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HILBERTIAN OPERATORS AND REFLEXIVE
TENSOR PRODUCTS

J. R. HOLUB

This paper is a study of reflexivity of tensor products of
Banach spaces and the related topic of reflexivity of the space
£?{X, Y) (the space of bounded linear operators from X to Y
with operator norm). If X and Y are Banach spaces with
Schauder bases, then necessary and sufficient conditions for
X(g)π Y, X(g)ε Γ, and <£f(X, Y) to be reflexive are given, and
examples of infinite dimensional spaces X and Y for which
X®x Y, X(g)ε Y, and £f(X, Y) are reflexive are constructed.

In this paper we study the reflexivity of tensor products of Banach
spaces and the related topic of reflexivity of the space ^f(X, Y) (the
space of bounded linear operators from X to Y with operator norm).
In particular we study the tensor products of the classical lp and
Lp[0,1] spaces.

If a is a crossnorm on the tensor product [9, p. 9] and X®* Y
denotes the completion of the algebraic tensor product X ® Y in the
a-norπij then each of X and Y is isometrically embedded in X ® α Y.
Consequently, if X® α Y is reflexive then each of X and Y must also
be reflexive. In general the converse is not true, as Schatten [9,
p. 138] and Grothendieck [4, p. 49] have shown. We will study this
problem when a — π and a — e (i.e., for a the greatest and least
crossnorm), obtaining a complete characterization of reflexive spaces
X0π Y and X ® ε Y in the case where X and Y have Schauder bases.

In § 3 we derive a necessary and sufficient condition for X®π Y
to be reflexive in the case where X and Y have bases. As corollaries
to this result we obtain a necessary and sufficient condition for
X 0 S Y to be reflexive if X and Y have bases and we construct ex-
amples of reflexive spaces X® £ Y and X®,τ Y in which both X and
Y are infinite dimensional.

In § 4 we give a necessary and sufficient condition for the space
Jίf(X, Y) to be reflexive when X and Y have bases. Using results
of Lindenstrauss and Pelczynski on Hilbertian operators [7] we are
able to obtain another sufficient condition for the reflexivity of i^(X, Y)
when X and Y have bases and to exhibit infinite dimensional spaces
X and Y for which £f{X, Y) is reflexive.

Section 5 is concerned with the reflexivity of certain special tensor
products and with some unusual examples. A remark on bases for
tensor product spaces is also made.

Section 6 contains several unsolved problems related to the subject
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matter of the previous sections and remarks concerning their solution.

2* Notation and preliminary results* The only spaces considered
in this paper will be Banach spaces. If X is a given space we will
denote its dual space by X*. The closed linear span of a sequence
(Xi) in X is denoted by [Xi].

A sequence (x{) in X is called a basis for X (basic sequence in X)
if for each a; in I (for each x in [Xi]) there exists a unique sequence
of scalars (α*) such that x = Σί=i α;^> convergence in the norm to-
pology of X. Two bases {xτ) and {y^ for X and Y are called similar
if Σ i α^i converges if and only if Σ ; aiVi converges. Equivalently,
there exists an isomorphism T: X—> Y such that T^) = y{.

The sequence of linear functionals (/<) in X* defined by

is called the associated sequence of coefficient functionals and we denote
the basis by (#*,/»). One may show that (jQ is a basic sequence in
X* whose coefficient functionals in [/J* are similar to (x^ in X.
Hence we write (fi9 x{) is a basic sequence in X*.

A basis (xi9 fi) is called semi-normalized if

0 < i n f \\Xi\\ ^ s u p \\Xi\\ < + °° .
i i

Throughout this paper all bases will be assumed to be semi-normalized.
The notation X = Y will mean X is linearly homeomorphic (isomor-

phic) to Y, and I c Γ will mean X is isomorphic to a closed subspace
of Y. The symbol £f(X9 Y) will denote the space of bounded linear
operators from X to Y with operator norm.

