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MACDONALD'S THEOREM FOR QUADRATIC
JORDAN ALGEBRAS

ROBERT E. LEW AND AND KEVIN MCCRIMMON

Macdonald's Theorem says that if an identity in three
variables x, y, z which is linear in z holds for all special
Jordan algebras, it holds for all Jordan algebras. We show
this is equivalent to saying the universal quadratic envelope
^ ^ i ? ( 3 ί { 2 ) ) of the free Jordan algebra S(2) on two generators
x, y is canonically isomorphic to the universal compound linear
envelope ^r<g'g3'(3(2)). We generalize Macdonald's Theorem
from the case of linear Jordan algebras over a field of char-
acteristic Φ2 to quadratic Jordan algebras over an arbitrary
ring of scalars, at the same time improving on the results in
the linear case by presenting ^ ^ g f (3(2)) in terms of a finite
number of generators and relations. Similarly we generalize
Macdonald's Theorem with Inverses concerning identities in
%, 8"1* V, V~\ z> Finally, we prove Shirshov's Theorem that
3(2) is special.

P A R T !• MACDONALD'S THEOREM.

1* Free algebras and free products* Throughout this paper Φ
will denote a fixed ring of scalars ( = unital commutative, associative
ring), and "linear space", "linear map", etc. will always mean linear
with respect to Φ.

Recall [4, p. 000] that a unίtal quadratic algebra £} = (36, U, 1) is
a linear space X together with a quadratic mapping x —> U(x) = Ux of X
into Homφ (X, X) and a unit element 1 e X satisfying UyX = x and {x 1 y} =
{x y 1} for all x, y (where, as usual, {x y z} = Ux,2y = {Ux+Z - Ux— Uz}y
is trilinear). A homomorphism φ:£ι—>O is a linear map satisfying

φ(l) = ϊ φ(UxV) = Uψ{x)φ{y) .

An ideal is a subspace 3t c Q such that Um£ι c 31, U^JR c 3t, {3ΪOQ} c3ΐ.
Given any set X we can construct a free unital quadratic algebra

^&(X) on X with an imbedding i\X—>^~&{X) having the fol-
lowing universal property: any (set-theoretic) map<£>: X—>£l of X into
a unital quadratic algebra Q extends uniquely to a homomorphism
φ: ^(^(X)—>O, i.e., φ = φo%. The construction goes as follows
[1, p. 116]. We recursively define monomials in the elements of X,
starting with the empty monomial 1 of degree 0 and the monomials
a e l o f degree 1, and using monomials m, n, p of degrees i, j, k to
form new monomials (m; n) of degree 2ί + j and (m, n; p) = (w, m; p)
of degree i + j + jfe; we identify (1; m) with m, (m, n; 1) with (m, 1; ri),
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and (m, m; n) with 2(m; n). Then ^^(X) is the free module with
the monomials as basis and [/-operator

Σ ό = Σ oc\βj{mi'y %) + Σ oCiOCjβuimi, mά\ nk) .

Thus (m; w) = C7m^ and (m, w; p) = Um>np.

A unital quadratic Jordan algebra is a unital quadratic algebra
satisfying the axioms

(UQJ I ) Ux = I

(J7QJ I I ) C W = CΓ.̂ CΓ.
( ϋ W IΓ) EW.*(.,.>, = UxUyUXfZ + I7β>,ϊ7,tf.
(C/QJ II") Umx)y,uωy + l^.,.,, = 0.17,17. + U.U,U. + Um9MU9Um9Λ

(UQJ III) ϋ.7, . . = V. i f ϋ. and (VM = VxVy - Ux,y, Vx = U.,d
(UQJ ΠΓ) UxVy,z + UXtZVy,x = Vf>,Z7. + Vx,yUXtZ.

If ffi denotes the ideal in ̂ ^(X) generated by all Uu{a)bc — UaUhUac,
etc. corresponding to UQJ II, etc. for α, δ, c in ̂ ^(X) then
^"(S^(X) = ̂ ~έ?{X)l& and the map i: X^^^^(X) constitute
a /rβe unital quadratic Jordan algebra on X in the sense that they
satisfy the universal property that any map^:X—>$ of X into a
unital quadratic Jordan algebra factors uniquely through a homo-
morphism φ,ψo% — ψ.

Henceforth we will concern ourselves only with unital quadratic
Jordan algebras, so we refer to them simply as Jordan algebras. As
usual, any Jordan algebra is a homomorphic image (or quotient) of
a free one. Also, if XaY then the canonical homomorphisms ex-
tending φ: X-^^^^(Y) and ψ: Y^^^^(X) by φ(x) = i(x),
ψ(x) = i(x) if xeXcz Y and ψ(y) = 0 if yiX have φ<χp = l^^^(x),
and the canonical map φ: ^(ff^f(X) -*^r&^(Y) is injective:

(1) ^&^(X)<z^r&^(Y) if XczY.

The free composition [1, p. 113] of Jordan algebras $&, ̂ 2 is a
Jordan algebra $!*$2 together with homomorphisms <pt: 3>i—•3»i*3f2

 s u c h
that any pair of homomorphisms ψy. ̂  —• $5 into a Jordan algebra £5
factors uniquely through a homomorphism Ψ*: $!*;&--> $ (i.e., ψoφi=z
Ψi). The free composition always exists; if % = ̂ ^^(X^/Bi for
-Xi, X2 disjoint sets then 3fL*3f2 = . ^ ^ ^ ( X x U X a ) / ^ for 2 the ideal
generated by $ x and ̂ 2 . In particular, note that if X, Y are disjoint

(2) ^^^(X)^^^^(Y) = J^&jr&U Y) .

We denote by $[z] the free composition ίSx^tF^fiz), with
homomorphisms φ^. 9f -• ̂ [2;], φ

THEOREM 1. For cm?/ unital quadratic Jordan algebra $ ίfce
canonical homomorphism %f&&(Zs)—> ̂ ^(3f I3»W) ̂ s α ^ isomorphism.
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We refer to [4] for the basic results about representations,
multiplication algebras, and quadratic envelopes. We begin with a
preliminary result.

PROPOSITION 1. If <P' %$-**$ is a n epimorphism of unital quad-
ratic Jordan algebras then we have an induced homomorphism
^^{φ):^{^)^^tQ) sending U*-* Uψ{x). If®,® are subalgebras
of 3>> 3> respectively with φ(®)cz® then by restriction we obtain a
homomorphism §

Proof. The only possibility for ^f{φ) is the map sending T =
Σ ^ ' UΛ% in ^T(3f) into T = Σ Uψ{Xχ) ϋφ{9%) in ^Q).^ This
works if it is well defined, and T = 0 implies 0 = φ(Tx) — T(φ(x))
for all x, hence T kills φ(°$) = <$ by surjectivity, so f = 0. If
φ(®)<z® then ΛT(φ) maps ^T(Λ|3f) into

Proof of the theorem. The homomorphism 9V $—>$[#] induces
a unital multiplication specialization x-+ Ux of ^ in ^{^{^[z]),
hence a unital quadratic specialization μ(α?) = J7β, and this factors
through the universal specialization u of ^f(^W(^s): μ — μou for
/ϊ: ^&&{^s) —> ^f(£s\Zs[z\) a homomorphism of associative algebras.
Clearly /2 is surjective, so we need only prove it is injective.

Suppose m e ^ ^ β ) is in the kernel of β. ^/έ = %S&ί?Q)
is a cyclic ^-bimodule with generator e = ^(1) relative to the quadratic
representation uL(x) = Lu{x), and the associated homomorphism μL of
^ ^ ^ ( 3 f ) into Homφ (^^, ^ ^ ) is just the left regular representation
a —> Lα of ^ ^ g 7 (Qf). We have a homomorphism ̂  of ^[^ ] into the split
null extension © = ϊ~$ 0 SK synthesizing the homomorphisms ψx: $ —>
g c β and ^2: ά?"&^{z) —>2K c @ by ^2(^) — e. ^ is an epimorphism
since its range contains the generators $ and e of @. By Proposition
1 we have a homomorphism ^€(f)\ ^Q\Zs[z\) -> ^^(^|@), and a
restriction homomorphism π: ^fffi\(£) —> ^£(^s\W) since 3W is a $-
bimodule. The resultant homomorphism πo^t(ψ) o μ;
^^(3f|SK) coincides with βL since on the generators w(&) of
we have τr(^r(^)(/ϊ(u(x))) = π(^e(ψ)(ux\$[z])) = π(UΛ\<&) = uL(x). Thus
0 = {ττo^Γ(Ί/r)}(^(m)) = uL(m) = Lm implies m = Lmβ = 0, and μ is in-
jective.

