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δ
Let {an}n=o and {bn}n=o be real sequences with bn > 0,

δ Λ >O(τι-> oo). Let {Pn(x)}n=o be the sequence of orthonormal

polynomials satisfying the recurrence

%Pn{%) = bn-lPn-l(x) + anPn(x) + bnPn+l(x) , fa ^ 0) ,

P-i(α?) = 0, P0(a?) = l .

Then there is a substantially unique distribution function
ψ with respect to which the Pn(%) are orthogonal. This paper
verifies a conjecture of D. P. Maki that the set of all limit
points of the sequence {an} is the derived set of the spectrum
of fm

Let {Pn(x)} be a sequence of orthonormal polynomials defined by
the recurrence formula

xPn(x) = bn^Pn^(x) + anPn(x) + bnPn+ί(x) (n^0)9

P^(x) = 0, P0(x) = 1, an r e a l , bn > 0 .

Then it is well known that there is a bounded, nondecreasing func-
tion ψ such that

the spectrum of ψ,

S(ψ) = {ΐ I f{t + ε) - f{t - ε) > 0 for all ε > 0} ,

being an infinite set.

If we impose the additional hypothesis

(1.2) limδ* = 0 ,

then the Hamburger moment problem associated with (1.1) is deter-
mined (by Carleman's criterion — see [4, p. 59]) and the distribution
function ψ is substantially unique (is uniquely determined up to an
arbitrary additive constant at all points of continuity).

In [3], D. P. Maki proved that every (finite) sequential limit
point of {αj"=o is a point in S(ψ) and he conjectured that λ is a
limit point of {an} if and only if λ is a point of the derived set,
S(ψ)f. Maki's conjecture is correct as will be proved below.
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If we denote the smallest and largest limit points (in the ex-
tended real number system) of S(ψ) by σ and τ, respectively, then
it was proved in [2, Th. 7] that under the hypothesis (1.2),

(1.3) σ = liminf an, τ — limsup an .
n-*oa n-*oo

It follows that Maki's conjecture will remain valid if we allow in-
finite limit points also.

(2.1)

2* In the sequel, we will have reference to the J-fraction,

II bl I b\ \ bl

z — a0 I z — αx I z — a2 \ z — a2

With the hypothesis (1.2), we are dealing with the determinate case
so (2.1) converges uniformly on every closed half-plane,

Im (z) ^ d > 0 ,

to an analytic function F which is not a rational function, ψ can
be obtained from F by the Stieltjes inversion formula (see [5, p. 250])
and this shows that if the analytic continuation of F is regular in
a region containing a real open interval (α, b), then ψ is constant
on (α, b).

We will denote the nth convergent of (2.1) by An(z)/Bn(z) so that
Bn(z) is the monic orthogonal polynomial, Bn{z) = bob1 bn-xPn{z).

We also recall that if the Hamburger moment problem is deter-
mined, then (see [4, Corollary 2.6])

(2.2) p(x) =

vanishes at all points of continuity of ψ and equals the jump of
at a point of discontinuity.

3* We now state our main result.

THEOREM. Let lim^^, bn — 0. Then X is a limit point of the
sequence {αjj=o if and only if X is a limit point of S(ψ).

Proof. In view of (1.3), it is sufficient to consider λ finite.
First let λ be a finite limit point of {αj. Then Maki has shown

that XeS(Ψ) and also that there is a subsequence {PWJ such that

(3.1) lim Γ (x - X)2 Plk(x)df(x) = 0 .

We will now show that λ cannot be an isolated point of S(ψ).
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Assume λ is isolated. Then ψ has a jump at λ so let Jλ > 0
denote this jump. It follows that there is an ε > 0 such that S(ψ)
contains no points in either of the half-open intervals, [λ — ε, λ) and
(λ, λ + ε]. Thus, writing fk = Pnjfc, we have by a modification of a
technique used by Maki,

Γ fldf = \λ~εfldf + Γ fldf + f\(X)Jλ = 1 ,

Γ (x - \ff\df = Γ"S (x - Xffldf + [" (x - λ)2/W
J-oo J-oo J^ + ε

= s2 [i - Λ(λ) JJ ^ o .

Therefore, according to (3.1),

lim Plk(X) = Jr 1 > 0

but this contradicts the fact that p(X) = Jλ (see (2.2)). Thus λe
Conversely, let XeS(f)' and assume that λ is not a limit point

of {an}. Then there is a <5 > 0 and an index iVΊ such that
I an — λ I ̂  2δ for w ^ iS ,̂ hence

\z — an\ ^ δ for \z — X\ <^ δ , nϊt Ni .

Since by hypothesis, bn —•> 0, there is an index ΛΓ such that

^ 4f < 4- f or n ^ iV
(z - an) (z - an+ί) 4

and ze D = {w\ \w — X\ ^ δ}.
It now follows from a Theorem of Worpitzky (see [5, Th. 10.1])

that the J-fraction

converges uniformly on D to an analytic function FN and, from
(2.1), we have

F(z) =
BN(z) ~

for ze D, z not a zero of BN — BN_λFN.
Since FN cannot be a rational function, BN — BN^FN can have

at most finitely many zeros in D. That is, F has at most finitely
many singularities in D, which in turn implies that ψ has at most
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finitely many points of increase in [λ — <?, λ + δ]. Thus we again
reach a contradiction.

4* REMARKS. 1. W. R. Allaway has shown (private communi-
cation) that when {an} is bounded, then a theorem of Krein [1,
pp. 230-231] can be used to prove Maki's conjecture in the case
S(ΨY is finite.

2. Maki's proof shows that (3.1) holds if for some {%},

(4.1) bnjc^ -> 0, b%h - 0, ank — λ (finite) (n -> c«)

so that (4.1) is sufficient for λ e S(ψ)r (assuming a determined moment
problem).

3. Maki showed that if A denotes the self-adjoint operator,
Af= xf, defined on a dense subset of L\ψ), then σ(A)a S(ψ), where
σ(A) denotes the spectrum of A.

Consideration of the characteristic function for the singleton set
{λ} shows that λ is an eigenvalue of A if and only if λ is a point of
discontinuity of ψ. That is, Pσ(A) = D(Ψ), Cσ(A) c S(Ψ)\D(Ψ), where
Pσ(A), Cσ(A) denote the point and continuous spectra of A and D{ψ)
is the set of jump points of ψ.

On the other hand, if XeS(f)'\D(f) (λ finite), then there is a
measurable function fn with support in [λ — 1/n, λ + 1/n] and with
||Λ || = 1. Then

S X+i/n
fl df = n~>

λ-lln

so that Xeσ(A). It follows that Cσ(A) = S(Ψ)\D(ψ).
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