by induction)

= 2a{es,. + bici} — biac, — 2{aes , — €54, (by iii)
= bia,c, + 26511,

while if § = 2 it becomes by induction

= a{b'la’j—lck + 262i+j—1,k} - b{biaj—zck + 2e51 5 51}
= bi{a’aj—-l — baj-—z}ck + 2{ae2i+g'—1,k — b62|'+j—-2,k}
- biajck + 262.,;+j,k .

This completes the proof of the lemma.

4. Proof of the theorems. The proof now proceeds along
the lines of the proof in [5]. We have surjective homomorphisms
0. FIR—->Z 2L (JZ?) and vi Z @& (J?) > Z €L (J?), and a linear
mapping 7: Z €& (J®) — 8P by T — T(z) (writing z,y,z in place
of x,, @, x;). If £ = Tovoo is injective so is each of the factors (since
o,y are surjective); then ¢ is bijective, proving the Presentation
Theorem, and v is bijective, proving Macdonald’s Theorem. We prove
¢ is injective by exhibiting a spanning set f(p), f(p, ¢) (p # ¢ mo-
nomials in 2A®) for F/& whose image under g is independent in 3§
(hence both sets are bases, and g takes one basis onto the other),

(5) Mf(p) = fop) = p2p*, p(f(® Q) = fop; @) = p2g* + gzp* .

It is clear that these latter are independent in Y®, and are
*-gymmetric (* the reversal involution in %A®); if (5) holds then the
fi(®), fs(p, @) will actually be Jordan elements and thus a basis for

®_  Thus we need only choose pre-images f(p), f(p, q) of f.(p),
f+(p, @) in such a way that they span §/&®; therefore it is enough if
they contain

f) =1
and satisfy

(6) f(p, p) = 21 (p)

and are invariant under left multiplication by a,, b, ¢, d., e, (hence
by the generators a, b, ¢, d, €)
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(1) bf(p) = fla*p)
(ii) duf(p) = f(¥*p)

(07) (i) e, f(p) = f@&*p, ¥'p)
(iv) a.f(p) = f(=*p, D)
(v) ef(p) = f(¥*p, »)

(i) bf(p, @) = f(a*p, a*q)

(i) duf(® @) = f(¥'*p, ¥*@)
(7) (i) e f(® 9 = f@*p, ¥'e) + f(y'p, a*q)

(iv) af(p, @) = f(&*p, @) + f(p, 2*q)

(v) af(p, @) = f¥'p 9 + f(p, ¥ .
(Note that the right sides of (7) may involve terms of the form
f(p, ), which are not a priori spanned by the f(p) and f(p, q) for
p # ¢; this is why we need (6)).

We define f(p), f(p, q¢) inductively as follows. We divide the

collection of monomials » in 2A® into sets X,, Y, depending on their
height » and whether they begin with an x or a y:

X, =Y, =Z=1{}, Xy={rli=0,re?,l,
Yoo ={rli=0,reX,}.

We define f(p) on X, =Y, = Z, by

(0D.0) S =1,

on Y,., by

(0D.1) f@ir) = b, f(r) (t#0,7re?,),
on X,., by

(0D.2) fir) = d;f(r) (t#0,reX,).
For the f(p, q) we set

(D.0) fa,1)=2

on Z, X Z,

(D.1) f@ir, 2is) = b, f(x*~ir, s) t=413+0,reY,,seY,)
on X,., X X, similarly

D.2)  fy'r, ¥'s) = d;fyir,s) (124,14, # 0, re X, se X,)

on Y,,, X Y., while on X,,, X Y,,, we set

f@b y) = e,;
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(D.3) f(@ir, yis) = e;,;f(r, s) — f(y'r, 's)
@ j#0,reY,seX,, n+ m>0)
(where the latter term is already defined since (y'r, #'s) has lower

height if » 4+ m > 0 —note 2°s has the same height as s if se X,
for m > 0, and similarly for y‘r), on X,,, X Z, we put

f@, 1) =a

(D.4) ) . }
f@ir, 1) = a;f(r, 1) — f(r, %) (t#0,reY,, n>0)

and similarly on Y,., X Z,
fw,1) =c¢

f@r,1) =cf(r,1) — f(r,y) (@E#0,reX,,n>0)
(where in both cases the latter terms have been defined by (D.1)-
(D.3) if n > 0).

Comparing (0D.0)-(0D.2) with (D.0)-(D.2) we see that at each
step we have (6), and we easily verify that at each stage we also
have (5) (so the f(p), f(p, @) are indeed preimages of the f,(»), f.(p, 9)).