Taking $ to be the free Jordan algebra ^{n-
• , a?n_!) on 7̂  —1 generators, and noting 3f(w~1)[«] = 3ίίn

jT&Jffa, ., a v J * ^ ^ ^ ^ ) - JT&JFfa, , α?n) = ̂ ( w ) by (2),
we have

COROLLARY. I%e universal unital quadratic envelope for the free
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unital quadratic Jordan algebra ^ ( w ~ υ on n — 1 generators is isomor-
phic to the multiplication algebra of £${n-ι) on $in):

The free special Jordan algebra ^S^^(X) on a set X is easier
to construct: it is the (Jordan) subalgebra generated by the elements
x G X of the free associative algebra ^J^(X) on X. It has the
universal property that any map φ: X—> $ s of X into a special
Jordan algebra $ s extends uniquely to a Jordan homomorphism
φ: J^S^^iX) —> 3fβ. If we denote the free special Jordan algebra
on w generators by $ ^ , and similarly for the free associative algebra
Wn\ then

THEOREM 2. The universal unital compound linear envelope of
the free special unital quadratic Jordan algebra 3fin""1} on n — 1 gen-
erators is canonically isomorphic to the multiplication algebra of ̂ 5^~υ

on %n):

Proo/. We know [4, p. 000] that ^^&Q{Γγ)) is the subalgebra
of Wn-1] ® 3ί(w-1} generated by all a? ® a? for x e ̂ ~ υ c Sί^-^ since the
universal unital linear envelope for ̂ ~ υ is ^ . S f g^ftί*-1') = Wn-1].
Now §I(w~υ ® Wn~1] is isomorphic to the (associative) . multiplication
algebra ^{%{n~l) \ Wn)) = Lgc-ui^c-i) under α <g) 6 -> Lαi?6* (*the
reversal involution on Sί**-^), and the subalgebra generated by all
LXRX = ZZ, for a? = α;* in ^i?ι~1) is just the (Jordan) multiplication
algebra ^ ( ^ - υ | 2 ί ( w ) + ) . Now ${

s

n) is invariant under S^~1)

J and the
restriction epimorphism ^{%n~ι) \%kn)^) ^ ^Q{Γι) \%n)) is an iso-
morphism: for any a e 5I(W)+ there is a homomorphism ψa\ ̂ n ) —• Wn)+

fixing gfi*-" but sending a?n into α, so if Γ e ̂ ^(Sr" 1 } | S i ( n ) + ) restricts
to zero on $<•> (TO W ) ) - 0) then 0 - 9>β(Γ(α?J) - ίΓ(9>.(« )) = Ta, so ϊ 7

kills Wn)+, and ϊ 7 is zero as a transformation on 2ϊ(n)+. Thus

2* Equivalent forms of Macdonald's theorem* Let ̂ ( % ) and
$ ^ denote the free and free special Jordan algebras on n generators
x19 , xn. By (1) we may assume $ ( w ) c $>{m) if n ^ m. We have
the canonical epimorphism

uίw). cv(») v cy(n)
^ Ό Λ3S

determined by y(n)(a?<) = xt (1 ̂  i ^ n). The kernel of v(%) is an ideal
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in ${n). We let &n), 3{

s

n) denote the subspaces of ${n), %{

s

n) respectively
consisting of elements homogeneous of degree one in the variable xn.
(For n = 3 we write x, y, z for xlf x21 xi9 so 3 ( 3 ), 3s3) are homogeneous
of degree one in z). The original form [3] of Macdonald's Theorem
was that

( i ) Λ ( i ι > n3 ( n ) = o
when n — 3. Since v{n)(Q{n)) = ${

s

n\ this is equivalent to
(II) v[n): 2{n) -> 3i%) is bijective.

These two forms say that if some identity in x19 •••,&» which is
linear in xn (corresponding to an element of g>{n)) holds in all special
algebras (its image under v{n) is zero) then it holds in all Jordan
algebras (it is zero in Q{n)). This is the most practical form of
Macdonald's result. Since identities are harder to prove in the case
of quadratic Jordan algebras than for linear Jordan algebras, an
algorithm like this is a great laborsaving device.

The multiplication algebra ^t?Q{n-ι) \^{n)) of ^{n~l) on $ (w> is
generated by the transformations I, V9.9 Ux., Ux.tXj for 1 ^ ΐ, j ^ n
by [4, p. 000]. By Proposition 1 the epimorphism v[n)\ ${n) —* S»iΛ>

induces an epimorphism ^//{v{n)): ^£'Q{n-l)\%{n)) -» ^?(%n-γ)\^s

n)). We
have a linear mapz: ^//Q[n~l) \$w)-*3(ΫI) sending Γ-> Γ(αjΛ). This is
surjective by the definition of ${n) as the space spanned by all Jordan
products of x19 , xn which are linear in xn, and it is injective since
if T(xn) = 0 then T(x) — 0 for any x in ^n) by the usual argument
(there is an endomorphism φ of ${n) fixing xi for 1 <. i <, n — 1 but
sending xn to a;, so 0 = φ(T(xn)) = T(φ(xn)) = Tα), and T = 0 as a
transformation. We have a similar bijection 2;s: ^ Γ ( ^ % ~ υ |3fin)) ~> Siw),
and since 2:so^^();{w)) = v(w)o2; we see (II) is equivalent to

(III) ^?{v{n))\ ^//Q{n~ι) I%{n)) -> ̂ tQ{Γι) ISiw)) is an isomorphism.
This formulation is due to N. Jacobson [2, p. 47].

We have already seen (in the corollary to Theorem 1 and in
Theorem 2) that ι^($(Λ""1>l3ί(n)) is canonically isomorphic to the
universal envelope <2/< ί̂f ($(w-υ) and ^fQ{

s

n~ι) \${

8

n)) to the universal
compound linear envelope <%?<£"& Q{?~1)) of ^{

s

n~ί}. Thus (III) leads
to the formulation

(IV) the canonical homomorphism ΉfέZ&Q^-v) — ^C^^Q{

S

%-1))
is an isomorphism.

Since it is easily checked that the universal linear envelope of both the
free Jordan algebra $(%-1) and the free special Jordan algebra 3fin"~1}

is the free associative algebra 2ίu~1), and since [4, p. 000] for an arbi-
trary algebra ^9fgf ($) is the subalgebra of ^^f&Q) ® ^^f&Q)
generated by all l(x)®l(x) for I: $-->^S^gf($) the universal linear
specialization, we see ^ ί f g f ( S ^ ) - ^ ^ ^ Q ^ ) . Thus (IV) is
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equivalent to <Zf && Q*~ι)) — ^ 9 f ί f ($(w-1)) being an isomorphism,
so by [4, p. 000] to

(V) all unital quadratic representations of the algebra ^{n~ι) are
special.

So far we have established.

EQUIVALENCE THEOREM. The following conditions are equivalent
for a given n:

( I ) $vn)f}8{n) = o
(II) v{n): 3{n) -> 3{

s

n) is bijective
(III) ^€{v{n)): ^/{^n-ι) I S(%)) — ^(^{Γι) Iθi O is an isomorphism
(IV) ίfce canonical homomorphism ^^>^(^{n~1)) -> ̂ ί f gf ($^- υ )

is an isomorphism
(V) αϊϊ unital quadratic representations of the algebra ${n~l)

are special
where $ ( m ) , $im ) denote the free and free special unital quadratic
Jordan algebras on the generators xlf •••,#», $ ( m ) the kernel of the
canonical homomorphism vίm): ^ ( m ) —> 3»iw), α^d 3(m)> <3sm) the subspaces

), $5im) respectively consisting of elements linear in the variable xm.

Macdonald's Theorem says that these (equivalent) conditions hold
for n ^ 3 (an example due to Glennie [2, p. 51] shows they fail for
n ;> 4). We choose the formulations I and II as the most convenient
in practice.

