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INVARIANT SUBSPACES AND PROJECTIVE
REPRESENTATIONS

KEITH YALE

Let Γ be a subgroup of the real line R with the discrete
topology, and let G be its compact dual group. This paper
shows the existence of a (nontrivial) simply invariant sub-
space of L\G) which is not of the form φH2{G) provided Γ
contains at least two rationally independent elements. The
proof relies heavily on the existence of a nontrivial local
projective representation of the two-dimensional torus.

Helson and Lowdenslager [4] showed the existence of a simply
invariant subspace not of the form φH2(G) in case Γ contains an in-
finite set of rationally linearly independent elements. We use the
correspondence introduced in [4] between simply invariant subspaces
and cocycles but in contrast to [4] we use nontrivial local projective
multipliers to show that the appropriate cohomology group is nontrivial.

The connection between invariant subspaces and cocycles is discussed
in § 2 and in § 3 we will give a quotient group argument which allows
us to reduce the general problem to its specialization on the two-dimen-
sional torus. Sections 4 and 5 relate the notion of projective repre-
sentation with a cocycle and it is shown that a nontrivial projective
representation gives rise to a cocycle whose corresponding subspace is
not of the form φH\G).

2. Preliminaries* Let G be an arbitrary locally compact Abelian
group dual to Γ and let A be a continuous one-parameter subgroup of
G which we also denote by {et\t in R}. Haar measure in G will be
denoted by dx and will be normalized to have total mass one in case
G is compact. As usual, a.e. (x) means for all but a set of Haar
measure zero. A (Borel) function φ on G is said to be unitary in
case φ(x) has modulus one a.e. (x).

DEFINITION. A function A on A x G is said to be a cocycle on G
in case:

(2.1) A(et, ) is a unitary function for each et in A,

(2.2) A(et + eu, x) = A(eu, x)A(et, x — eu) for all et, eu in A

and a.e. (x), and

(2.3) A is strongly continuous in the sense that A(eu )f

is a continuous function from R into L2 = U(G) for / in ZΛ
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Cocycles of the form

(2.4) A(eu x) = φ(x)/φ(x - et), all et in A, a.e. (x)

for some unitary function φ are called coboundaries. We will frequently
denote A(etJ x) by A(t, x).

If λ is in Γ we let χ ; be the character on G defined by χλ(x) =
x(X) for all x in G; the corresponding unitary representation Vo of Γ
is given by

(2.5) V0(x)f(x) = χλ(x)f(x)

for all / in ZΛ Any bounded operator on L2 which commutes with
all the yo(λ) is necessarily a multiplication by a function in L°°. Let
C/o be the unitary representation of G defined by

(2.6) UQ(x)f(y) = f(y - x)

for all / in U.
For the remainder of this section we will let Γ be a subgroup of

the real line R. Let G be the compact Abelian group dual to the
discretely topologized Γ. A closed subspace ^£ of U is said to be
simply invariant in case F 0 (λ)^f C ^ Γ if and only if λ ^ 0. The
Hardy space H2 consists of those functions / in U whose Fourier

transforms /(λ) = I χ_λ(x)f(x)dx vanish for λ < 0. Subspaces of the

form ,,/ί — φH2 = {φf: f in H2} where φ is a unitary function are
simply invariant and in the case where G is a circle all simply invariant
subspaces are of this form.

In order to avoid the rather special circle group we will henceforth
suppose that Γ is dense in R. The characters et defined by et(X) =
exp (itX) are distinct and provide a continuous one-parameter dense
subgroup A of G. A correspondence is exhibited in [3, 4] between
simply invariant subspaces ^ (suitably normalized) and cocycles A
in such a way that _ ^ = φH2 if and only if A is the coboundary (2.4).
We therefore wish to construct cocycles which are not coboundaries.

If A is a coboundary then A can be extended from A x G to G x G
so that (2.4) remains valid with t replaced by an arbitrary y in G and
conversely. Moreover, the multiplication operator A(y, ) is the strong
operator limit of a sequence A(tn, ) where eίn tends to y in G; this
observation will be useful later. Equivalently, A is a coboundary if
and only if the unitary representation U(t) — A(t, ) U0(t) can be ex-
tended from A to a (strongly continuous) unitary representation of G.
A cocycle was constructed in [4] (in case Γ is suitably large) for
which the unitary representation did not extend to G. However, it is
conceivable that U(t) might extend to a (local) protective representation
of G; this idea is turned around and will be used to extract cocycles
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from projective representations.
There is a superficial answer to our problem in case Γ is not all

of R for then there are trivial cocycles which are not coboundaries.
For example, let A(t, x) = exp ( — itX) for some fixed real λ not in Γ.
If λ were in Γ then A would be the coboundary with unitary function
χλ but with λ not in Γ there is no unitary function φ such that
exp (~itx) = φ(x)/φ(x — et). Conversely, if A is a cocycle which is
constant a.e. (x) for each t (the null set depending upon ί), then
A(t, x) = exp ( — ίίλ), a.e. (x) for some fixed λ in R. We will call
cocycles of this form constant cocycles. Consequently the nontrivial
problem [3, p. 149] is to find cocycles which are not products of con-
stant cocycles and coboundaries.