All that remains is to verify (07) and (7).
If we can establish

(1) b.f(@'r) = fx*r) (k,1+0,7eY,)
(08) (ii) e f(a'r) = fa**r, y'a'r)
(7 0 but £ =0,7 =0 allowed, re¢ Y,)
(1) buf@ir, x?s) = f(ak+ir, xk+is) @ g k+0,reY,,scY,)
(i) b.f(@'r, yis) = f(x**r, x*y's) (4,3, k+0,reY,,seX,)
(ii) b.f(x’r, 1) = f(z*+r, 2¥) (G k#0,7reY,)
(iv) e f(@ir, xis) = f(x*, y'ais) + f(y'air, x¥+is)
(8) (4,70 but £ =0,1 =0 allowed, rc€ Y,,se Y,)
(V) af@r, y's) = f@*+r, yis) + f(@'r, 2*y’s)
(i, k#+0,re Y, sekX,
i) a.f@r,1) = f@@**r, 1) + f@ér, o¥)
G, k=+0,reY,)
then (07) and (7) will follow from the definitions, (08), (8), and their

duals (replacing = by v, a by ¢, b by d) according to the following
table of possibilities:

(D.5)

P 07. 07.iv 07.iii 07.v 07.ii
X1 08.i 08.ii 08.ii 08.ii 0D.2
Z, 0D.1 0D.4 0D.3 0D.5 0D.2

Y. 0D.1 08.ii* 08.ii* 08.ii* 08.i*
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(0, @) 7. 7.iv 7.iii T.v 7.
Xooo X Xpuy 8 8.iv 8.iv 8iv.  D.2
Xy X Z, 8.iii 8.vi D.3 D.5 D.2
X X Yoo, 8. 8.v D.3 8.yt 8.ii*

Z, x Z, D.1 D.4 D.3 D.5 D.2
Yoo % Z, D.1 D.4 D.3 8.vi*  8.iii*
Yoo X Yoo D 8iv*  8iv*  8iv* 8.

It remains to establish (08) and (8). We proceed by induction, assum-
ing the results for all lesser heights (where we count f(p) as having
the same height as f(p, p)). (08.i) is quite trivial:

b.f (@ir) = bb.f(r) (OD.1)
= byuf(r) (4.iD)
= f(z***) (0D.1) .

(08.ii) is also easy:

e f(a'r) = e:,0:f(r) (0D.1)
= €upi i — €4, f () (4.1i)
= ey f(@ir, ) — f(@*¥r, y'r) (induction 07.iv, iii)
= f(y'x’r, ***r) (induction 7.iii)

where the inductions are legitimate since » has lesser height than
a'r and (x'r, r) lesser height than (z'r, 2'r). The remaining formulas
8.i-vi follow exactly as in [5, pp. 321-324], deleting all factors 2 (our
present a,, ¢, e, f(p, q) correspond to 2a,, 2¢,, 2¢,, 2f(p, ¢) in that
paper, but b,, d,, f(p) correspond to b, d, f(p, p)). The case 8.v for
k > 1 was not done explicitly [5, p. 324], but the whole point of
introducing (4.iv) is to reduce the case k > 1 to the case k <1 [5,
p. 323].

REMARK. The only difference between the linear and the quad-
ratic cases is that in the latter we must work with the f(p)’s as
well as the f(p, q)’s, whereas in the former we needed only the

F(p, q)’s since f(p, p) = 2f(p).

PART II. MACDONALD’S THEOREM WITH INVERSES.

1. Forms of Macdonald’s theorem with inverses. Recall [6]
that two elements z and y in a Jordan algebra are inverses if
Uy==2, Uy*=1. This is symmetric in z and y, and we write
y = z~'. Invertibility of z is equivalent to invertibility of the
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operator U,, and
(9) U= U;.

If Y is a subset of X we can form the free unital quadratic
Jordan algebra on X with inverses Y as the algebra & & _# (X/Y) =
F & _F(XUY')/® where y— 4 is a bijection of ¥ on a set Y’
disjoint from X, and ® is the ideal generated by all U,y — v,
U@W) —1 for y in Y. This has the universal property that any
map @ of X into a Jordan algebra & such that all the elements ye Y
are mapped into invertible elements @(y) € ¥ factors uniquely through
a homomorphism ¢: 7 & _Z(X/Y)— J.

Just as ¥ & _F(X)c 7 &_F(X') if XC X', we have

g& FfXY)cge FXNY) if YcXcX'.

(It is still an open question whether 7 & £ (X/Y)c v & _Z(X/Y")
if YcY'cX|[5,p.325]). Weagainhave & & 7 (X|Y)+» 5 & _F(Z)=
F & _F(XUZ|Y) if X and Z are disjoint (as in (2)), so as a second
corollary to Theorem 1 we have

THEOREM 3. The universal unital quadratic envelope for the
free unital quadratic Jordan algebra JF" ™ on n — 1 generators
and the inverses of the first m generators is isomorphic to the mul-
tiplication algebra of JF™—Ym on Jnim,

?/@’%?(S(n—llm)) — .//(8(”_1/"” lsml'rn)) .