MACDONALD'S THEOREM (Practical Form). If an identity in the
variables x, y, z is linear in z and holds in all special quadratic
Jordan algebras then it holds in all quadratic Jordan algebras.1

Next we turn to the problem of finding a presentation of
^<^pg7($ ( 2 )) by generators and relations. Let g denote the free
associative algebra on the five generators α, 6, c, d, e. We have a
homomorphism

mapping a—>v(x), b—>u{x), c~*v{y), d—>u(y)9 e-^>u(x, y). Since 1, v(x)f

u(x), v(y), u(y), u(x, y) generate ^ ^ ί f (3f(2)) if 1, x, y generate $(2)

[4, p. 000] we see this is an epimorphism.
As special cases or linearizations of the axiom UQS III

u{z)v(w, z) = v(z, w)u(z)

for quadratic specializations [4, p. 000] we have the following rela-

This result has been obtained independently by Professor John Faulkner.
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tions among the generators of

( i ) u(x)v(x) = v(x)u(x), u(y)v(y) = v(y)u(y)

(ii) u(x)v(y) + u(x, y)v(x) = v(y)u(x) + v(x)u(x, y) ,

u{y)v{x) + i6(2/, %)v(y) = v(x)u(y) + v(y)u(y, x)

(iii) u(x)v(y, x) = v(x, y)u(x) , u(y)v(x, y) = v(ί/,

(iv) u(x)v(y, y) + u(x, y)v(y, x) = 0(3/, 2/)tt(α) + v(α, ?/)ΐφ, 2/) ,

u(y)v(x, x) + u(y, x)v(x, y) = #(&, a?)%(2/) + 0(2/, &M2Λ a?)

(v) u(x)v(y2, x) = v(x, y2)u(x) , u(y)v(x2, y) = v(y, x2)u{y)

(vi) u(x)v(y\ x) = v(x, y*)u(x) , u(y)v(x*, y) = v(2/, xB)u(y) .

Here

V(^) = φ , «) = ^(^ )2 - 2u(z)

v{zz) = v{zf - Zv{z)u{z)

u(z2, w) — u(z, w)v{z) — v(w)u(z) — v(z)u(w, z) — u(z)v(w)

u(z3, w) — u(z2, w)v(z) — u(z, w)u(z) = v(z)u(w, z2) — u(z)u(z, w) .

These correspond to the following relations among the generators:
(Rl) ab = ba, cd = dc
(R2) ae + cb = ea + be, ce + ad = ec + da
(R3) b{ca — e} = {αc — e}6, d{αc — e} = {cα — β}d

(R4) b{c2 - 2d} + e{ca - e} = {c2 - 2d}b + {ac - e}e,

d{a2 - 26} + e{ac — e} = {α2 - 2b}d + {ca - e}e

(R5) b{(c2 - 2d)a - (ce - da)} = {a(c2 - 2d) - (ec - ad)}b

d{(a2 - 2b)c - (ae - be)} - { φ 2 - 26) - (ea - cb)}d

(R6) 6{(c3 - Scd)a - c(ce - dα) + de} =

{a(c3 — 3cd) — (ec — ad)c + ed}b,

d{as — 3α6)c — a(ae — be) + be} =

{c(α3 — 3α6) — (ea — c6)α + eb}d.
If ^ denotes the ideal in % generated by the relations Rl-6 (i.e.,
by the elements ab — δα, ae Λ- cb ~ ea — be, etc.) then we have an
induced epimorphism

Our proof of Macdonald's Theorem will have as a consequence the fact
that σ is an isomorphism. Thus σ affords a presentation of %S&&(Zs{2))
by means of a finite number of generators and relations.

PRESENTATION THEOREM. The universal unital quadratic en-
velope ^&^(Ss{2)) of the free unital quadratic Jordan algebra $ ( 2 )

on two generators x, y is given abstractly by the six generators
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1, v(x), u(x), v(y), u(y), u(x, y) and the six pairs of relations (3. i-vi).

That these relations are enough to characterize the quadratic
envelope again indicates the importance of the axiom UQJ III for
Jordan algebras.

3* The crucial lemma* The following lemma is crucial to our
proof (and also the proofs using an infinite number of generators
and relations [2], [3], [5]). By abuse of notation we continue to
denote the images of α, 6, c, d, e in the quotient %/B by the same
symbols.

LEMMA 1. There exist elements ak, bk, ck, dk, ektl (k, I ^ 0) in
satisfying the relations

( i ) α 0 = cQ = βo,o = 2 , bQ = dQ — 1

&i — #1,0 = α, cx = βo,i = c, bλ = 6, di = d, e l f l = e

(i i) 6 ^ = h+jydidj = d ί + i ,

[α^, α, ] = [α^, 6y] = 0, [c<, cy] = [ci9 dd] = 0
( 4 )

(iii) βtf+y,* =

(iv) ai+jei)k + αieί+i,/c = ft^c* + 2β2ί+i>&

ci+jek>i + Ciβfĉ +y = d i ^ αfc + 2e f e , 2 ί + i .

Proof. The first step is to define the e^ . We can use the
recursion relations

e0>0 — 2 eu0 — a eOtl = c β l f l = e

βi+a^ = α e i + l f i - 6e< f i = e ί + i f J α - eitSb

ei>j+2 =.ceitj+1 - deitS = β ί fy+1c - β^yd

as long as these are consistent; that is, before we can define ei>5 by
the above we must know

(a) ae^ltj - be^iti = e^ltίa - e^2tjb (i ^ 2)
(b) αe<_lfi - &^_2)ί = eifj_xc - eitj_2d (i, i ^ 2)

and their duals (obtained by replacing α, 6, c, d, ehtl with c, d, a, 6, elifc).
We induct on i + j , assuming e i s i , is given by the common value of
(a) and (b) for i' + jf < i + j . Then (6) follows immediately:

From this we see that for i, j }> 2 the validity of (a) and its dual
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for a given (i,j) implies its validity for (j,i). In particular, we
need only consider (a) for i ^ j .

In (a), if i }> 4 we have

by induction. Thus only the cases 2 ^ i ^ 3 , 0 ^ j ^ i remain. We

can easily dispose of the case j = 0 since the recursion relation shows

eiy0 is a polynomial in the commuting variables a and & (using Rl).

When j — 1 the relation for i — 2 becomes ae — δc = ea — cb (since

0o,i = c, eltl — e), which is just R2, while for i = 3 it becomes

a{ea — cb} — be — {ae — bc}a — eb (since e2}1 = ae — be = ea — cδ), which

follows from R3 after cancelling aea from both sides. This leaves

t h e t h r e e cases 2 ^ j fg i ^ 3.

The case i = i = 2 is a{ce — dα} — 6{c2 — 2d} = {βc — αcί}α — {c2 — 2d}6

since e0}2 — c2 — 2d; cancelling —ada and subtract ing β2 from both sides

resul ts in R4.

The case i — 3, j = 2 is α{e1)2α — e0>2b} — 6{ce — da) — {aeU2 — δeo,2}α —

{ec — αd}6; upon cancelling aeu2a from both sides this becomes R5.

The case i = j = 3 is α{e1)3α — eo,3&} — belt3 = {αe1>3 — 6̂ 0,3}̂  — β i A

which becomes R6 upon cancelling ael)Za from both sides since e0>z =

c3 — 3cd and e1>3 = ceί>2 — deuι = β1)2c — βlflc2.

Once we have defined t h e eiyj we set

a k — ̂ , 0 &fc — bk ck = eOfk dk = dk .

The relations (i), (ii) are immediate consequences of our definitions
(and the axiom that a commutes with 6, c commutes with d), as are
the cases i = 0,1 of (iii). If (iii) holds for a given i ^ 1 (and all
jy k) it holds for i + 1 since

= {ad; — δα^Jβi+j +̂ fc — Me,-,* (by definition)

= α ί α ^ + . +i^} - bi{bejfk} — bia^ei+j+^k}

= α{e2i+i+i,* + &*ei+i,*} "" 6 i { ^ + l f f c — ej+2fk} — 6{6i_iei+2,fc + e2i+j)k}

(by the induction hypothesis for i, 1, i — 1)

3,k (by definition)

and similarly for the other parts of (iii). For (iv) we again induct
on i + j , and we can assume i, j ^ 1 since the result holds trivially
for i = 0 or i = 0. Then
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a>i+&,k + a&i+s,* = {ααί+i-i - bai+d_2}eifk

+ a,i{aei+j_l9k - beί+3 _2,k} (by def ini t ion)

= d{di+i^1eitk + aiei+j_ltk} — b{ai+j_2eitk + α

where if j = 1 this becomes

— 2aaiei>k — bφi^a^k + 2e2i-i,k} (by induction)

= 2α{βai,fc + δiCfc} - hack - 2{ae2ifk - e2i+uk} (by iii)

= bidjCt + 2e2i+uk

while if j ^ 2 it becomes by induction

= aibidj^Cjc + 2e2i+j_ltk} - b{bidj_2ck + 2e2ί+j_2fk}

This completes the proof of the lemma.

