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DIMENSION THEORY IN POWER SERIES RINGS

Davip E. FIELDS

Let V be a valuation ring of finite rank n. If V is
discrete, then V [[X]] has dimension » + 1, If V is not dis-
crete, then the dimension of V[[X]] is at least n+k + 1,
where k is the number of idempotent proper prime ideals of

V.

Let R be a commutative ring with identity. If there exists a
chain P,.c PcP,c--+cP, of n+1 prime ideals of R, where
P,c R, but no such chain of n» + 2 prime ideals, then we say that
R has dimension n and we write dim R = n [3]. In [3] and [4],
Seidenberg has investigated the dimension theory of R [X,, X, -+ -, X,.]
where R has finite dimension and X, X, ---, X,, are indeterminates
over R. We investigate the dimension theory of V[[X]] where V
is a valuation ring.

Throughout this paper, R denotes a commutative ring with
identity; @ is the set of natural numbers; w, is the set of non-
negative integers; and Z is the set of integers. If

F(X) = 5 £ X e RIX,

we denote by A, the ideal of R generated by the coefficients of
f(X): Ar={for fus *+*y fip ++-} R. If A is an ideal of R, we let

A[X]] = {Ff(X) = gfx fie A for each ic ;)

and we define 4 « R[[X]] to be the ideal of R [[X]] which is gener-
ated by A. Then A-R[[X]] ={f(X): A, & B for some finitely
generated ideal B of R with B< A}. It is clear that 4 - R[[X]] &
A[[X]]; equality holds if and only if each countably generated ideal
of R contained in A is contained in a finitely generated ideal of R
contained in A. In particular, if V is a valuation ring containing
an ideal A which is countably generated but not finitely generated,
then A - V[[X]]c A[[X]]. Finally, we note that if A is an ideal of
R, then R[[X]]/A[[X]] = (RB/A) [[X]]; hence A[[X]] is a prime ideal
of R[[X]] if and only if A is a prime ideal of R.

2, Discrete valuation rings. Let V be a valuation ring of
rank %k with associated valuation » and value group G; let {0} =
G,cG,c-+-CG, =G be the chain of isolated subgroups of G to-
gether with G. In [2], Iwasawa proves that for 1<+¢ =<k,
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G;/G;_, = H; where H,; is a subgroup of the additive group of real
numbers, this being an order-preserving isomorphism of groups. If
for 1<1=<k, H, = Z, we shall say that V is a discrete valuation
ring of rank k. This is equivalent to the condition that V contains
no idempotent proper prime ideal.

LEMMA 2.1. Let V be a valuation ring and let P be a proper
prime 1deal of V. If P 1is mot idempotent, then in V[[X]],
V(P - VI[X]]) = P[IX]] end (P[[X]]} < P- VI[X]].

Proof. Let ae P, o ¢ P®. Then
(PlIXIePlXlIS@VI[X]IsP- VI[[X]].
Hence P[[X]] S V/(P- V[[X]]) and the reverse containment is clear.

LEMMA 2.2. Let V be a valuation ring with quotient field K
and let P be a proper prime ideal of V. Let

D = V[[X]1IK] = (VI[X]Dw -
Then D = (Vp [[X]Dv pv0r-

Proof. We first show that V,[[X]] & D. Let

o

f(X) = iiz‘sfiX”'e VeI[X]] .
For each i€ w®, there exists »;€ V\P such that »,f;e V. Let
ac P\{0}; then for each ic€w, a/r,c PV,=P<S V, implying that
af; = (a/r;) (r.f:)e V; that is, af(X)e V[[X]]. This implies that
F(X) e (VIIXIDwnw = D, showing that V,[[X]] & D.
Since D 2 K, each nonzero element of V, is a unit in D. Thus
D 2 (V[[X])ypo and the reverse containment is obvious.

COROLLARY 2.3. Let V be a valuation ring and let P be a pro-
per prime ideal of V. There is a one-to-one correspondence between
prime ideals of V [[X]] which contract to (0) in V and prime ideals
of Vp[[X]] which contract to (0) tn Vp; this correspondence preser-
ves containment.

Proof. Lemma 2.2 assures that there is a one-to-one, contain-
ment preserving correspondence between each of these classes of

prime ideals and the class of prime ideals of D.