The free special Jordan algebra with inverses &7 & _#Z(X]Y) is
the (Jordan) subalgebra of the free associative algebra with inverses
Z 7 (X]Y) generated by the elements xe X and y—* for yeY.
Again we denote the free special Jordan (resp. free associative)
algebra on = generators z,, --+, 2, and the inverses x*, «+-, 2, of
the first m generators by J"'™ = 7 _F({x;, « ) ®u/{®y «+, Tu})
(resp. A™ = F &7 ({x,, +++, T }/{®1y +++, Z,})). In this notation

Sgn—-llm) CS;MM) - g)l(n/m)+ .
THEOREM 4. The universal unital compound linear envelope of
the free special unital quadratic Jordan algebra J¢—1™ om n — 1

generators and the inverses of the first m is canonically isomorphic
to the multiplication algebra of Jr—™ om ™,

HEE QI = /(S I

The proof is exactly as in the inverse-less case (again the uni-
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versal unital linear envelope of J™ is A™™), From these two
results we obtain as before

EQUIVALENCE THEOREM WITH INVERSES. The following conditions
are equivalent for a given m < n:
( I ) Knlm) msmlm =0
(IT) ptnimy nim) —, Binim) g bijective
(IID) oz (p™m)y: sz (r—tm | Ymimy — 7 (1 m | FI™Y) 4s an iso-
morphism
AV) the canonical homomorphism

U@E QM) s H T E ()

18 an tsomorphism
(V) all unital quadratic representations of J"™ qre special
where J™™, ™ denote the free and free special unital quadratic
Jordan algebra on n generators and the inverses of the first m, &'™
denotes the kernel of the canonical homomorphism y™im; Jnim —, Xinim),
and Z*m™, Bri™ the subspaces of JF™™, J™ respectively consisting of
elements linear in the variable x,.

These conditions fail for » = 4, but for » = 3 we have

MAcCDONALD’S THEOREM WITH INVERSES. If an identity im the
variables x, 27 y, y~*, 2 which s limear in z holds for all wunital
special Jordan algebras, it holds for all wunital quadratic Jordan
algebras.

We now turn to the problem of finding generators and relations
for ZZz &2 & (3**). The first result about generators is

PROPOSITION 2. If & is a wunital quadratic Jordan algebra and
X a subalgebra generated by the elements of a unital subset X and the
inverses of the elements Y C X then the multiplication algebra 7 (J|&)
is generated by the transformations U,, U,, for x,z in X and the
inverses U, for y in Y.

Proof. Since & is generated by X U Y~ the general result [4,
p. 000] says .7 (3| &) is generated by the U, U,,, for z, w in XU Y.
That the U,-,,-» and U, ,: are superfluous follows from the following
relations:

ProproSITION 3. If y and z are tnvertible elements of a wunital
quadratic Jordan algebra then
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(9) U—=Uy

(10) Uy = U'Vye = Vo, Uy

(11) Vyu= UV, = V,U;!

(12) Ve = U0y Viymr = U, U
(13) Uy-,.-=U00,,U0"=U0"'0,.U0;".

Proof. We have already seen (9). For (10) we cancel U, from
the left and right of U,V,,=V,.U, = Uy, (by UQJ III) =
Usirevi— = U, U, U, (by UQJ II). We obtain (11) by setting
2 =1 in (10), and (12) by replacing y by %= in (10) (or by using
(10), (11), and the definition of V,-1,). From these we derive (13)
by U,-1,,-1 = U;*V,,~ (by (10)) = U;*U,. U;* (by (12)).

Since ZZ & (J*?) has the form 2 (J*?|R) by Theorem 1 this
suggests that we should represent Z¥ & & (J¥?) by

¥ — w 2T @)

where ' is the free associative algebra on the generators a, b, ¢, d, e
and the inverses b7, d™', and a— v(x), b — u(x), c — v(¥), d — u(y),
e— u(x, ¥), b= — u(x™), d*— u(y~"). The Proposition 2 guarantees
that this map is surjective. We claim that its kernel & is generated
by the same relations (R1)-(R6) as in the inverse-less case, together
with the additional relations

RT) b'=b'b=1,dd'=d'd=1

(R8) b7led™ = d~'eb".

PRESENTATION THEOREM WITH INVERSES. The wumniversal umnital
quadratic envelope Z & E (J¥?) of the free unital quadratic Jordan
algebra on two gemerators x,y and their inverses x~', y™ is given
abstractly by the eight gemerators 1, v(x), w(x), v(y), u(y), u(x, y), w(x™),
uw(y™) and the eight pairs of relations

(1) u@v(@) =v@u@), u@)vy) = v)uy)
(i) uw@v(y) + wz, y)v(e) = v(y)u) + v@u, 2) ,
w(y)v(@) + u(y, )v(y) = v@)u(y) + v(Y)u, y)
(i)  w(@)v(y, ») = v(=, Yu@) , wY)v(@, y) = v(Y, v)u(y)
(iv) u@)v(y, v) + @, vy, 2) = (Y, Yu) + 2@, Y)u, ¥) ,
w(y)v(x, ) + w(y, 2)v(@, y) = v@, 2)u(y) + v(Y, Uy, )
(v) u@v(, ) = v, ¥)u) , wy)o@’ y) = vy, 2°)u(y)
(vi) w@)v(’ 2) = v, ¥)u@) , w@m)v@’, v) = v(y, 2°)u(y)
(vii) w(@)u(@™) = u(@Hul®) =1, u@)u(y™) = wyHu(y) =1
(viil)  w(@™u, Y)uy™) = u(yul@, Y)ul™) .