4* Proof of the theorems* The proof now proceeds along
the lines of the proof in [5]. We have surjective homomorphisms
σ : g | $ - > ^ ^ g f ( 3 ( 2 ) ) and v: ^^?gf (3(2)) — ^<gfgf (3(2))> and a linear
mapping r: ^ ί f if (3(2))->3i3) by T->T{z) (writing x,y,z in place
of x19 x2, x3). If // = royoflr is injective so is each of the factors (since
σ, v are surjective); then σ is bijective, proving the Presentation
Theorem, and v is bijective, proving Macdonald's Theorem. We prove
μ is injective by exhibiting a spanning set f(p), f(p, q) (p Φ q mo-
nomials in Sί(2)) for %/& whose image under μ is independent in 3s3)

(hence both sets are bases, and μ takes one basis onto the other),

(5) μ(f(p)) = f8(p) = pzp* , μ(f(p, q)) = f*(p, q) = pzq* +

It is clear that these latter are independent in 5ί(3), and are
*-symmetric (* the reversal involution in Sί(3)); if (5) holds then the
f»(p)f fs(p, q) will actually be Jordan elements and thus a basis for
3s3). Thus we need only choose pre-images f(p), f(p,q) of f8{p),
fs(P> q) in such a way that they span g/Λ; therefore it is enough if
they contain

/(I) = 1

and satisfy

(6)

and are invariant under left multiplication by ak, bk, ck, dk, ekti (hence
by the generators α, b, c, d, e)
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( i ) bkf(p) = f(xkp)

(ii) dkf(p) = f(ykp)

(07) (iii) ek>ιf(p) = f(xkp,yιp)

(iv) akf(p) = f(xkp, p)

(v) cj(p) = f{yhp,p)

( i) bkf(p, q) = f(xkp, xkq)

(ii) dkf(p,q) = f(ykp,ykq)

( 7 ) (iii) ektlf(p,q) = f(xkp,yιq) + f(yιp,xkq)

(iv) α*/(ί>, g) = f(xhp, q) + /(#>, xkq)

(v) c*/(p, g) - f(ykp, g) + /(p, »*g) .

(Note that the right sides of (7) may involve terms of the form
f(p> p)t which are not a priori spanned by the f(p) and f(p, q) for
p Φ q; this is why we need (6)).

We define f(p), f(p, q) inductively as follows. We divide the
collection of monomials p in 2I(2) into sets Xn, Yn depending on their
height n and whether they begin with an x or a y:

X0=Y0 = Z0 = {1} , Xn+1 = {x'r\i Φ 0, re Yn} ,

We define f(p) on Xo = Yo - Zo by

(0D.0) /(I) = 1 ,

on Yn+1 by

(0D.1) f(x*r) = bj(r) (iΦθ,re Yn) ,

on Xn+ί by

(0D.2) fiyW) - dj(r) (iΦθ,re Xn) .

For the f(p, q) we set

(D.0) /(1,1) - 2

on ZQ x Zo,

( D . I ) /(x'r, xjs) = bsftf-'r, s) (i ^ j , i, j Φθ,re Yn, s e Ym)

on Xn+1 x Xn+1, similarly

(D.2) flyW, yjs) = djfW-'r, s) (i ^ j, i, j Φ 0, r e Xn, s e X J

on Yn+1 x F w + 1 , while on Xn+ί x Γm + 1 we set

f(χ\ yj) - β<fi
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(D.3) f(χ*r, yjs) = β i f i/(r, s) - f(y*r, xιs)

(i, j Φθ,reYn,se Xm, n + m > 0)

(where the latter term is already defined since (y'r, x*s) has lower
height if n + m > 0 —note x*s has the same height as s if seXm

for m > 0, and similarly for yjr), on XΛ+1 x Zo we put

/<*«, 1) = «,

' /(afr, 1) = Oί/ίr, 1) - f(r, x<) (iΦ 0, re Yn, n> 0)

and similarly on F n + 1 x if0

/ ( S 1) = c<
K ' ; /(y<r> 1) - c,/(r, 1) - /(r, »*) ( ^ 0 , r 6 l w , O 0)

(where in both cases the latter terms have been defined by (D.l)-
(D.3) if n > 0).

Comparing (0D.0)-(0D.2) with (D.0)-(D.2) we see that at each
step we have (6), and we easily verify that at each stage we also
have (5) (so the f(p), f(p, q) are indeed preimages of the fβ(p), f9(p, q)).
All that remains is to verify (07) and (7).

If we can establish

( i ) bJix'r) - f(xk+ir) (k,iΦθ,re Yn)

(08) (ii) ek9lf(x*r) = f(xk+ir, yιxιr)

(i Φ 0 but k = 0, I = 0 allowed, r e Yn)

( i ) bkf{xιr, x 3 s ) = / ( a ? * + V , x k + j s ) (i, j , k Φ θ , r e Yn, s e Ym)

(ii) bjtfr, yjs) - f(xk+ir, xkyds) (i, j,kΦθ,re Yn, s e Xm)

(iii) bj&r, 1) - f(xk+ir, xk) (i,kΦθ,re Yn)

(iv) βwfix'r, xjs) = f(xk+i, yιxjs) + f(yιx*r, xk+js)

(8) (i, j Φθ but k = 0,1 = 0 allowed, r e f u s e Γw)

(v) akf(x*rf yjs) = f(xk+ίr, yjs) + f(x*r9 xkyjs)

(i, i, ft ̂  0, r e ΓΛ, β e Xm)

(vi)

then (07) and (7) will follow from the definitions, (08), (8), and their
duals (replacing x by y, a by c, b by d) according to the following
table of possibilities:

p O7.i O7.iv O7.iii O7.v 07.H

O8.i

OD.l

OD.l

O8.ii

0D.4

O8.ii*

O8.ii

0D.3

08.H*

08-ii
0D.5

O8.ii*

0D.2

0D.2

O8.i*
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(p, q) 7.i 7.iv 7.iii 7.v 7.ii

xn+1 x z0

•"••+1 A - 1 m+1

^ o X ^ o

Yn+ί x 2Ό
J . ΛI 4-1 /N J . nun 4- 1

8.i

8.iii

8.ii

D.I

D.I

D.I

8.iv

8.vi

8.v

D.4

D.4

8.iv*

8.iv

D.3

D.3

D.3

D.3

8.iv*

8.iv

D.5

8.v*

D.5

8.vi*

8.iv*

D.2

D.2

8.H*

D.2

8-iii*

8.i

It remains to establish (08) and (8). We proceed by induction, assum-
ing the results for all lesser heights (where we count f(p) as having
the same height as f(p, p)). (O8.i) is quite trivial:

bJix'r) = bkbj(r) (0D.1)

= W ( r ) (4.ii)
- f(xi+kr) (0D.1) .

(O8.ii) is also easy:

βuJix'r) = ekilbj(r) (0D.1)

i - ek+2i>ιf(r) (4.iii)

ixW, r) - f(xk+2ir, yιr) (induction O7.iv, iii)

= f(yιx*r, xk+ir) (induction 7.iii)

where the inductions are legitimate since r has lesser height than
x*r and (x*r, r) lesser height than (xW, xιr). The remaining formulas
8.i-vi follow exactly as in [5, pp. 321-324], deleting all factors 2 (our
present ak, ck, ek>ι, f(p, q) correspond to 2ak, 2ck, 2ek>ι, 2f(p, q) in that
paper, but bk, dk, f(p) correspond to bk1 dk, f(p, p)). The case 8.v for
k > i was not done explicitly [5, p. 324], but the whole point of
introducing (4.iv) is to reduce the case k > ί to the case k < i [5,
p. 323].