LEMMA 2.4. Let R be a quasi-local ring having maximal ideal
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M. Let f(X)eR[X]l, f(X)eMX]] - say fie R\M, k minimal.
There exists g(X), a unit of R[[X]], such that f(X)g(X) has exactly
one unit coeffictent, namely (f9);.

Proof. For w(X)e R[[X]], denote by #%(X) the canonical image
of w(X) in (R/M)[[X]]. By choice of F,

FX) = B X+ Fors Xt ooe = XHF + FonX 4 +00)

where f, = 0. Then f, + fiu X + +++ is a unit of (R/M)[[X]], and
we can choose g(X)e R[[X]] such that g(X) -« (fi + fir X+ -++) = 1.
Thus 7(X) - g(X) = X*, and f(X)g(X) — X*e M[[X]]. This implies
that only the coefficient of X* in f(X)g(X) is not in M.

COROLLARY 2.5. Let V be a valuation ring and let P be a pro-
per prime ideal of V. If Q s an ideal of V,[[X]] and if
Q Z (PV,) [[X]], then QN V[[X]] £ P[[X]].

Proof. Lemma 2.4 assures that there is a power series ¢g(X) in
@ with ¢(X) having exactly one unit coefficient, ¢,. Since g, is a
unit of V., there in no loss of generality in assuming that, in fact,
g, = 1. Then for 1+#k, ¢;,¢ePV,=P<SV, implying that
9(X)eQn V[[X]] while ¢(X) ¢ P[[X]].

LEMMA 2.6.' Let R be a Noetherian ring having dimension n.
Then RI[[X, X,, «++, X,)]] is Noetherian and has dimension n + m.

Proof. It is well known that if R is Noetherian, then
R[[X, X,, -++, X,.]] is Noetherian. We shall show that the dimension
of R[[X]] is = + 1; the lemma follows immediately by induction on
m.

Let M be a maximal ideal of R[[X]]. Then M = M, + (X) for
some maximal ideal M, of R. Since dim R = %, the height of M, is
k where &k < n. There exists an ideal 4 = (a,, a,, +-+, a;) of B which
admits M, as an isolated prime ideal [5; 242]. It is straightforward
to verify that M = M, + (X) is an isolated prime ideal of A + (X) =
(ay, @y +++, a;, X) R[[X]]. This implies that the height of M is at
most £ + 1 [5; 240]; since k£ < n, the height of M is at most n + 1.
Since M was an arbitrary maximal ideal of R[[X]], we conclude that
dim R [[X]] £ » + 1; the reverse inequality is clear.

THEOREM 2.7. Let V be a discrete valuation ring of rank n
and let (0) = P,CP,CP,C+++ CP, be the nonunit prime ideals of

L The proof of Lemma 2.6 was pointed out to the author by William Heinzer.
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V. Then dim V[X]] = n + 1.

Proof. We use induction on 7, the case n = 1 following from
Lemma 2.6 since a rank one discrete valuation ring is Noetherian.

Assuming the result for discrete valuation rings of rank less
than %, let V be a discrete valuation ring of rank = and let
0)cQR,c@,c-+-CQ, be a chain of prime ideals of V[[X]]. We
consider two cases.

Case 1. @Q, NV = (0). Here @, N V2P, sothat Q2 P,- V[[X]],
implying that @, 2V (P, - V[[X]]) = P.[[X]], the latter equality
being a consequence of Lemma 2.1. But the depth of P, [[X]] cannot
exceed dim (V/P)[[X]] = n; we conclude that ¢ < n + 1.

Case 2. Q. N V=(0). Corollary 2.3 asserts that Q,=Q*n V[[X]],
where Q* is a prime ideal of V, [[X]] and Q*N V, = (0). Since
dim Vp, [[X]] = 2, Q* & (P.V,)[[X]]. By Corollary 2.5, Q, & P, [[X]].
Since V5 [[X]] is two-dimensional and local, each proper prime ideal
of V, [[X]] which contracts to (0) in V, is a minimal prime ideal of
Ve, [[X]]. Corollary 2.3 now assures that each proper prime ideal of
VI[X]] which contracts to (0) in V is a minimal prime ideal of
VI[X]]. It follows that @,Nn V = (0), implying that @, 2 P, [[X]].
Since also @, 2 @, and Q, & P,[[X]], we conclude that Q,> P, [[X]].
Thus we have a chain (0)cC P, [[X]]cQ.cQ;C--- CQ,. It follows,
as in Case 1, that t < » + 1.