We denote by X ® e Y the completion of the algebraic tensor pro-
duct X ® Y in the norm

j Xi ® 2/i = S U P
i II I I/I l^ i , feX* i = i

I Iflrl l ^ i . j e r *

and by -X"®* Y the completion in the norm

I n | | r A; A; w ϊ

V /y ^ 'ί/ ΐ n f J V I I /v' I I I I >ϊ/ I I V /*•' ^?\ 0/' — V *̂ ^ l -7/ I
2-ι^ivy yύ — m i -< 2̂-ι \\%j WWVj \\' 2LJ %j vy Vj — 2-k^ίvy t/if

The following results in the theory of tensor product spaces are
crucial to our work and will be used repeatedly throughout this paper,
often without specific reference.

(A) If M is a closed subspace of X and N is a closed subspace
of Γ, then Λf®. ΛΓe X(g)£ Γ [9, p. 35].
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(B) X* 0 e F* c (X®, F)* [9, P. 43].
(C) The space (X®* F)* is isometrically isomorphic to the space

of all continuous linear mappings from X to F* [9, p. 45].
(D) The space X* 0 e F* is isometrically isomorphic to the space

of all continuous linear mappings from I to 7* which can be ap-
proximated in operator norm by finite dimensional maps [9, p. 50].

Hence if F* has a basis, then X* 0 ε F* is the space of all com-
pact maps from X to F* [9, p. 51].

(E) If X* has a basis, then ( X 0 ε F)* - X* ® e F* [5].
(F) If fa, f) is a basis for X and (yi9 g{) is a basis for F, then

the sequence of tensors (Xi 0 ?/,,) ordered in the following way

is a basis for X®ε Y and J ® , Y and the associated sequence of
coefficient functionals is the sequence (/<®Λ ) [3].

The basis fa 0 ^ , /̂  0 ^) described in (F) is called the tensor
product of the bases fa) and {yτ), or the tensor product basis.

3. Reflexive tensor products. In this section we characterize
those spaces X 0 r Y and X 0 £ Y which are reflexive (for the case
where X and Y both have bases). We will need the following lemma
and its corollary.

LEMMA 3.1. Let (x^fi) and (yi9 g*) be bases for Banach spaces
X and Y respectively. Then the basis (α̂  0 yjy /,-0 g3) for X 0 ε Y
is shrinking if and only if each of (xif f) and (yiy g{) is shrinking.

Proof. It follows trivially from the fact that every subsequence
of a shrinking basis is shrinking that if (Xi 0 y3) is shrinking then
each of fa) and (y^ is also shrinking.

Conversely, if fa, f^ and (yif g{) are shrinking, then by definition
(fi) is a basis for X* and (g{) is a basis for Y*. It follows that
(A Θ 9j) is a b a s i s f o r ^ * ®, y* = (X®* Y)* (by (E) in § 2), and by
definition fa 0 yi9 f 0 #y) is shrinking.

COROLLARY 3.2. Let fa,fi) and (yi9 gt) be bases for X and Y
respectively. Then the basis fa 0 yj9 f 0 gά) for X<S)πY is boundedly
complete if and only if each of fa) and (yt) is boundedly complete.
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Proof. As in 3.1, if (Xi ® y3) is boundedly complete it follows
trivially that each of (cc*) and (y^ is boundedly complete.

Conversely, if ($<) and (y^ are boundedly complete then the as-
sociated sequences of coefficient functionals (/<) and (gt) are shrinking.
Hence by Lemma 3.1 (/< ® #,•) is a shrinking basis for [f] ®£ [f/J c
(X®* F)*. But then (Xi<S) Vj, fi<g> gj) is boundedly complete.

We can now state and prove the main result of this section.

THEOREM 3.3. Let X and Y be reflexive Banach spaces with
bases. Then X(£)π Y is reflexive if and only if every continuous
linear map T: X—> F* is compact.

Proof. Let (xiy f) and (yi9 g%) be bases for X and Y respectively.
Then by the result of James [6] (/*) is a basis for X* and (g^) is a
basis for F*.