REMARK. The only difference between the linear and the quad-
ratic cases is that in the latter we must work with the f(p)'& as
well as the f(p, g)'s, whereas in the former we needed only the
f(p, Q)'s since f(p, p) = 2f(p).

PART II . MACDONALD'S THEOREM WITH INVERSES.

1* Forms of Macdonald's theorem with inverses* Recall [6]
that two elements x and y in a Jordan algebra are inverses if
Uxy — x, Uxy

2 = 1. This is symmetric in x and y, and we write
y = x"1. Invertibility of x is equivalent to invertibility of the
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operator Ux, and

(9) ε/,-1 = IT--1 .

If Y is a subset of X we can form the free unital quadratic
Jordan algebra on X with inverses Y as the algebra J?~& ^(XjY) =
^ ^ / ( l U Γ p where y-+y' is a bijection of Y on a set Y'
disjoint from X, and Λ is the ideal generated by all Z/,,2/' — y,
Uy(y')2 — 1 for y in Y. This has the universal property that any
map φ of X into a Jordan algebra $ such that all the elements yeY
are mapped into invertible elements φ(y) e $ factors uniquely through
a homomorphism φ: ̂ ~&^{XjY) —»$.

Just as J ^ < ^ ^ ( X ) c j ^ & ^ f { X f ) if I c Γ , we have

if ΓcIcΓ .

(It is still an open question whether
if ΓcΓ'cX[5,p.325]). We again have ^r&J?(X\Y)*
^έ?^{X\jZjY) if X and Z are disjoint (as in (2)), so as a second
corollary to Theorem 1 we have

THEOREM 3. The universal unital quadratic envelope for the
free unital quadratic Jordan algebra ;̂ (%-1/m> on n — 1 generators
and the inverses of the first m generators is isomorphic to the mul-
tiplication algebra of g«—^ on ${nlm\

The free special Jordan algebra with inverses J?~'Sf J?\X\Y) is
the (Jordan) subalgebra of the free associative algebra with inverses
j^jzfiXjY) generated by the elements xeX and y1 for yeY.
Again we denote the free special Jordan (resp. free associative)
algebra on n generators x19 •••,#» and the inverses xτ\ •• ,#~1 of
the first m generators by 8ίn/w) = ^~£S^({x» •• ,̂ }/{α;1, ••-,«„})
(resp. Wnlm) = ^J^({xlf , xn}/{x19 , «»})). In this notation

CV:(n—l/m) ^— CV(n/m) ^— 9T(w/m) +

THEOREM 4. Γ/̂ β universal unital compound linear envelope of
the free special unital quadratic Jordan algebra 3f£Λ~1/m) on n — 1
generators and the inverses of the first m is canonically isomorphic
to the multiplication algebra of $in~~1/m) on $sw/m),

The proof is exactly as in the inverse-less case (again the uni-
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versal unital linear envelope of ${

s

nlm) is 2I(?ι/m)). From these two
results we obtain as before

EQUIVALENCE THEOREM WITH INVERSES. The following conditions
are equivalent for a given m < n:

( i ) s e ( » / m ) n 3 ( n / m ) = o
(II) v{nlm): 3 u / m ) — 3ϊnlm) is bijective
(III) ^//{v'nίm)): ^fQ{n~1/m) |3f( / w )) -* ̂ ^(3f i "1 / m ) |3fiw/w)) is an iso-

morphism
(IV) the canonical homomorphism

is an isomorphism
(V) all unital quadratic representations of Qf̂ -1/m> are special

where $ ( ί l / m ), ${

s

nlm) denote the free and free special unital quadratic
Jordan algebra on n generators and the inverses of the first m> $ ( n / m )

denotes the kernel of the canonical homomorphism v[nlm)\ ^ ( w / m ) —» ${

8

nlm),
and 3{nlrn), 3{

s

nlm) the subspaces of${nlm), Zs{snlm) respectively consisting of
elements linear in the variable xn.

These conditions fail for n ^ 4, but for n — 3 we have

MACDONALD'S THEOREM WITH INVERSES. If an identity in the
variables x, x~\ y, y~\ z which is linear in z holds for all unital
special Jordan algebras, it holds for all unital quadratic Jordan
algebras.

We now turn to the problem of finding generators and relations
for ^ ^ i f ($(2/2). The first result about generators is

PROPOSITION 2. If & is a unital quadratic Jordan algebra and
5̂ a subalgebra generated by the elements of a unital subset X and the
inverses of the elements Yd X then the multiplication algebra ^ί(^s\$ΐ)
is generated by the transformations Ux, UXfZ for x, z in X and the
inverses U~ι for y in Y.

Proof. Since $ is generated by I U Y~ι the general result [4,
p. 000] says ^ f ( $ | $ ) is generated by the Uz, UZiW for z, w in XU Y~ι.
That the Uy-ifZ-i and UXty-i are superfluous follows from the following
relations:

PROPOSITION 3. If y and z are invertible elements of a unital
quadratic Jordan algebra then
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(9) U,-i=U?

(10) tf,-if.= U?V»m= VXtVU?

(12) V9-i,9 = U?U..V , VM-i = UMU?

(13) Uv-i,.-i = U?Uy,,U7ι = U^Uy^Uy1 .

Proof. We have already seen (9). For (10) we cancel Uy from
the left and right of UyVx,y = Vy,xUy = Uu{y)x>y (by UQJ III) =
EW,*(*ϊ*-i= UyUx>y-iUy (by EΓQJ II). We obtain (11) by setting
x = 1 in (10), and (12) by replacing j/ by T/"1 in (10) (or by using
(10), (11), and the definition of Vy-i,x). From these we derive (13)
by Ur-i.,-1 = Uy^Vy>z~i (by (10)) - U?Uy,zU7ι (by (12)).

Since ^/<^gf (8(2/2)) has the form ^r(3f ( ί / 2 ) |Λ) by Theorem 1 this
suggests that we should represent ^έP&ffi212*) by

where %f is the free associative algebra on the generators α, 6, c, d, e
and the inverses 6"1, d~ι

9 and a—>v(x),b-+u(x),c-+v(y),d~-*u(y),
e—>u(x, y), b~ι—>u{χ-1), d~ι-+u{y-1). The Proposition 2 guarantees
that this map is surjective. We claim that its kernel 5£' is generated
by the same relations (R1)-(R6) as in the inverse-less case, together
with the additional relations

(R7) δίr1 = b-'b = 1, dd~ι = drxd = 1
(R8) b-'ed-1 = d~ιeb~\

PRESENTATION THEOREM WITH INVERSES. The universal unίtal
quadratic envelope %S<£?&(!{s{2l2)) of the free unital quadratic Jordan
algebra on two generators x, y and their inverses x~\ y~γ is given
abstractly by the eight generators 1, v(x)f u(x), v(y), u(y), u(x, y), u{x~ι),
u(y~γ) and the eight pairs of relations

( i ) u{x)v(x) = v(x)u(x) , u(y)v(y) = v(y)u(y)

( ii ) u(x)v(y) + u(x, y)v(x) = v(y)u(x) + v(x)u(y, x) ,

u(y)v(x) + u(y, x)v(y) = v(x)u(y) + v(y)u(x, y)

( i i i ) u(x)v(y, x) = v(x, y)u{x) , u(y)v(xy y) — v(y, x)u{y)

^ i v ^ u(χ)v(y> y) + u(χ> y)v(y>χ) = v(y> y)u(χ) + Φ> 2/)̂ (»» v) ι

u(y)v(x, x) + w(i/, a?)v(a?, 3/) = v(x, x)u{y) + v(y, x)u(y9 x)

( v ) u(x)v(y\ x) = v(a?, y2)u(x) , u{y)v(x2, y) = v(i/, x2)u(y)

( v i ) u(x)v(y\ x) = v(a;, y*)u{x) , (̂τz)'y(α;3, 3/) = v(y, xz)u{y)

(vii) uO^iφr 1 ) = ^(aj- 1)^) = 1 , u{y)u{y-1) =

(viii) ΐ φ - 1 ) ^ , y)u{y~ι) = u(y~γ)u{x, y)u{x~ι) .
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At this point we merely want to prove that R1-R8 imply the
analogues of R1-R6 where one or both of x, y is replaced by x~\ y~u.