Thus dim V[[X]] £ # + 1 and the reverse inequality is clear.

3. Rank one nondiscrete valuation rings. We note that if V
is a rank one valuation ring, then the value group of v is Archi-
median.

Lemma 3.1. Let V be a valuation ring and let B be an ideal
of V. If B is not finitely generated, then the following conditions
are equivalent:

(@ f(X)eB- V[X]].

(b) A; < (b) for some be B.

() f(X)=0bg(X) for some be B, g(X)e V[[X]].

(d) A;cB.

Proof. We establish that (a) — (b) — (¢) — (a) and that (b) < (d).
(@) — (b): Let f(X)eB- V[[X]]; then we can write '

F(X) = b.lgP(X)] + b.[¢%(X)] + +++ + b [g“(X)]
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where for 1 <¢ <t b;e B and ¢?(X) = 35, 9:;; X e V[[X]]. Thus
f(X) =32, fiX* where f; =3 bigii. In V, (b, b, ¢+, b)) = (by)
for some s, 1 < s <t Now for icw, f; = 3\, b.0i; € (b,), implying
that A; S (b,) where b,¢ B.

(b) — (c): We assume that A; = (b); then for icw, f;= by,
where g;e¢ V. Let g(X) = 3,9:X% it then is clear that f(X) =
bg(X).

(¢) — (a): This is obvious.

(b) — (d): This is immediate from the assumption that B is not
finitely generated.

(d)— (b): Assuming that A,c B, let beB, b¢A;. Then
(0) £ A; so Ay < (b) since V is a valuation ring.

THEOREM 3.2. Let V be a rank one nondiscrete valuation ring
having maximal ideal M. Then M- V[[X]] = V(M - VI[X]).

Proof. Let f(X)eV (M- V[X]]) —say [f(X)]feM- VI[X]];
we then can write [f(X)]* = rg(X) where re M and ¢g(X)e V[[X]].
There exists an element s of M with 0 < v(s) < v(r)/k; then r = s¥t
where ¢ e V, implying that [f(X)]* = r¢(X) = s*tg(X), so that

[F(XOF/s" = [f(X)/s]* = tg(X) e V[[X]] .

Therefore f(X)/s is a root of Z* — tg(X)e V[[X]][Z], whereby
f(X)/s is integral over V[[X]]. Also f(X)/s clearly is in the
quotient field of V[[X]]. But V is completely integrally closed,
implying that V[[X]] is completely integrally closed, hence is inte-
grally closed [1;150]. Thus f(X)/s =hk(X)e VI][X]] and f(X)=
sh(X)e M- V[[X]] since se M. Hence V(M- V[[X]]) EM- V[[X]], so
that equality holds.

THEOREM 3.3. Let R be a quasi-local ring having maximal ideal
M and let Q be a prime ideal of R[[X]]. If Q=2 M - R[[X]], then
etther @ 2 M[[X]] or @ S M[[X]].

Proof. We assume that @ £ M[[X]] and show that Q2 M[[X]].
Let f(X) =32, fiX"eQ, f(X)¢ M[[X]]. Let t be the smallest
integer k& for which f, is a unit of R. Let ¢g(X)= >z fiX"* if
t>0; let g(X)=01if ¢ =0. Then ¢g(X)e M- R[[X]] & @, implying
that f(X) — g(X) e Q. If f(X) — ¢g(X) has order zero, then g(X)=0,
so that f, is a unit of R, implying that f(X) is a unit of R[[X]],
whence @ = R[[X]] 2 M[[X]]. If f(X) — ¢g(X) has positive order =,
then [f(X) — ¢(X)], is a unit of R and f(X) — g(X) = X"W(X)
where h, = [f(X) — g(X)]. is a unit of R, implying that A(X) is a
unit of R[[X]].
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Since f(X) — 9(X) = X"W(X) e Q and Q is a prime ideal of R[[X]],
either X"ec@ or W(X)eQ. If X"e@Q, then Xe@Q, implying that
Q=2 M- R[[X]] +(X) 2 M[[X]]. If h(X)e@, then @ = R[[X]] 2
M[[X]]. Hence if Q £ M[[X]], then @ 2 M[[X]].