(3)
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At this point we merely want to prove that R1-R8 imply the
analogues of R1-R6 where one or both of x, y is replaced by =, y:

(R1 )
(R1")
(R2 )
(R2" )
(R2")
(R2m)
(R3 )
(R3" )
(R3")
(R3m)
(R4 )
(R4" )
(R4")
(R4m)
(R5 )
R5")
R5")
(R5m)
(R6 )

(R6" )

(R6”)

(R6NI)

ab = ba, cd = dc
ab =ba,cd =dd
ae + ¢b = ea + be, ce + ad = ec + da
ale' + C’bl — ela’ + b’cl’ Cﬁel + aldl — elcl _l_ dlal
alell + Cb' — 6”0]’ + blc’ 0'6"' + adl — el’lcl + dla
aeg"” + b = ¢"a + be, ce’ + a'd = €¢’¢c + da’
bi{ca — ¢} = {ac — e}b, diac — e} = {ca — ¢e}d
b,{clal _— el} — {alcl _— el}bl, dl{alcl _— 6'} — {clal . el}dl
bl{cal — e’l} — {alc —_ ell}bl, d’{aci — 6’//} — {Cla - elll}dl
b{ica — €'} = {ac’ — €""}b, d{a’c — €’} = {ca’ — ¢"}d
b{c* — 2d} + e{ca — e} = {¢* — 2d}b + {ac — ¢}e,
d{a* — 2b} + efac — e} = {&® — 2b}d + {ca — e}e
bI{CIZ — zdl} + 6'{0’@’ — 6,} — {ch —_ 2dl}bl + {alcl — 6,}6,,
d'{d'2 _ 2b'} + 8'{&'0’ _ 6'} — {arz _ ZbI}d' € {6"&' . 6'}6'
b{c* — 2d} + ¢’{ca’ — €'} = {¢* — 2d}b" + {a'c — ¢'"}¢",
d’{az — zb} + el’l{acl —_ 6[/[} — {a2 — 2b}dl + {Cla — el”}elll
b{c? — 2d'} + €"{c'a — €""} = {¢* — 2d'}b + {ac’ — €'},
d{alz — 2b’} + e!l{afc — ell} — {alz — zb’}d + {cal — ell}ell
b{(c* — 2d)a — (ce — da)} = {a(c® — 2d) — (ec — ad)}b,
d{(a* — 2b)c — (ae — be)} = {c(a* — 2b) — (ea — cb)}d
bl{(crz - 2d;)a/ _ (0'6' _ d’a')} — {a/(cm _ zd/) _ (G’C, _ a’d’)}b',
dr{(arz _ 2()')0' _ (a'e’ _ brcl)} — {C/(alz _ 2b’) _ (e/a/ _ C,b’)}d'
b'{(c® — 2d)a’ — (ce” — da')} = {a'(c* — 2d) — (e”¢c — a'd)}V’,
d'{(a* — 2b)c’ — (ae”" — be)} = {c'(@® — 2b) — (¢""a — c'D)}d’
bi(c” — 2d"Ya — (e’ — d'a)} = {a(c” — 2d') — (¢""¢’ — ad’)}b,
d{(a® — 2b)c — (a'e” — bc)} = {e(a” — 2b") — (¢"a’ — cb')}d
b{(c’—3cd}a—c(ce —da) + de} = {a(c® — 3dc) — (ec — ad)c+ed}b,
d{(a’—3ab)c—a(ae — bc) + be} = {c(a® — 3ba) — (ea — cb)a+eb}d
b'{(c® — 3c'd)a’ — '(c'e’ — d'a’) + d'e'} =

{a’(c¢”® — 3d'¢") — (¢'¢’ — ad'd')e + &d'}b,
d'{(a”® — 3a'd')e’ — a'(a'e’ — b'¢e’) + be'} =

{cr(ara _ Sbrar) _ (6'(1,' _ c’b')a,’ + erb/}df
v{(c® — 3cd)a’ — c(ce” — da’) + de”’} =

{a/(¢* — 8de) — ("¢ — a'd)e + €"'d}b,
d'{(a® — 3ab)c’ — alae”” — bc’) + be"'} =

{¢'(@® — 8ba) — (¢"a — c¢'b)a + €"'b}d’
b{(0/3 —_— Scldl)a — Cl(c’ell’ — dla) + dlelll} —

{a(cls _ 3d'C') _ (6"'0' _ adl)cl £+ 6'"d'}b,
d{(a”® — 3a’b’)c — a'(a'e” — be) + (be'} =

{c{a”® — 3b'a) — (¢"a’ — cb')a’ + €"b'}d

where (as in (9)-(13)) we set
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o =b'a=ab,¢'=dc=cd™b =b"d =d",
¢ =bac — e} = {ca —e}b, ¢ = dH{ca — ¢} = {ac — e}d™,
e =bled = deb".

