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PRINCIPAL IDEALS IN F-ALGEBRAS

RONN L. CARPENTER

Suppose B is a commutative Banach algebra with unit.
Gleason has proved that if / is a finitely generated maximal
ideal in B, then there is an open neighborhood U of I in the
spectrum of B such that U is homeomorphic in a natural
way to an analytic variety and the Gelfand transforms of
elements of B are analytic on this variety. In this paper it
is shown that this result remains valid for principal ideals in
uniform F-algebras with locally compact spectra. From this
it follows that if A is an i^-algebra of complex valued con-
tinuous functions on its spectrum satisfying (1) the spectrum
of A is locally compact and has no isolated points, and (2)
every closed maximal ideal in A is principal, then the spec-
trum of A can be given the structure of a Riemann surface
in such a way that A can be identified with a closed sub-
algebra of the algebra of all functions which are analytic on
the spectrum of A. Finally an example is given which shows
that neither Gleason's result nor the characterization described
in the preceding sentence extends to nonuniform algebras.

2 Lemmas and theorems. We assume throughout this paper
that A is a uniform commutative F-algebra with unit, and that the
spectrum X of A is locally compact and has no isolated points. We
identify A and A~ and regard A as a compact open closed subalgebra
of C(X) the algebra of all continuous functions on X. Since A is an
F-algebra, the space X is hemi-compact. We fix an ascending sequence
{Xn} of compact A-convex subsets of X such that each compact subset
of X is contained in some Xn. (A subset E of X is said to be A-
convex if for each x in X — E there is an element / of A such that
\f(x)\ > sup {|/(2/)I: yeE}.) Denote by Bn the completion of the alge-
bra AI Xn with respect to the supremum norm on Xn. Then A =
lim inv Bn, X = U Xn, and Spec Bn = Xn for each n. Define πn to be
the natural homomorphism of A into Bn. In the case under considera-
tion πn is the restriction map defined by f—>f\Xn for each / in A.
Finally for a subset E of X and / in C(X) we let \f\E = sup {\f(y)\:
yeE}.

In [3] Michael defines a strong topological divisor of zero to be
an element / of A such that the map g —> gf (g e A) is not a homeo-
morphism of A into A.

LEMMA 2.1. Suppose x is a point of X and f is an element of
A such that ker (x) = Af. Then f is not a strong topological divisor
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of zero.

Proof. Suppose hf=0 for some he A. Since hull (/) = {x}, h
must be identically zero on X — {x}. Since {x} is not isolated and h
is continuous, h must be identically zero on X. Therefore, the map
Q —» ΰf 9 € A is one-to-one.

Since Af is closed in A, it is an F-algebra. Hence, the map
g —• gf is a one-to-one continuous linear map of the F-algebra A onto
the .F-aigebra Af. The open mapping theorem (see [1], p. 55) implies
that the map g-+ gf is a homeomorphism of A onto Af Therefore,
/ is not a strong topological divisor of zero.

For a Banach algebra B we use dB to denote the Silov boundary
of B. The next lemma is a generalization of Corollary 3.3.7 in [4].

LEMMA 2.2. Suppose fe A and hull (/) is compact. Then f is
not a strong topological divisor of zero in A if, and only if, there
is an integer n such that for j ^ n, hull (f)f)dBj = 0 .

Proof. Suppose that for every positive integer n there is a
positive integer j such that j ^ n and hull (/) Π dBj Φ 0 . Then,
without loss of generality we can assume that hull (/) Π dB3 Φ 0 for
j = 1, 2, . For each integer j and open neighborhood U of hull (/)
we can choose an element g(j, U) of A such that \g(j, U)\UC[Xj — 1
and \g(j, U)\x^v < j ~ ι .

Order the pairs (i, U) consisting of a positive integer j and an
open neighborhood U of hull (/) by (j, U) Ξ> (i, V) if, and only if,
j ^ i and U is contained in V. With this ordering {g(j, U)} is a
net in A.

Fix a positive integer k and an ε > 0. Choose an open neighbor-
hood V of hull (/) such that \f\v < e. Then for j ^ max (k, ε"1]/!^)
and U contained in V we have, \g(j, U)f\X]c < e. Therefore
lim(i,^) \g(j, U)f\X]c = 0. Since k was arbitrary we have that g(j, U)f
converges to zero in A.

Since hull (/) is compact and X is locally compact there is an
open neighborhood W of hull (/) which is pre-compact. Since W is
pre-compact there is an integer n such that W is contained in X3 for
j ^ n. Then for (j, U) ̂  (1, W) we have 1 ̂  \g(j, U) \w ̂  \g(j, U) \Xn.
Hence, {g(j, U)} does not converge to zero in A. Therefore / is a
strong topological divisor of zero in A.

Suppose there is an integer n such that for j ^ n we have
hull (/) Π dBj = 0 . Assume {#;} is a sequence in A such that

^ (#;/) = 0. Fix a positive integer k greater than n. Let d =
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min {\f(x): x e dBk}. Since hull (/) Π dBk = 0 we have that d is greater
than zero. Now d\gi\X]c = δ\gi\dBk ^ \9%f\xk Combining this estimate
on \9i\zk with lim,- \9if\χk = 0 we have that l i m ^ l ^ = 0. Since the
only restriction on k was that k be greater than % we have that
{</;} converges to zero in A. Therefore / is not a strong topological
divisor of zero.

LEMMA 2.3. If xeX and fe A such that ker (x) = Af, then there
is an integer n such that x is not an element of dB3 for j >̂ n.