THEOREM 3.4. Let V be a rank one nondiscrete valuation ring
having maximal ideal M.

(@) There is a prime ideal P of V[[X]] satisfying M- V[[X]] S
Pc M[[X]].

(b) dim V[[X]] = 3.

Proof. Theorem 3.2 asserts that
V(- VIIXI) = M- V[[X]]c M[[X]] .

Hence there is a prime ideal P of V[[X]] satisfying P2 M - V[[X]],
P2 M[[X]]. Theorem 3.3 then asserts that P c M[[X]]; hence (a)
holds.

We now have a chain O)c Pc M[[X]]lc M- V[[X]] + (X) of
prime ideals of V[[X]], implying (b).

4. Valuation rings of finite rank.

LEMMA 4.1. Let V be a wvaluation ring and let P be a proper
prime ideal of V. Then PV, = P; hence P is idempotent if and
only if PV, 1s idempotent.

The proof of Lemma 4.1 is straightforward and will therefore be
omitted.

LEMMA 4.2. Let V be a valution ring and let P be an idem-
potent proper prime ideal of V. Then P.V[[X]] = (PV;)- Vo[[X]].

Proof. Let f(X)e(PVp) + VullX]] —say f(X)=rk(X) where
re PV, and h(X)e V[[X]]. Since P = PV, is idempotent, we can
write » = st where s, t € P = PV;; then for ¢ € w,, there exists a;e V\P
such that a;h; e V. Since a;e V\P and te P, we have that (¢) < (a;)
so that t/a; e V for each 7 e w,, implying that th; = (t/a;) (a;h;) e V for
each 1 e w, — that is, th(X)e V[[X]]. Since se P, we conclude that
f(X) = ri(X) = s(th(X)) e P - V[[X]], establishing that

(PVy) - Ve[ XTI < P V[[X]] .

The reverse containment is obvious.
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THEOREM 4.3. Let V be a valuation ring and let P be a proper
prime ideal of V. If @ is a prime ideal of V[[X]] and if Q 2 P+
VII[X]], then either @ 2 P[[X]] or @ & P[[X]].

Proof. Assuming that @ £ P[[X]], we first establish that either
Xe@Q or Q contains A(X), where A(X)e V[[X]] and h,¢ P. Let
F(X) =32 X eQ, f(X)¢P[[X]]. Let t be the smallest integer
k for which f,e¢ P. If ¢t =0, then we let h(X) = f(X). If t>0,
then we let g(X) = 3= f:X*. Then ¢g(X)eP- V[[X]] £ Q, imply-
ing that f(X)— g(X)e@. Further, f(X) — g(X) = Xh(X) where
h, = fi¢ P. Since @ is prime, either Xec@ or h(X)ec Q. Hence if
Q Z P[[X]], then either Xe@ or @ contains A(X) where h(X)e
VIIX]] and h,¢ P.

If Xe@Q, then @ 2 P[[X]]; hence we consider the case where
MX)e @ with h,¢ P. Observe now that 2(X)e V,[[X]] and that A,
is a unit of V,, implying that 2(X) is a unit of V,[[X]] — that is
1/h(X)e Vo[[X]]. Now let »(X)e P[[X]]; then

r(X)[1/MX)] e P[[X]] - V-[[X]] & P[[X]]

— in particular, »(X)[1/h(X)] e V[[X]]. Since 2(X)e @, we see that
r(X) = MX)[r(X)/h(X)] €Q. Hence @ 2 P[[X]].

LEMMA 4.4. Let V be a valuation ring having a minimal prime
ideal P. If P is idempotent, then P-V[[X]] = V(P - V[[XI].

Proof. Let f(X)eV/(P- V[[X]]). Then in
VRI1X11, f(X)e VPV - VRIIX]])

by Lemma 4.2. Since V, is a rank one nondiscrete valuation ring,
Theorem 3.2 asserts that 1/(PV;) - V,[[X]]) = (PV5) - V,[[X]]. Hence

f(X)e(PVy) - VL[IX]] = P V[[X]], the latter equality following
from Lemma 4.2.

THEOREM 4.5. Let V be a valuation ring and let P be a proper
prime tdeal of V. If P is idempotent, then

P-V[[X]] =V VX .