Suppose X®π Y is reflexive. Then the basis (x{ 0 yj9 f (g) g3) is
shrinking, implying that (/»® ^ ) is a basis for ( I ® , 7)*. Now
since (f^Qj) is also a basis for [/*] (g)e [&] =-3Γ* ®e F*, a closed
subspace of (X®, F)*, it must be that X* (g)ε F* and (X(g),τ F)*
coincide. It then follows from the results of Schatten ((C) and (D) of
§ 2) that every T: X-> F* is compact.

On the other hand, if every T: X—> F* is compact then reversing
the above argument we have that X* (g)e F* and (X®Γ F)* coincide
so (/<®^j), being a basis for X* ® e F*, is a basis for (X®<τ F)*.
That is, the basis (x^ ® ̂  for X ®ff F is shrinking. By Corollary
3.2 this basis is also boundedly complete, and it follows from the
theorem of James [6] that X(g)r Y is reflexive.

In order to use Theorem 3.3 to obtain a characterization of re-
flexive spaces I ® £ F we will need the following simple lemma.

LEMMA 3.4. Let X and Y be reflexive Banach spaces with bases.
Then -X*®£ F is reflexive if and only if X* ®.τ F* is reflexive.

Proof. By (E) of §2, (X(g)ε F)* = X* (g)(T F*. The lemma is
now immediate since a Banach space is reflexive if and only if its dual
is reflexive.

COROLLARY 3.5. Let X and Y be reflexive Banach spaces with
bases. Then X(ξ)ε Y is reflexive if and only if every continuous linear
map T: X* —•> Y is compact.

Proof. By Lemma 3.4, X(g)ε F is reflexive if and only if X* (g)r F*
is reflexive. But since X* and F* each have bases, it follows
from Theorem 3.3 that X* (g)π F* is reflexive if and only if every
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T: X* -* (Γ*)* = Y is compact.
Using Theorem 3.3 and Corollary 3.5 it is now easy to give ex-

amples of reflexive tensor products in the ε and π topologies. Of
course, if either X or Y is finite dimensional and the other has a
basis, then both -3Γ®<T Y and X ® ε Y are reflexive. Less trivially, we
have the following two propositions.

PROPOSITION 3.6. Let 1 < p, r < + 00. Then lp (g)ff i
r is reflexive

if and only if p > r/r — 1.

Proof. By Theorem 3.3 ϊp ®^ ir is reflexive if and only if every
continuous linear mapping T: lp —> ί*7*"""1 is compact. However this last
is true if and only if p > r/r — 1 by a theorem by Pitt [8] (see also
[1]).

PROPOSITION 3.7. Let 1 < p, r < + 00. 7%ê  lp(&εl
r is reflexive

if and only if p/p — 1 > r.

4* Hilbertian operators and reflexive spaces ^(X, Y)* Our
first result in this section characterizes those spaces X and Y with
bases for which <^(X, Y) is reflexive.

THEOREM 4.1. Let X and Y be reflexive Banach spaces with
bases. Then Sf{X, Y) is reflexive if and only if every continuous
linear map T: X—> Y is compact.

Proof. As Schatten has shown ((C) of § 2),

, y*>* - sf{x, Y**) = JZT(X, Y).

But (X(g)z Y*)* is reflexive if and only if X ® , Γ* is reflexive.
Therefore it follows from Theorem 3.3 that S^f(X, Y) is reflexive if
and only if every continuous linear map T: X—> F** = Y is compact.

An immediate consequence of Theorem 4.1 is

COROLLARY 4.2. Let 1 < p, r < +00. Then J2f(lp, lr) is reflexive
if and only if p > r.

Proof. By Pitt's theorem [8], every T:lp-+lr is compact if and
only if p > r. Apply Theorem 4.1.

Recall that a mapping T: X—> Y is called Hilbertian [7] if there
exists a Hubert space H and mappings T2X—>H, T2: H-* Y for which
T= T2T,.