(These definitions are consistent by R1, R7; by R3; and by R8). Note
this implies

ba' =ab=a,dc’ =cd=c
e'd = a'c — 6’, d'e" = c'a’ — e
ey = c'a’ — er, be'" = qa'c — ¢
be'd = de’db = ¢ .

e

Since o', b, ¢/, d', ¢', €', ¢'"" are symmetric under the reversal in-
volution in §, these formulas merely amount to saying that the left
sides are symmetric under reversal. Thus in establishing them we
consider only the left sides, and show that in each case these are
indeed symmetric. Furthermore, by symmetry in « and v it is enough
to check the first of each pair of relations. Finally, an element S
will be symmetric if 8Sb (or bdSdb) is, so it suffices if S becomes
symmetric upon multiplication on the right and left by b (or on the
right by db and on the left by bd).

The relations R1-R6 are hypotheses, and the relation R1’ follows
from R1 via RT.

The left side of the first of each pair of relations R2’-R6’ becomes
symmetric upon multiplying on the left by db and on the right by
bd. Thus for R2’

db{a’e’ + ¢'b'}bd = dad’ed + dbe
= dad'(e — ca)d + dad’cad + dbc
= dafe — ac) + dbc + da(d'c)ad (by R3)
= dfae — a’c + bc} + da(d’c)ad

which is symmetric by R1 and R5. For R3,
db{b’(c’a’ — e)}bd = (ca — e)d

is symmetric by R3. R4’ is a little harder; we will find it convenient
to drop out symmetric terms as they appear rather than carry them
along at each stage. We have

db{d'(c”® — 2d') + e'(c’'a’ — ¢€)}bd
= c¢’cbd — 2bd + ded”*cad — dbe’*bd
= d{—[ea — ca’]ld + d[(ae — bc) — (a® — 2b)c]} — 2bd
+ {dac + ed — cad}d*cad (by R5.R3)
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= {cd'(ca — e)ad + cae — cbc — c(a* — 2b)c} — 2bd
+ dacd®*cad + ecd'ad — cacd'ad
= clac — e)d'ad + cae — 2bd + ecd’ad — cacd’ad (by R3)
= cag — 2bd + (ec — ce)d'ad
= cag — 2bd + (ad — da)d’'ad (by R2)
= cae — 2bd + a’d — dad’ad
= (a* — 2b)d + cae
which is symmetric by R4. For R5%,
dbb’{(¢”* — 2d")a’ — (c'¢’ — d'a’)}bd
= c¢c’ad — 2ad — cd'ed + ad
= cd'(ca — e)d — ad
= c¢(ac — e) — ad (by R3)
= cac — ce — ad
which is symmetric by R2. Finally, for R6’
dbb'{(c”® — 8c'dYa’ — (e — d'a’) + d'e'tbd
= (¢*d”* — 3cd)ad — c(cd*ed — d'ad) + d'ed
= *d*(ca — e)d — cd'ad + d'(e — ca)d
= ’d'(ac — e¢) — cd'ad + (¢ — ac) (by R3)
= ¢l{d'(ca — e)}c + cd'(ec — ce — ad) + e — ac
= c{d'(ca — e)lc — cd'(da) — ac + ¢ (by R2)
= ¢{d'(ca — e)}c — (ca + ac) + e
is symmetric by R3.

The first of each pair of relations R2”-R6” becomes symmetric
by multiplying on the left and right by 5. Thus for R2”

bia'e” + ¢b'}b = alca — ¢) + be = aca — ae + be
is symmetric by R2, for R3”
b{b'(ca’ — &b =ca — (ca —¢) = ¢
is clearly symmetric, for R4”
b{b'(c* — 2d) + €’(ca’ — €”’)}b
= (" — 2d)b + (ac — e)ca — be'"™
= (¢ — 2d)b — eca + ac’a — be'*d
is symmetric by R4, for R5”
b’ {(c*? — 2d)a’ — (ce”’ — da’)}b
= (¢ — 2d)a — c(ca — e) + da
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= —da + ce
is symmetric by R2, and for R6”

bb'{(c®* — 3cd)a’ — c(ce” — da’) + de''}b
= (¢ — 3cd)a — c*(ca — e) + cda + d(ca — e)
= —cda + c’e — de
= c{ce — da} — de
= c{ec — ad} — de (by R2)
= cec — cad — de

is symmetric by R3.

Exactly the same arguments (replacing a,a’,b,b, ¢, d, e, e’ by
o,a,b,b,¢,d,e,e” and using R2’, R4, R3’—which we have already
established—instead of R2, R4, R3) establish the symmetry of the left
sides of the first of each pair of relations R2""—R6"". .

2. The crucial lemma again. Once again the key to the
theorems is the existence of certain elements in the algebra F'/&®'.