(Rl ) ab = ba, cd = dc
(RΓ ) a'b' = b'a', c'd' = d'e'
(R2 ) ae + cb — ea + be, ce + ad = ec + da
(R2' ) a'e' + c'b' = e'a' + b'c', e'e' + a'd' = e'e' + d'a'
(R2") a'e" + cb' = e"a' + b'c, e'e'" + ad' = e'"c' + d'a
(R2'") ae'" + c'b = e'"a + be', ce" + a'd = e"c + da'
(R3 ) b{ca — e} = {ac — e}b, d{ac — e} = {ca — e}d
(R3' ) b'{c'a' - e'} = {a'e' - e'ψ, d'{a'c' - e'} = {c'a' - e'}d'
(R3") b'{ca' - e"} = {a'e - e"}b', d'{ac' - e'"} = {c'a - e'"}d'
(R3'") b{c'a - e'"} = {ac' - e'"}b, d{a'c - e"} = {ca' - e"}d
(R4 ) 6{c2 - 2d} + e{ca - e} = {c2 - 2d}b + {ac - e}e,

d{a2 - 26} + e{ac - e} = {a2 - 2b}d + {ca - e}e
(R4' ) δ'{c'2 - 2d'} + e'{c'a' - e'} = {c'2 - 2d'}b' + {a'e' - e'}e',

d'{a'2 - 26'} + e'{a'c' - e'} = {a12 - 2b'}d' + {c'a' - e'}e'
(R4") b'{c2 - 2d} + e"{ca' - e"} = {c2 - 2d}V + {a'e - e"}e",

d'{az - 26} + e'"{ac' - e'"} = {a2 - 2b}d' + {e'a - e'"}e'"
(R4'") 6{c'2 - 2d'} + e'"{e'a - e'"} = {cn - 2d'}b + {ac' - e'"}e'",

d{a'2 - 26'} + e"{a'c - e"} = {a'2 - 2b'}d + {ca' - e"}e"
(R5 ) 6{(c2 - 2d)a - (ce - da)} = {a(c2 - 2d) - (ec - ad)}b,

d{(a2 - 2b)c - (ae - be)} = {c(a* - 26) - (ea - cb)}d
(R5' ) δ'{(c'2 - 2d')a' - (e'e' - d'a')} = {a'(cn - 2d') - (e'e' - a'd')}b',

d'{(a'2 - 2b')c' - (a'e' - b'c')} = {c'(an - 26') - (e'a' - c'b')}d'
(R5") 6'{(c2 - 2d)a' - (ce" - da')} = {a'(c2 - 2d) - (e"c - a'd)}b',

d'{(a2 - 2b)c' - (ae'" - 6c')} = {c'(a? - 26) - (e'"a - c'b)}d'
(R5'") 6{(c'2 - 2d')a - (e'e'" - d'a)} = {a(cn - 2d') - (e'"c' - ad')}b,

d{(a'2 - 2b')c - (a'e" - b'c)} = {c(a'2 - 26') - (e"a' - cb')}d
(R6 ) δ{(cs — 3ccZ)α—c(ce — da) + de} = {a(c3— Zdc) — (ec — ad)c + ed}b,

d{(as—Zab)c—a(ae — bc) + be} — {c(a3 — 36α) — (ea — cb)a + eb}d
(R6' ) b'{(c'3 - Zc'd')a' - c'(c'e' - d'a') + d'e'} =

{a'(c'3 - We') - (e'e' - a'd')c' + e'd'}b',

d'{(a's - Sa'b')c' - a'(a'e' - b'c') + b'e'} =
{c'(an - 3δ'α') - (e'a' - c'b')a' + e'b'}d'

(R6") δ'{(cs - Scd)a' - c(ce" - da') + de"} =
{a'(c3 - Zdc) - (e"c - a'd)c + e"d}b',

d'{(a3 - Zab)c' - a(ae'" - be') + be'"} =
{c'(a3 - 3ba) - (e'"a - c'b)a + e'"b}d'

(R6'") δ{(c'8 - 3c'cΓ)α - c'(c'e'" - d'a) + d'e'"} =
{a(cn - Sd'c') - (e"V - ad')c' + e'"d'}b,

d{(a'3 - 3α'ό')c - a'(a'e" - b'c) + (b'e"} =
{c(an - 36Ό') - (e"a' - cb')a' + e"b'}d

where (as in (9)-(13)) we set
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α' = b-'a = ab-\ c' = drιc = cάr\ V = ίr1, d' = ώ"1 ,

β" = b-λ{ac - β} = {cα - e}δ~\ β'" = d^cα - e} = {αc - ejd-1 ,

β' = δ-^d-1 - d-'eb-1 .

(These definitions are consistent by Rl, R7; by R3; and by R8). Note
this implies

ba' = a'b — α, do! = c'd = c

e"d' - α'c' - e', dV - cV - e'

e"'V = c'a' - e', 6V" - αV - e'

δβ'cί = cZβ'δ = e .

Since a',br, cr, d', e'f e", er" are symmetric under the reversal in-
volution in g, these formulas merely amount to saying that the left
sides are symmetric under reversal. Thus in establishing them we
consider only the left sides, and show that in each case these are
indeed symmetric. Furthermore, by symmetry in x and y it is enough
to check the first of each pair of relations. Finally, an element S
will be symmetric if bSb (or bdSdb) is, so it suffices if S becomes
symmetric upon multiplication on the right and left by b (or on the
right by db and on the left by bd).

The relations R1-R6 are hypotheses, and the relation Rl' follows
from Rl via R7.

The left side of the first of each pair of relations R2'-R6' becomes
symmetric upon multiplying on the left by db and on the right by
bd. Thus for R2'

db{a'e' + crb'}bd = dad'ed + dbc

= dad'(β — ca)d + dad'cad + dbc

= da{e — αc) + dbc + da(d'c)ad (by R3)

— d{ae — a2c + be} + da(d'c)ad

which is symmetric by Rl and R5. For R3\

db{V{c'a' - e')}bd = (ca - e)d

is symmetric by R3. R4' is a little harder; we will find it convenient
to drop out symmetric terms as they appear rather than carry them
along at each stage. We have

db{V{c'2 - 2d') + β'(cW - e')}bd

= e'ebd - 2bd + ded'2cad - dbef2bd

~ c '{-[eα - ca2]d + d[(ae - be) - (α2 - 2b)c]} - 2bd

+ {dae + ed - cad}d'2cad (by R5.R3)
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= {cd'(ca — e)ad + cae — cbc — c(a2 — 2b)c} — 2bd

+ dacdr2cad + ecd'ad — cacd'ad

= c(ac — e)dfad + cae — 2bd + ecd'ad — cacd'ad (by R3)

= cae — 2bd + (ec — ce)d'ad

= cae - 2bd + (ad - da)dfad (by R2)

= cae — 2bd + a2d — dadfad

= (α2 — 2b)d + cae

which is symmetric by R4. For R5',

dbb'{(c'2 - 2df)a' - (cV - d'a')}bd

= cc'αc? — 2ad — cd'erf + αd

= cd\ca — e)d — ad

= c(αc — β) — ad (by R3)

= cae — ce — ad

which is symmetric by R2. Finally, for R6'

dW{{cn - %c'd')a' - c'(c'er - d'a') + d'e'}bd

= (cW - Zcd')ad - c(cdf2ed - dfad) + dfed

— c2dr2(ca — e)d — cd'ad + d'(e — ca)d

= c2d\ac - e) - cd!ad + (e - ac) (by R3)

= c{d'(ca — e)}c + cdr(ec — ce — ad) + e — ac

— e)}c — cdf(da) — ac + e (by R2)

— β)}c — (ca + ac) + e

is symmetric by R3.
The first of each pair of relations R2"-R6" becomes symmetric

by multiplying on the left and right by b. Thus for R2"

b{a!en + cbr}b — a(ca — e) + be = aca — ae + be

is symmetric by R2, for R3"

bψ(car — e")}b = ca — (ca — e) = β

is clearly symmetric, for R4"

b{bf(c2 - 2d) + β'^cα' - e")}b

= (c2 - 2d)b + (ac - e)cα - bemb

= (c2 - 2d)b - eca + ac2a - bemb

is symmetric by R4, for R5"

bb'{(c2 - 2d)af - (ce" - daf)}b

= (c2 — 2d)a — c(ca — e) + da
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= — da + ce

is symmetric by R2, and for R6"

δδ'{(c3 - 2>cd)ar - c(ce" - da') + de"}b

— (c3 — Scd)a — c2(ca — e) + cda + d(ca — e)

= — cda + c2e — de

= c{ce — da} — de

— c{ec — ad} — de (by R2)

= cec — cad — de

is symmetric by R3.
Exactly the same arguments (replacing a, a', δ, δ', c, d, β, e" by

α', α, 6', δ, c', d', β', e//; and using R2', R4', R3'—which we have already
established—instead of R2, R4, R3) establish the symmetry of the left
sides of the first of each pair of relations R2'"—R6'".