Proof. We shall say that P is branched provided there exists a
P-primary ideal distinct from P[1; 173]. We consider two cases.

Case 1. P is branched. Then there is a prime ideal @ of V
with @ c P and such that there are no prime ideals of V properly
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between @ and P [1; 173]. Then P/Q is a minimal prime ideal of
V/Q and P/Q is idempotent. Lemma 4.4 assures that

(P/Q) - (VIQIIX]] = V((P/Q) - (VIQXID .

By considering the natural homomorphism from V[[X]] to (V/Q)[[X]],
we conclude that P. V[[X]] = V(P - V[[XI]]-

Case 2. P is not branched. Then P = |J; M, where {M;};., is
the collection of prime ideals of V properly contained in P[1; 173].
Let f(X)eV(P- V[[X]]) —say f(X)*eP-. V[[X]]. Then f(X)*=
rg(X) where g(X)e V[[X]] and re P, implying that » e M, for some
ned. Thus f(X) = rg(X) e M, [[X]], implying that f(X)e M, [[X]].
There exists A, e 4 such that M, < M,. Let seM,, s¢ M,; then
(s) 2 M;, 2 Ay, so that f(X) = sh(X) where h(X)e V[[X]]. Since
se M,, se P; hence f(X) = sh(X)e P-VI[[X]].

COROLLARY 4.6. Let V be a wvaluation ring having a proper
prime ideal P. If P is idempotent, then there is a prime ideal Q of
VI[X]] satisfying P- V[[X]] € Q < P[[X]].

Proof. Theorem 4.5 assures that
V(P VI[X]) = P- V[[X]]c P[[X]] .

Hence there is a prime ideal @ of V[[X]] satisfying @ 2 P - V[[X]],
Q 2 P[[X]]. Theorem 4.3 then asserts that Q ¢ P[[X]].

THEOREM 4.7. Let V be a valuation ring of rank n having k dis-
tinct idempotent proper prime ideals. Then dim V[[X]] = n+k + 1.

Proof. We use induction on %, the case n = 1 following from
Theorem 2.7 and Theorem 3.4.

Assuming the result for valuation rings of rank ¢, let V be a
valuation ring of rank ¢ + 1 having % distinct idempotent proper
prime ideals and let (0)c P.c P, --- C P,,, be the chain of nonunit
prime ideals of V. We consider two cases.

Case 1. P, is not idempotent. Here V/P, is a valuation ring of
rank ¢ which has % distinct idempotent proper prime ideals. By the
induction hypothesis, dim (V/P) [[X]] = ¢ + k + 1. Since (V/P)[[X]] =
VIIX1/P.[[X]], this implies that the depth of P, [[X]] is at least
t+ %+ 1. Since P[[X]] # (0), dim V[[X]] = ¢+ k + 2.

Case 2. P, is idempotent. Here V/P, is a valuation ring of rank
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t which has k — 1 distinet idempotent proper prime ideals. By the
induction hypothesis. dim (V/P)[[X]] = ¢+ (k—1) + 1=t + k; hence
the depth of P,[[X]] is at least ¢t -+ k. Since P, is idempotent,
Corollary 4.6 asserts that there is a prime ideal @ of V[[X]] satisfy-
ing P,-V[[X]] € Qc P,[[X]] — in particular, (0) = Q c P,[[X]]. Since
the depth of P,[[X]] is at least ¢ + &k, we see that dim V[[X]] =
t+ k+ 2.

LEMMA 4.8. Let V be valuation ring and let P be a proper
prime ideal of V.

(o) If Q is a prime ideal of Vo[[X]] which satisfies (PV5) - as
Vel[X]] € Q@ < (PVy)[[X]], then @ 1is a prime ideal of V[[X]]
which satisfies P+ VI[[X]] € Q < P[[X]].

®) Conversely, if Q is a prime tdeal of V[[X]] which satisfies
P. V[[X]] €Qc P[[X]], then Q is a prime ideal of V,[[X]] which
satisfies (PVy) - Vp[[X]] & Q C (PVp)[[X]].