LEMMA 2. In the algebra F /R there are elements ay, by, ¢y dy, €1,
(for all integers k,l) satisfying

(i) ap=co=¢€=2,b,=dy=1
a,=€e,=0a,0a_,=¢e_,=b"a=ab"',b, =0b,b_, =0
Ci=¢6,=¢C_=¢,,=dc=cdd =d,d_,=d*
€, =¢6_,_; =bled = d'eb™
e,,=dHca—e}={ac—e}d", e, =b"{ac—e} ={ca —e}b™*

(ii) bb; = by did; = dyy;

[a: b5] = [ai a;]1 = 0, [ei, d5] = [eiy ¢5] =0

(iii) Civn,i — Wi — bilir,; = €0 — ei—-k,jbk

@)

e = Cilii — Bliir = €5,:C — €5,il

(iv) e_;_; =b_se;;d_; = d_je;, ;b
6_i,; = b_ifi,; = 0,50 (fo; = aic; — €:,5)
€i—j = A_;95; = fi,;0_; (9:,; = c;0; — e€,5) -

Proof. Again the first step is to construct thee;;. For ¢,7 =0
this goes exactly as in the inverse-less case. We can also copy this
procedure for ¢, <0 or j=0=14 or 1=0=7 since the o' =b7'a =
ab~, ' =b"Y,¢'=d¢c=cdt,d'=d,¢'=b""ed*=d b or a/, ', c,d, "=
b~*ac—e)=(ca—e)btora,b,c,d, " =d*(ca—e)=(ac— e)d satisfy
the same axioms as a, b, ¢, d, ¢ by R1’-R6’ or R1”-R6” or R1"’-R6".

Given the ¢;; we define a; = ¢, b; = b%,¢; = e,,;, d; = d* for all
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(positive or negative) ¢. From these (i) and (ii) follow immediately
(using the commutativity R1).

Our next step is to get the intrinsic formulas (iv) for the e, ;
involving negative indices rather than merely recursion formulas. It
will suffice to prove the second relation, for the third follows similarly,
and the second and third together imply the first. (Note that because
a; = €;,, C; = 6,; We have

Sive; = fivr,; — Ofiiy Givai = Givr,i@ — 4,50
for ¢ = 0, and similarly for f_;, ,; and ¢g_;,_,; using a’, b’ in place of
a, b, while
Siive = fiinC — Sy 9iive = €G5,501 — dg;,;
for § = 0, and similarly for f; _;_, and g¢;,_;_, using ¢, d in place of
¢, d. These are similar to the relations defining the e¢; ;, except for
a lack of symmetry). We induct on |¢| + |j|. The result is true by
definition if 0 < |4|, || £ 1, and using induction
€ite,—i = O€;4,,_; — be; _; (definition)
= {afi+1,; — bfi,;}d_; (induction)
= fi+2,jd—j
if ¢ =0, similarly for e;_,_; if ¢ <0 using o', ¥’ in place of a, b, while
ifj7=0
€i,—j_s = €;,_j_,¢' — €;,_;d’ (definition)
= fi,j+1d—-j—-1c, - fi,jd._.jd, (induction)
= {fist:.¢ — fi,;d}d_;_, (commutativity)
= fi,j+2d—-j—-2
and similarly for e;_;., if 7 <0 using ¢,d in place of ¢, d’. This
completes the induction on ¢ and j.

Now we turn to (iii). By symmetry it suffices to prove only the
first of the four equalities. We know

1€i,; = €irr,i + bi€it,s

if 4,7, k=0 and 7=k by the inverse-less case. If i <k,sayk=1+1
for [ > 0, then

0i41€:,5 = €41, + biaic; — byey; (4.1v, iii)
= €y41,; + DbO_f1,; (by (4'.iQ))
= €1, + Diney,; (by (4.iv)) .

This establishes the result for ¢, 7, £ = 0. Since a; = ¢, it also implies

akfi,j = firni + bkfi—k,j .
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The relations (iv) allow us to convert any ¢;_; into an f,; by mul-
tiplying on the right by d;, similarly to convert an e_;; or f_;; into
an f,; or ¢;; by multilplying on the left by b;, and an a_, or b_; or
1 into an a, or 1 or b, by multiplying on the left by b,, so we can
reduce the general case to the case 7,75,k = 0.

3. Proof of the theorems. We again have surjections

IR o X @F (30 v s U T E () < > Bol

and the theorems result by showing g = 7/ov'0¢’ is injective. We
follow the same procedure as in the inverse-less case of finding inverse
images of the basis f,(p), f.(p, @) of B%* where p,q are now mon-
omials in A®®, We define the inverse images f(p), f(», q) recursively
by (0D.0-0D.5), (D.0-D.5) as before (but now the exponents ¢, 7 may
be positive or negative). The derivation of (6), (07), (7) from (08)
and (8) follows from the charts as before. The proof of (08) carries
over verbatim to the case of inverses since the relations (4.i-iii) for
positive 1, j, &k carry over to the relations (4'.i-iii) for positive and
negative 1,7, k. The proof of (8) is again just a repeat of that given
in [5, p. 321-324] (deleting all factors 2).

PART III. SHIRSHOV’S THEOREM.