2* The crucial lemma again* Once again the key to the
theorems is the existence of certain elements in the algebra

LEMMA 2. In the algebra $'/&' there are elements ak> bk, ck> dk, ekΛ

(for all integers k, I) satisfying

( i ) a0 = c0 = e0)0 = 2, δ0 = d0 = 1

α : = eu0 = α, α_ : = β_1)0 = b~ιa — ab~\ b1 = 6, δ_x = δ" 1

cι = eQfl = c, c_! = βo,_i = d~γc = cd""1, ^ = d, d^ = cZ"1

e l t l — β, e_i,_i = b~xed~γ — d~γeb~ι

eu_x — d~x{ca — e} — {ac — e}d~1, e_ l f l = δ^jαc —e} = {cα — βjδ"1

(ii) δiδy - bi+jidϊdj - d ί + J

[α*, δ, ] = [αo αy] = 0, [c<, d,] = [cίf c j = 0

(iii) eiλ.kij = akei}j — bke^kti = βî -α,. — ^_ f c,Λ

î,ί+fc = ^ i , i — dkejfi_k = e5Λck — ejfi-kdk

(iv) e_i^j = b-iβijd-s = d^eitάb^

e_ifj = 6_ {/< f i = gitib-i (fίfj =

Proof. Again the first step is to construct the eiyj. For i, i ^ 0

this goes exactly as in the inverse-less case. We can also copy this

procedure for ί, j ^ 0 or j ^ 0 ^ i or i^O^j since the α/ = δ - 1 α =

αδ- 1, δ ' - δ " 1 , c/ = d-1c = cd-1, d' = d~\ e'^b^ed-^d^eb"1 or α', δ', c, d, e w =

δ - 1(αc — e) = (ca — e)b~ι or α, δ, c', d', β'" — d~ι(ca — β) = (αc — β)d - 1 satisfy

the same axioms as α, δ, c, d, β by R1/-R6' or Rl"-R6" or RΓ"-R6".

Given the eifj we define α* = βif0, δi = δ% Ci - eo,i> dΐ = d{ for all



MACDONALD'S THEOREM FOR QUADRATIC JORDAN ALGEBRAS 701

(positive or negative) i. From these (i) and (ii) follow immediately
(using the commutativity Rl).

Our next step is to get the intrinsic formulas (iv) for the eitί

involving negative indices rather than merely recursion formulas. It
will suffice to prove the second relation, for the third follows similarly,
and the second and third together imply the first. (Note that because
a{ = eitQ, ct = e0>i w e h a v e

fi+2,3 = af*+i,j — bfij, gi+2,j — Qi+ijct — Qi,jb

for i >̂ 0, and similarly for /_;_2,i and #_i_2,; using α', V in place of
α, b, while

fi,j+2 = fij+ιC — fijdy gi>j+2 = cgitj+ί — dgitj

for j >̂ 0, and similarly for /i,_y_2 and &,_j_2 using c', <Z' in place of
c, d. These are similar to the relations defining the eifj, except for
a lack of symmetry). We induct on \i\ + \j\. The result is true by
definition if 0 ^ \ί\, \j\ ^ 1, and using induction

e*+2,-i = aβi+u-j — beit_j (definition)

u - bfu)d-3 (induction)

if i ^ 0, similarly for e^z.-i if ί ^ 0 using α', 6' in place of α, 6, while
if j ^ 0

ei,-i_2 = βί.-i-ic' — βi^j cί' (definition)

= fij+id-j-j' - fud-jd' (induction)

= {fi,j+i<e — fi,jd}d_j-2 (commutativity)

and similarly for eif^j+i if j ^ 0 using c, cί in place of c', d'. This
completes the induction on i and j .

Now we turn to (iii). By symmetry it suffices to prove only the
first of the four equalities. We know

if i, j , k ^ 0 and ί^ kby the inverse-less case. If i < &, say k = i + I
for Z > 0, then

α»+iβi,i = β2 ί + Z ) i + biases - biβu (4.iv, iίi)

= e2i+u + bibfi-Ju (by (4'.ii))

= ί̂+z,i + bί+ιe_u (by (4'.iv)) .

This establishes the result for i, i, A ̂  0. Since a{ = eίι0 it also implies

f — fi+kj + bkfi-hj .
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The relations (iv) allow us to convert any βίf_y into an fitj by mul-
tiplying on the right by dj9 similarly to convert an e^j or /_ i f i into
an fi}j or eitί by multiplying on the left by bif and an «_* or 6_fc or
1 into an ak or 1 or bk by multiplying on the left by bk, so we can
reduce the general case to the case ί, j , k ^ 0.

3* Proof of the theorems* We again have surjections

JL JL (gf(*/«) _ i l > 3(3/2)

and the theorems result by showing μr = τΌvΌσ' is injective. We
follow the same procedure as in the inverse-less case of finding inverse
images of the basis f8(p), fB(p, q) of 313/2) where p, q are now mon-
omials in 2I(2/2). We define the inverse images f(p), f(p, q) recursively
by (0D.0-0D.5), (D.0-D.5) as before (but now the exponents i,j may
be positive or negative). The derivation of (6), (07), (7) from (08)
and (8) follows from the charts as before. The proof of (08) carries
over verbatim to the case of inverses since the relations (4.i-iii) for
positive ί, j , k carry over to the relations (4'.i-iii) for positive and
negative i, j , k. The proof of (8) is again just a repeat of that given
in [5, p. 321-324] (deleting all factors 2).

PART III, SHIRSHOV'S THEOREM.

Shirshov's Theorem says that the free unital quadratic Jordan
algebra $(2) o n two generators is special: the canonical homomorphism
v{2): $(2) —>$ί2) is an isomorphism. In the case of linear algebras this
follows immediately from Macdonald's Theorem since if v{2)(p) = 0 for
some polynomial p(x, y)e%${2) then any multiplication in
involving v{2)(p) and (via the isomorphism ^^^Q{2))^
any multiplication in ^gF^ffi™) involving p will be zero, and in a
unital linear algebra Lp = 0 implies p = 0. In the quadratic case we
have no operator Lp, but we can conclude Up = Vp = Up>q = for any
q; thus p = 0 if $(2) has no extreme radical [4, p. 000], for example
if i e Φ. In general it is an open question whether free algebras
j^&^iX) have zero extreme radical for arbitrary Φ (it is con-
jectured that they in fact have no zero divisors, and even are
imbeddable in division algebras). Therefore there seems to be no
way at present of obtaining Shirshov's Theorem directly from Mac-
donald's Theorem.

We know [4, p. 000] that $(2), being generated by x and y, equals
^tl + ^x + Λίy for ^ = ^fQ{2)) the multiplication algebra of
3 ( 2 ). If U is the natural surjection %f&<&®™) -> ̂ ( 3 ( 2 ) ) extending
the regular representation U of 8(2) in ^tQ{2)) then the m(p) = U(f(p))
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and m(p, q) = U(f(p, q)) span ^tQ{2)) since the f(p), f(p, q) span
< g ^ i f ( 3 ( 2 ) ) by our proof of Macdonald's Theorem. Thus $ ( 2 ) is
spanned by the

m(p)l , m(p)x , m(p)y

m(p, q)l , m(p, q)x , m(p, q)y .