Proof. To establish (a), we observe that Q' < (PV,) [[X]] =
P[[X]] & V[[X]], whereby Q" N V[[X]] = Q"

We now establish (b); we begin by proving that @ is an ideal of
VeI[X]]. Let f(X)eQand ¢g(X)e V,[[X]]; we show that f(X)-as
9(X)e Q. Choose h(X)e P[[X]], h(X)¢ Q. For each 7,jcw, g;€ Vp
and %; e P, implying that ¢g;h; e PV, = P. Hence g(X)h(X)e P[[X]] &
VI[X]], implying that f(X)[g(X)M(X)]e@Q. Since f(X)e@Q & P[[X]],
each f;e P; hence f(X)g(X)e P[[X]] < VI[X]]. Since [f(X)g(X)]-
MX)eQ where f(X)g(X)e V[[X]], M(X)e V[[X]], and (X)e¢Q, we
conclude that f(X)g(X)e Q. Hence @ is an ideal of V,[[X]].

We now prove that @ is a prime ideal of V,[[X]]. Let S =
VIIX]\Q; then S is a multiplicative system in V[[X]], hence also
in V,[[X]], and S clearly does not meet the ideal @ of V,[[X]]. Hence
there is a prime ideal Q* of V,[[X]] which satisfies Q S Q*, @*N S= g.
Since Q@ S Q*, @ S Q* N V[[X]]; since @*N S = @, @* N V[[X]] £ Q.
Thus Q*N V[[X]] = Q. Observe now that Q*2Q =2 P - VI[[X]] =
(PVp) « Vo[[X]]. By Theorem 4.3, @* compares with (PV,)[[X]] =
P[[X]]. Since Q* lies over @ we must have that @* c P[[X]] & VI[[X]],
implying that @* = Q. Hence Q is a prime ideal of V,[[X]].

That (PV,) - V:[[X]] € Q< (PV,)[[X]] is clear.

THEOREM 4.9. The following conditions are equivalent :

(@) IfV is a rank one mondiscrete valuation ring, then V[[X]]
has finite dimension.

(b)y If V is a valuation ring having finite rank n, then V[[X]]
has finite dimension.
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Proof. It is clear that (b)— (a). We prove that (a) — (b) using
induction on #, the case % =1 being a consequence of (a) and
Theorem 2.7.

We now assume that if W is a valuation ring of rank %, then
WI[X]] has finite dimension. Let V be a valuation ring of rank
k + 1 which has minimal prime P. Let (0)c@,c@Q.c---C@Q, be a
chain of prime ideals of V[[X]]. Let d = dim V, [[X]]. Corollary 2.3
assures that there are at most d proper prime ideals in this chain
which contract to (0) in V. Choose m so that @, N V = (0) and
RNV =#(0); then m <d. For r=m +1, Q,N V2 P; Theorem
4.3 assures that for » = m + 1, @, compares with P,[[X]]. Lemma
4.8 assures that at most d of the ideals Q,:i, Qn4s -+, Q: are con-
tained in P,[[X]], whereby Q,.¢:: D P,[[X]]. Since m < d, we have
that @,y 2 Quiar 2 P [[X]].

By the induction hypothesis, (V/P,)[[X]] has finite dimension. The
depth of P, [[X]] is at most (dim (V/P)[[X]] — 1). It follows that the
depth of Q.4+, is at most (dim (V/P)[[X]] — 1), whereby

t < (@d + 1) + @im (V/P)[[X]] — 1) = 2d + dim (V/P)[[X]] .

We conclude that dim V[[X]] < 2d + dim (V/P,)[[X]], whereby V[[X]]
has finite dimension.

THEOREM 4.10. The following conditions are equivalent:

(@) If V is a rank one mondiscrete wvaluation ring, then the
ascending chain condition for prime ideals holds in V[[X]].

(b) If V is a valuation ring having finite rank n, then the
ascending chain condition for prime ideals holds in V[[X]].

The proof of Theorem 4.10 is analogous to the proof of Theorem
4.9 and will therefore be omitted.

Added in proof. Jimmy T. Arnold has recently conveyed to me
a paper of his, On Krull Dimension in Power Series Rings, in which
he has established the following result.

Let R be a commutative ring with identity. If there exists a
prime ideal P of R such that V' (P-R[[X]]) = P[[X]], then R[[X]]
has infinite dimension.

It follows immediately that if V is a valuation ring which is not
discrete, then V[[X]] has infinite dimension.
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