Proof Lemma 2.1 implies that / is not a strong topological
divisor of zero in A. Since Af — ker (x) we have that hull (/) = {x}.
Lemma 2.2 implies there is an integer n such that x ί dB3 for j >̂ n.

Recall that πn is the natural projection of A into Bn.

LEMMA 2.4. If x e X and fe A such that ker (x) = Af, then there
is an integer n such that B3π3(f) is a maximal ideal in B3 for j ^ n.

Proof Lemma 2.3 implies that there is an integer n such that
x is not contained in dB3 for j ^ n. We may assume, without loss
of generality, that x is contained in X3 for j ;> n.

Fix j^n. Since hull (/) Π dB3 = 0 , we have that B3π3(f) is
closed in B3. Since Af is a closed maximal ideal in A we have that
A = Af + C. Hence π3(A)π3(f) + C is dense in B3. Therefore
Bjπά(f) + C is dense in B3. Since B3π3(f) is closed in B3 we have
that Bj = B3π3(f) + C. This proves that B3π3(f) is a maximal ideal
in Bj.

The following lemma appeared in [5]. Consequently we will
merely sketch a proof.

LEMMA 2.5. If x is a point of X and x is isolated in each Xn

which contains it, then x is isolated in X.

Proof. Suppose x is isolated in each Xn which contains it. We
use Silov's idempotent theorem on the Banach algebras Bn and the
fact that the only idempotent in the radical of a Banach algebra is
zero to obtain an idempotent e in A such that e(x) = 1 and e = 0
elsewhere on X.

THEOREM 2.6. Suppose that A is a commutative uniform F-
algebra with unit and that the spectrum X of A is locally compact.
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1/ x is a nonisolated point of X and ker (x) — Af for some feA,
then there is an open subset U of X such that xeU,f maps U home-
omorphically onto an open disc Δ in C, and gf~ι is analytic on Δ
for each g e A.

Proof. Lemma 2.4 allows us to choose an integer n19 such that
BjKj(f) is a maximal ideal in Bά for j >̂ nx. Since x is not isolated
we can use Lemma 2.5 to obtain an integer n2 such that x is not
isolated in Xό for j Ξ> n2. Since X is locally compact x has a pre-
compact open neighborhood W. There is an integer nz such that W
is contained in Xj for j ^ nz.

Fix an integer k such that k ^ max (nlf n2, n3). Then Bkπk(f) is
a nonisolated maximal ideal in Bk. Gleason proved in [2] that there
is an open neighborhood Vγ of x in Xk and a disc Δf about the origin
in C such that πk(f) maps VΊ homeomorphically onto Δ', and gπk(f)~ι

is analytic on Δf for each g e Bk. Set V2 = VΊ ΓΊ TT where T7 is the
open set defined in the previous paragraph. Let Δ be an open disc
centered at the origin of C such that Δ is contained in f(V2). Set
U — f~ι{Δ) Π V2. Then U is an open neighborhood of x in X, / maps
C7 homeomorphically onto Δ, and ̂ / - 1 is analytic on A for each # e A.

COROLLARY 2.7. Suppose that A is a commutative uniform F-
algebra with unit, and that the spectrum X of A is locally compact
and has no isolated points. If every closed maximal ideal in A is
principal, then X can be given the structure of a Riemann surface
in such a way that A is topologically isomorphic to a closed subalgebra
of Hoi (X).

Proof. It follows from Theorem 2.6 that for each point x of X
we can choose fxe A and an open set Ux containing x such that fx

maps Ux topologically onto the open unit disc in C and gf~ι is analytic
on the open unit disc for each ge A. Let x and y be elements of X
such that Uxf]UyΦ 0. Then f^fς1 is an analytic map of fy(Uxf] Uy)
onto fx(UxΠ Uy). Therefore the set {fx: x e X} is a set of local coordi-
nates for X with respect to which AcHol(X).

EXAMPLE. We give an example of a nonuniform F-algebra A
such that (1) every maximal ideal in A is principal, and (2) A has
no analytic structure. Thus the restriction to uniform algebras in
Theorem 2.6 and Corollary 2.7 is essential. We note that the example
shows that Gleason's result does not extend to nonuniform .F-algebras.

Let A = C°°(R) with seminorms {|| | |J defined by |ί/| |Λ =
Σ?=o (1/H) max {\f{i)(x) \: xe [ — n, n]}. With respect to these seminorms
A is an .F-algebra. We list below some of the properties of A.



PRINCIPAL IDEALS IN F-ALGEBRAS 563

(1) A is (singly) generated by the function / defined by f(x) = x
for each xe R.

( 2) A is semisimple.
(3) Spec A = R; hence, Spec A is locally compact and connected,

but Spec A contains no discs.
(4) Every closed maximal ideal in A is principal.
Properties 1, 2, and 3 are clear. There are several ways to prove

property 4. The most elementary is to show that for any g in A
such that g(0) = 0 the function h defined by

__ iχ-ιg(χ), if x Φ 0
tflr(1)(O), if α = 0

is in A. This can be accomplished by an induction argument using
1'HospitaΓs rule and the mean value theorem. Once we have shown
h is in A we have g = hf. This shows that the maximal ideal con-
sisting of all functions which vanish at zero is Af. Clearly, a similar
argument establishes that all closed maximal ideals are principal.

3* Remarks* We have proved that Gleason's result extends to
principal ideals in uniform .F-algebras with locally compact spectra.
We have also produced an example to show that it does not extend
even to principal ideals in nonuniform i^-algebras. The obvious ques-
tion is: does Gleason's result remain valid for finitely generated ideals
in uniform commutative F-algebras with unit? At the present time
we do not know the answer to this question.
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