From our definitions D.0—D.5 of the f(p, q) we see that they all are
linear combinations of terms of the form geifj where i, j >̂ 0 and g
is a monomial in the ak1 bk, ck, dk, ektl. Furthermore, the formulas (4)
for the ei}j show in turn that they are all linear combinations of terms
of the form ge0>0, gelt0, ge0Λ, or ge1Λ. Thus every m(p, q) = U(f(p, q)) is
a linear combination of terms of the form m(2I), mVx, mVy, mUx>y for
m an m(r) or m(r, s) and 21 = f/(βo,o), Vx = U(a) = J7(e1>0), Vy = #(c) -
U(eOfl), UXtV = J7(e) = U(eltl). But the action of these latter operators
on 8 can be expressed in terms of other operators acting on 1: 2x =
Vxl, Vxx = 2x2 = Vxzl, Vyx = 7/occ = Ux,υl, UXtyx = {XO T/} = .τ2oτ/ = Z7x2,yl.
This implies that any m(p, q)x is a sum of terms of the form ml (m
an m(r) or m(r, s)); a similar result applies to the m(p, q)y, so that
3ί(2) is spanned by all m(p)l, m(p)x, m(p)y, m(p, q)l (p Φ q monomials
in SI(2)). A similar result holds in ^^2): indeed, a basis for $l2) consists
of all

ms(p)l = pp*9 ms(p)x = pxp*, ms{p)y = pyp*, ms{q, 1)1 = q + g*

for p, q monomials in 2I(2) with g* Φ q. It is easy to verify that the
canonical homomorphism v{2): $ ( 2 ) —> $5i2) sends the m(p)l, m(p)α;, m{p)y,
m(p, q)l into m s(p)l, ms(p)x, ma(p)y, ms(p, q)l respectively by our re-
cursive definition of f(p), f(p9 q). If we can show that the

m(p)l, m(p)x, m(p)yy m(q, 1)1 (q Φ q*)

span ^ ( 2 ) then v{9) will take a spanning set onto a basis, hence a basis
onto a basis, and thus will be a bisection. This will prove Shirshov's
Theorem. Thus our only problem is to convert m(p, q)l's into m(r, l ) l ' s
and m(p, l) l ? s for symmetric p into m(r)l, m(r)a;, m(r)y's.

3. If p, q are monomials in the free associative algebra
2I(2) and m(p, q) = U(f(p, q)) e ^?Q{2)) then in ^ ( 2 )

m(p, q)l = m(pg*, 1)1

and if p is symmetric, p = rzr* for z = 1, xf or y, then

m(p, 1)1 =

Proof. Note that
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mixψ, 1) = Vxi,yu m{x\ yj) = UxitVj, m(x\ 1) = Vxi

and in any Jordan algebra

Zz>wl = UtfWl = 2°w .

Also recall that

(this is trivial for i,j^l9 and if i ^ 2 then χioχi =z VxiUxx
j-2 =

?7β V^a'-2 = 2J7βαj<+i-2 = 2# ί + i by induction). Finally, observe that the
m's multiply according to

m(p, q)m(r, s) = τn(pr, qs) + mips, qr)

m(p)m(r, s) = m(pr, ps)

m(r, s)m(p) = m(rp, sp)

because this holds for the / ' s .
The second result follows directly from the first: m(p, 1)1 =

m(rzr*, 1)1 = m{rz, r)l (by the first) = m(r)m{z, 1)1 = 2m(r)z.
For the first result we induct on the height h(p) + h(q). The

result is trivial if q = 1, so we always assume h(q) ^ 1. First assume
h(p) ^ 3, say p = xiyjxkr for i, j , k > 0. Then

= {m(xiyjxkr9 q) — m(xiyύxkrq*,

= m(#\ l){m(2/ya?*r, g) — m(yjxkrq*,

— m(aj*, i/Oί^ί^*^! ?) — m(xkrq*,

+ {m(α;<+*r> i/
yg) - m(xi+krq*, yj)}l

where by induction the three terms in braces kill 1 since they all
have height less than h(p) + h(q).

Now assume h(p) = 2. If h(q) ^ 3 write q = rs for h(r) ̂  2,
fe(s) ^ 1 and p = tw for Λ(ί) = h(w) = 1. Then

m{p, q)l = m(g, p)l — m(rs, tw)l

= m(rsw*t*, 1)1 ((A): since Λ,(rs) ^ 3)

= m(rsw*, ί)l ((B): since h(rsw*) ^ 3)

= {m(r, l)m(ί, s^*) — m(rί, sw*)}l

= {m(r, l)m(ίte;s*, 1) — m{rt, sw*)}l (by induction since

(15) h(tW8*) < h(p) + h(q) if r Φ 1)

= {m(r, ίws*) + m(rtws*, 1) — m(rtws*, 1)}1 ((C): since

Λ(rί) ^ 2 + 1 = 3)

= m(tws*, r)l
= m(i^s*r*, 1)1 ((D): since ^(ίws*) ^ 1 + 1 + 1 = 3)

*, 1)1 .
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The remaining cases h(p) = 2, h(q) = 1 or 2 lead to
( i ) m{xiy5, xk)l = m(xίyjxk, 1)1 = m(xkyjx% 1)1
(ii) m(xV, τ/fc)l = m{xiyk+j

f 1)1 = m(yj+kx% 1)1

(iii) m ^ V , α?V)l = m(a?V+Iαfc, 1)1
(iv) m(xly5, ykxι)l — m{xιyjxιyk, 1)1.

For (i) m(a?V, £fc)l = {V^md/*, £fc) - m(^', xi+k)}l = xio(χhoyi) - x*+hoyS
is symmetric in i and k since Fxί, F̂ /c commute, and

mixψx1*, 1)1 = {m(xψ, 1) Fxfc - m(a?V, #*)}!

Similarly, for (ii) m(x*y>'+k, 1)1 = x*oy*+k = m(yj+kx% 1)1 and

m(a?V» 2/*)l = {w(α?S yk) Vyj - m(x% yj+k)}l

= 2{xiyjyk} - xloy^k

= {VxiVyk + VykVχi - Vxioyk}yj - x'oyi^

(we are using the relation VZVW + VWVZ — Vzow = 2UZ>W). For (iii)

m(xιy\ xkyι) — m{xiy5Jrlxk, 1)1

= yβi{m(ajfc2/1,2/0 - m(yj+ιxk, 1)}1 - {m(α;ί+fc2/z, i/O

= 0 (by (ii))

and for (iv)

m(xιy\ ykxι) — m(xiyjxιyk

J 1)1

- Viiίmd/V, i/O - m(ytχιyk, 1)}1 - Uxi>yj{m(ykxι,

+ {mO/i+V, a?*) - m(xi+ιyk, y'')}l

= 0 (by (i), (ii)).

Now let h(p) = 1. If λ(?) ^ 2 write g = rs for Λ(r), fe(s) ̂  1, and
p = tw for t = p,w = 1. Then we can repeat the argument (15)
using the case h(p) Ξ> 2: (A), (B) follow since Λ(rs) ^ 2, (C) since
Λ(rί) ^ 1 + 1 = 2, and (D) since h(tws*) ^ 1 + 0 + 1 = 2. The re-
maining case is h(p) = h(q) = 1, leading to

m{x\ yj)l = Uxi9yjl = x{oy3' = Vxι,yjl = m(a?V, 1)1

m(a; i + i, 1)1.

Finally, let λ(p) = 0. If h(q) ^ 2 we write q = rs, p ^ tw as
above. Then the argument (15) follows from the case h(p) :> 1 since
in (A), (B) we have h(rs) ̂  1 + 1 > 1, in (C) h(rt) ̂ 1 + 0 = 1, and
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in (D) h(tws*) ^ 0 + 0 + 1 = 1. The remaining case h(q) = 1 is trivial,
m(l, xl)l = m(Xi, 1)1.

This completes the induction on h(p) + h(q) and the proof of the
lemma.

As we have seen, the lemma was all we needed to establish

SHIRSHOV'S THEOREM. The free unίtal quadratic Jordan algebra
$(2) on two generators is special.

It also allows us to reformulate Macdonald's Theorem in a more
conceptual way. Recall [4, p. 000] that a Jordan algebra is strongly
special if it and all its quadratic representations are special. In view
of version V of Macdonald's Theorem we have the following result,
which implies both Shirshov's and Macdonald's Theorems.

MACDONALD'S THEOREM (Conceptual form). The free unital quad-
ratic Jordan algebra $(2) on two generators is strongly special.

Similar arguments can be used to prove $(2/1) and $(2/2) are strongly
special, and in particular we have a Shirshov's Theorem with Inverses.

For quadratic Jordan algebras in general there is no analogue of
the Shirshov-Cohn Theorem which states that an arbitrary linear
Jordan algebra with two generators is special. Indeed, there is a
standard example of a quadratic Jordan algebra with one generator
z which is not special since z2 — 0 but z3 Φ 0.
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