Shirshov’s Theorem says that the free unital quadratic Jordan
algebra I® on two generators is special: the canonical homomorphism
p@: §® - X® is an isomorphism. In the case of linear algebras this
follows immediately from Macdonald’s Theorem since if v*®(p) = 0 for
some polynomial p(x, ¥) € J® then any multiplication in Z & & (JP
involving v®(p) and (via the isomorphism Z &2 & (J?) —» Z € & (J2))
any multiplication in & (I®) involving p will be zero, and in a
unital linear algebra L, = 0 implies p = 0. In the quadratic case we
have no operator L,, but we can conclude U, = V, = U, , = for any
g; thus p = 0 if I® has no extreme radical [4, p. 000], for example
if 2e®. In general it is an open question whether free algebras
Z & _Z(X) have zero extreme radical for arbitrary @ (it is con-
jectured that they in fact have no zero divisors, and even are
imbeddable in division algebras). Therefore there seems to be no
way at present of obtaining Shirshov’s Theorem directly from Mac-
donald’s Theorem.

We know [4, p. 000] that I®, being generated by « and ¥, equals
AL+ AZx+ #y for # = _#(IF?) the multiplication algebra of
&®, If U is the natural surjection @& () — .~ (J®) extending
the regular representation U of J® in _Z(J®) then the m(p) = U(f (p))
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and m(p, q) = U(f(p, q)) span _Z(J¥) since the f(p), f(p, q) span
Z 2% (J?) by our proof of Macdonald’s Theorem. Thus {2 is
spanned by the

m(p)l, m(p)x , m(p)y
m(p, )L, mp, )z, m(p, Q)y .

From our definitions D.0—D.5 of the f(p, q) we see that they all are
linear combinations of terms of the form ge;; where 7,7 =0 and ¢
- is a monomial in the ay, b, ¢, d;, €;,;. Furthermore, the formulas (4)
for the ¢; ; show in turn that they are all linear combinations of terms
of the form ge,, ge, o, 9¢,,., Or ge,,,. Thus every m(p, q) = ﬁ(f(p, qQ)) is
a linear combination of terms of the form m(2I), mV,, mV,, mU,,, for
m an m(r) or m(r, s) and 2I = Ule,,), V, = Ula) = Ule.,), V, = Ulc) =
ﬁ(eo,l), U,, = ﬁ(e) = ﬁ(el,l). But the action of these latter operators
on x can be expressed in terms of other operators acting on 1: 2z =
V.l, Voo =22 = Val, Vo = your = U, 1, U, & = {xay} = *oy = Up,,L.
This implies that any m(p, ¢)x is a sum of terms of the form ml (m
an m(r) or m(r,s)); a similar result applies to the m(p, ¢}y, so that
Q@ is spanned by all m(p)l, m(p)x, m(p)y, m(p, ¢)1 (p # ¢ monomials
in 20®), A similar result holds in &»: indeed, a basis for I® consists
of all

my(p)1 = pp*, m(p)x = pxp*, m,(p)y = pyp*, m,(q¢, )1 = q + ¢*

for p, ¢ monomials in A® with ¢* == q. It is easy to verify that the
canonical homomorphism v®: J® — J& sends the m(p)1l, m(p)x, m(p)y,
m(p, )1 into m,(p)1, m(p)x, m(p)y, m,(p, @)1 respectively by our re-
cursive definition of f(p), f(p, 9). If we can show that the

m(p)l, m(p)x, m(p)y, m(g, V1 (g # ¢*)

span 3 then vy will take a spanning set onto a basis, hence a basis
onto a basis, and thus will be a bijection. This will prove Shirshov’s
Theorem. Thus our only problem is to convert m(p, ¢)1’s into m(r, 1)1’s
and m(p, 1)1’s for symmetric p into m(r)l, m(r)z, m(r)y’s.

LEMMA 3. If p, q are monomials in the free associative algebra
A and m(p, @) = U(f(p, @))€ A2 (I®) then m J@
m(p, )1 = m(pg*, 1)1
and if p is symmetric, p = rzr* for 2 = 1,2, or vy, then

m(p, 1)1 = 2m(r)z .

Proof. Note that
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m@y’, 1) = Viiys, m@t, v) = Uy, m@h 1) = Vi
and in any Jordan algebra
Z,,1 =U,,l =zow.
Also recall that
xiox? = 27
(this is trivial for 4,7 <1, and if 7 =2 then z'ox’ = VU2 =

U, V,xi™ = 2U,a*~* = 2x**7 by induction). Finally, observe that the
m’s multiply according to

m(p, @)m(r, s) = m(pr, qs) + m(ps, qr)
m(p)m(r, s) = m(pr, ps)
m(r, sym(p) = m(rp, sp)

because this holds for the f’s.

The second result follows directly from the first: m(p, 1)1 =
m(rzr*, 1)1 = m(rz, r)1 (by the first) = m(r)m(z, 1)1 = 2m(r)z.

For the first result we induct on the height h(p) + h(q9). The
result is trivial if ¢ = 1, so we always assume h(q) = 1. First assume
h(p) = 8, say p = a'ya*r for 4,7,k > 0. Then

{m(p, @ — m(pg*, DI = {m(z’yia*r, @) — m(z‘y’a*rg*, H}L
= m(a’, D{m(y'a*r, ) — m(yia*rg*, 1}1
— m(a’, y){m(*r, ¢) — m(z*rq*, D}
+ {m(@**r, yiq) — m(z**rre*, y)}1
where by induction the three terms in braces kill 1 since they all
have height less than &(p) + A(q).