THEOREM 4.3. Let X and Y be reflexive Banach spaces with
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bases such that every continuous linear map T: X —> Y is Hilbertian
and at least one of the following holds:

( i ) every S: X—>12 is compact.
(ii) every S: i2—• X is compact.

Then <2f{X, Y) is reflexive.

Proof. Let Te£f(X, Y). Then since T is Hilbertian, T= T2T,
(where T2 and Tx are as above). If (i) holds, then since the range of
T1 is contained in a separable subspace of a Hubert space H we must
have T7!, and therefore T, is compact. By Theorem 4.1 £f(X,Y) is
reflexive.

A similar argument establishes the result if (ii) holds.
An immediate consequence of Theorem 4.3 and Pitt's theorem is

COROLLARY 4.4. Let 2 < p < +oo and let X be a reflexive Banach
space with a basis such that every T: lp —> X is Hilbertian. Then
£^ψ, X) is reflexive.

Similarly we have

COROLLARY 4.5. Let 1 < p < 2 and let X be a reflexive Banach
space with a basis such that every T: X—*lp is Hilbertian. Then

, lp) is reflexive.

Lindenstrauss and Pelczynski have proven the following deep result
[7]:

// X is an J?fp-space [7] with 2 ^ p fg + oo and Y is an £fr-
space with 1 <[ r fj 2, then every T: X'—> Y is Hilbertian.

Since every Lp(μ) space is an £f p-space [7], we obtain the follow-
ing corollaries of 4.4 and 4.5.

COROLLARY 4.6. Let 2 < p < + oo and 1 < r g 2. Then

£^ψ, L'[0, 1])

is reflexive.

COROLLARY 4.7. Let 1 < p < 2 and 2 ^ r < + co. 2 7 ^

j^(Z/[0, 1], Z*)

is reflexive.

As a consequence of the above corollaries and Theorems 4.1, 3.3,
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and 3.5, we have

COROLLARY 4.8. Let 2 < p < + °° and 1 < r ^ 2. Then

l^-1 ®. 2/[0, 1]

and lp (g)* i/^-1 [0, 1] are reflexive.

COROLLARY 4.9. Let 1 < p <2 and 2 ^ r < + oo. Then

LrIr-ι[0,1] <g)ε l
p

and Lr[0, 1] (g)̂  lplp~1 are reflexive.

5* Some special tensor products* The purpose of this section
is to show that certain types of tensor product spaces can never be
reflexive. We also make some comments on tensor product bases.

Our first results are a consequence of the theorems of § 3.

PROPOSITION 5.1. Let X be a reflexive infinite dimensional Banach
space with a basis. Then neither X§QπX* nor X ® ε X * is reflexive.

Proof. Neither the evaluation map J: X—*X** nor the identity
map I: X* —• X* is compact. Hence by Theorem 3.3 and Corollary
3.5 neither X®πX* nor X<$ξ>βX* is reflexive.

Somewhat surprisingly, the tensor product of Hubert spaces is
not reflexive.

PROPOSITION 5.2. Let jEZi and H2 be infinite dimensional Hilbert
spaces. Then neither Hι ® ε H2 nor Hι §§π H2 is reflexive.

Proof. Clearly I2 c H, and V c H2. Therefore I2 ® ε I
2 c H, <g), H2.

But by Corollary 3.5, I2 (g)e I
2 is not reflexive and it follows that fli ® ε H2

cannot be reflexive.

Now Ht <g)β H2 = H* ® ε Hf, and H* (g). H* c ( ^ (8)s Jϊ2)*. It
follows that {H1§§KH%Y, and hence H^ (g)π H2, is not reflexive.

(Proposition 5.2 was proved by Grothendieck in a different manner
[4, P. 49]).

In light of 3.6, 3.7, 4.8, and 4.9 the following proposition is
interesting.