Now assume h(p) = 2. If h(q) =3 write ¢ = rs for h(r) = 2,
h(s) =1 and p = tw for h(t) = h(w) = 1. Then

m(p, @)1 = m(q, p)1 = m(rs, tw)l
= m(rsw*t*, 1)1 ((A): since h(rs) = 3)
= m(rsw*, t)1 ((B): since A(rsw*) = 3)
= {m(r, hYm(¢, sw*) — m(rt, sw*)}1
= {m(r, Ym(@ws*, 1) — m(rt, sw*)}1 (by induction since
(15) h(tws*) < h(p) + h(q) if r # 1)
= {m(r, tws*) + m(rtws*, 1) — m(rtws*, 1)}1 ((C): since
h(rt)y 22+ 1 =3)
= m(tws*, r)1
= m(tws*r*, 1)1 ((D): since A(tfws*) =1+ 1+ 1= 3)
= m(pg*, 1)1 .
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The remaining cases h(p) = 2, h(g) = 1 or 2 lead to

(i) m(@'y?, 21 = mz'y'a*, 1)1 = m(z*y’a’, 1)1

(i) m(z'y, ¥91 = m(x*y**7, 1)1 = m(y’+*af, 1)1

(i) mx'y?, 2Fy")1 = m(xtyi+iak, 1)1

(iv) m'y?, y*2)1 = m(ziy’z'y*, 1)1.
For (1) m(z'y?, 2¥)1 = {Vm(y?, £¥) — m(y?, 2+%)}1 = 2o (xboy?) — aitkoy?
is symmetric in ¢ and k since V., V,» commute, and

m(xiy’azt, 1)1 = {mx‘y?, 1) Ve — m(xiy?, x*)}1
= 2{wiyia*} — (Vi Ve — Viwaly?
= ViV + Vo Vi — Vioity?! — {Vor Vo — Vieridy?
= ViV — Viarsly? .

Similarly, for (ii) m(x*y?**, 1)1 = xfoyi+* = m(y’**x, 1)1 and

m(x'y?, y*)1 = {m(@, y*) V,5 — m(x?, y'+¥)}1
—_ z{wzygyk} . xioyj—Hc
={V,iVy + ViV — Vigly? — atoyith

= xioyj'*'k
(we are using the relation V.V, + V,V, — V.., = 2U,,,). For (iii)

m(xiy?, a*y') — m(xiyit'ak, 1)1
= Valm(@*y', v') — m(y'+'a*, DI — {m(@**y?, y)) — m(y+ak, a¥)}1
=0 (by (i)

and for (iv)

m(@'y?, y*a') — m(a'yzty, 1)1
= Vam(y'a', ¥') — m(y’a'y", DIL — Uy, o{m(y*at, 1) — m(a'y®, 1)}1
+ {m(y’**at, of) — m(@yr, Y
=0 (by (i), (ii)).

Now let 2(p) = 1. If h(gq) = 2 write ¢ = rs for h(r), h(s) = 1, and
p=tw for t=p, w=1. Then we can repeat the argument (15)
using the case h(p) = 2: (A), (B) follow since A(rs) = 2, (C) since
h(rt) =21+ 1 =2, and (D) since A(tws*) =1+ 0+ 1= 2. The re-
maining case is A(p) = h(g) = 1, leading to

m(t, Y1 = Uyl = afoy? = Vsl = m(xiy?, 1)1
m(z, )1 = {V,iV,5 — m(x™, D} = 2z’ — 207 = m(2*t9, 1)1.
Finally, let h(p) =0. If h(g) =2 we write ¢ = rs, p = tw as

above. Then the argument (15) follows from the case h(p) = 1 since
in (A), (B) we have A(rs) =21+ 1>1,in (C) h(rt) =1+ 0= 1, and
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in D) h(tws*) =20+ 0+ 1 = 1. The remaining case h(g) = 1 is trivial,
m(1, %)1 = m(x;, 1)1.

This completes the induction on Z(p) + h(g) and the proof of the
lemma.

As we have seen, the lemma was all we needed to establish

SHIRSHOV’S THEOREM. The free unital quadratic Jordan algebra
I on two generators is special.

It also allows us to reformulate Macdonald’s Theorem in a more
conceptual way. Recall [4, p. 000] that a Jordan algebra is strongly
special if it and all its quadratic representations are special. In view
of version V of Macdonald’s Theorem we have the following result,
which implies both Shirshov’s and Macdonald’s Theorems.

MacpoNALD’S THEOREM (Conceptual form). The free unital quad-
ratic Jordan algebra J® on two generators is strongly special.

Similar arguments can be used to prove S** and J*? are strongly
special, and in particular we have a Shirshov’s Theorem with Inverses.

For quadratic Jordan algebras in general there is no analogue of
the Shirshov-Cohn Theorem which states that an arbitrary linear
Jordan algebra with two generators is special. Indeed, there is a
standard example of a quadratic Jordan algebra with one generator
z which is not special since z* = 0 but 2* == 0.
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