PROPOSITION 5.3. Let 1 < r < +oo and 1 < s < +oo. Then
Lr[0, 1] (g)β Z/[0, 1] cmd Lr[0, 1] (g), L8[0, 1] are noί reflexive.
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Proof. It is well known that I2 c Lp[0,1] for all 1 < p < -f oo
[7]. Hence I2 <g)e I

2 c Z/[0,1] (g)£ L
3[0, 1] for all 1 < r < + oo, l < s <

+ oo and by Proposition 5.2 Lr[0,1] ® e L
β[0,1] is not reflexive.

Now since Lr[0, 1] and Ls[0, 1] each has a basis,

L'[0, 1] (g), Ls[0, 1] = [ L ^ f O , 1] <g)β L ^-^O, 1])* .

Therefore it follows from the above consideration that

Z/[0, 1] <g)r Z/[0, 1]

is not reflexive.

PROPOSITION 5.4. Let X be a reflexive space and Xx a subspace
of X having a basis. Then Xx Cξ);T X* is not reflexive.

Proof. Suppose X ^ X * is reflexive. Then ( X ^ X * ) * is re-
flexive, and since X* ® 6 X1 c X* (g)β X** c (X: ®.τ X*)* this implies
that Xx ® ε Xi* is reflexive, a contradiction to Proposition 5.1.

COROLLARY 5.5. Let Xbe a reflexive infinite dimensional Banach
space. Then there exists an infinite dimensional reflexive space Y
such that Yξ2)εX is not reflexive.

Proof. By a result of Gelbaum [2] the space X contains a basic
sequence (#*). Let Y= [a?*]*. Then if F(g)eX were reflexive,
[^](g),X* - [Xi]**®xX= ([Xi]*®eX)* = (Γ(g)εX)* would be reflexive,
a contradiction to Proposition 5.4.

The usual bases studied in tensor product spaces I ® , Y are the
so called "tensor product bases" of Gelbaum and de Lemadrid [3],
i.e. bases of the form (xτ 0 y3) where (α̂ ) is a basis for X, (τ/, ) is a
basis for Y, and the sequence (#f 0 τ/y) is ordered according ίo (F) in
§ 2. For a large class of spaces we can prove the existence of bases
which are not of this form.

PROPOSITION 5.6. Let X and Y be reflexive spaces with bases
such that I ® £ Y is not reflexive. Then X£χ)ε Y has a basis which
is not a tensor product (x{ ® y3) of bases (Xi) in X and (y^) in Y.

Proof. Since X and Y are reflexive, every basis in X and every
basis in Y is shrinking. By Lemma 3.1 every tensor product basis is
shrinking in X ® ε Y. Therefore if every basis for I 0 e 7 was a
tensor product basis, every basis would be shrinking and X ® e Y
would be reflexive [10], a contradiction.
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In particular, according to Proposition 5.3, the spaces Lr[0.1] (g)ε

Ls[0,1] have such bases.
We remark that Proposition 5.6 remains true if e is replaced

by π since if every basis for a space with a basis is boundedly com-
plete, then the space is reflexive [10]. Apply Corollary 3.2.

In particular, the spaces Lr[0,1] ® r L
s[0,1] have bases which are

not tensor product bases.

6* Unsolved problems*
I. Do there exist infinite dimensional reflexive spaces X and Y

such that both X ® ε Y and X ® Γ Y are reflexive?
II. Do there exist infinite dimensional reflexive spaces X and Y

such that ύf(X, Y) and £?(Y, X) are reflexive?
According to Theorem 4.1, if each of X and Y has a basis this

problem is equivalent to the problem:
IΓ. If every T: X— Y and every S: Γ-> X is compact (S and T

bounded linear operators), must one of X or Y be finite dimensional?
This question, for arbitrary Banach spaces X and Y, has been asked
by Pelczynski at the Sopot Conference.

III. Does there exist an infinite dimensional reflexive space X such
that X(g)eX* or X<8KX* is reflexive?

(We have shown in Proposition 5.1 that the answer is "no" if X
has a basis. Therefore a positive answer (which is unlikely) for
separable X would settle the "basis problem").

The author wishes to thank Professor Retherford for his help and
encouragement in the preparation of this paper.
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