The cocycles defined in [3] were measurable functions on A x G
but we will have no need for cocycles to be product measurable. Any-
way, one can pass from one version to another [3, p. 145], [2], Also
we have departed from [3] by making an insignificant sign change in
our definition of cocycle.

3* Reduction to the torus* Suppose that Γ0Q Γ are subgroups
of the discrete real line and let Go and G be their compact dual groups.
To each cocycle AQ on Go we will associate a cocycle A on G in such
a way that if A is the product of a constant cocycle and a coboundary
then so is AQ. Since the two-dimensional torus T2 is dual to the group
of lattice points Z2 and Z2 is isomorphic to a subgroup ΓQ g Γ of any
group Γ ϋ R with at least two independent elements it will be suffi-
cient to construct a cocycle on T2 which is not the product of a con-
stant cocycle and a coboundary.

Define a closed subgroup H — {x in G\χλ(x) — 1 for all λ in Γo] of
G so that GQ can be identified with G/H. Let π be the usual quotient
map from G onto G/H and let et and εt be the previously defined one-
parameter groups A and Ao in G and GQ. One can verify π(et) = st by
noting that et is the restriction of et from A to Λo.

If Ao is a cocycle on Go we define a cocycle A on G by

(3.1) A(et, x) = Ao(6t, π(x))

for all (et, x) in A x G.
For each t in R the measurable function il(et, ) on G is certainly

unitary because π-^S) is a null set in G whenever S is a null set in
G/H. The cocycle identity (2.2) is easy enough to verify with the aid
of π(et) = εt so all that remains is the strong continuity.

Let the Haar measures dx and dx0 in G and G/H both be nor-
malized to have total mass one. There is a normalization for the Haar
measure dξ on H such that
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(3-2) ί f(χ)dx =\ (\ f(x + ξ)dξ)dast

JG JG/H \JH J

for all / in L\G).
Let / be in U{G) and put

= \ \f(x + ξ)\2dξ

where xQ = π(x). A straight-forward computation with (3.2) shows that
A(eu )f moves continuously in L2(G) as t varies because A0(et, )V g
moves continuously in L2(G/H).

THEOREM. // A is the product of α constant cocycle and a co-
boundary then so is Ao.

Proof. For some constant cocycle C and some unitary function φ
on G we have

C(t)A(t, x) = φ(x)/φ(x - et)

for each real t and almost all x.

It is advantageous to normalize by choosing λ in R such that

I Xχ(x)φ(x)dx does not vanish and putting ψ — χλφ. The cocycle B —

XxCA is really the coboundary.

(3.3) B(t,x) = ψ(x)/ψ(x - et)

and we have Bo = χλCA0. Consequently it is sufficient to show that
BQ is a coboundary and we will do this by arguing that ψ must be
constant on cosets of H.

Since B(t, x) = B0(t, π(x)) it follows that B(t, x) = B(t, x + h) for
all real t and all (x, h) in G x H. Now the coboundary B can be ex-
tended to G x G and, in fact, B(y, ) is a limit in L2(G) of a sequence
B(tn, ) where etn goes to y in G. Therefore, passing to a subsequence
if necessary, B(tn, x) tends to B(y, x) for almost all x and we can
conclude

(3.4) B(y, x) = B(y, x + h)

for all y in G, h in H and almost all x in G.
From (3.3) (valid now for t replaced by any element in G) and

(3.4) we have

(3.5) ψ(x + ξ) = B(h, x)f(x + ξ-h)

for every ξ in H and almost all x in G. Integrating this last expres-
sion with respect to Haar measure dζ on H we find
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ί Ψ(x + ζ)dζ = B(h, x) \ f(x + ζ)dξ .
JH Jll

Now I ψ(x + ζ)dζ does not vanish since I ψ(x)dx is not zero (consider
JH JG

(3.2)) and so we may conclude B(h, x) = 1 for all h in H and almost
all x in G.

It follows from (3.5) that ^ is constant on cosets of H and so we
can define a unitary function ^ 0 on G/H by ΨQ(π(x)) = ψ(x). Clearly
Bo is a coboundary determined by ψQm That completes the proof.

4* Projective representations and projective cocycles* Let G
be a locally compact Abelian group. A strongly continuous function
U from G into the unitary operators on some Hubert space is said to
be a projective representation if

(4.1) U(x) U(y) = ω(x, y) U(x + y)

for some function ω of modulus one and if £7(0) = 1. We say that ω
is the multiplier of the representation and it is not difficult to show
that it satisfies the identity ω(x, y)o)(x + y, z) — ω(y, z)ω(x, y + z) and
the normalizing condition ω(x, 0) = o)(0, x) = 1. Moreover, ω is con-
tinuous on G x G. Conversely, given a function ω with these pro-
perties one can construct a projective representation Uω with multiplier
ω. Indeed, define Uω on L2 by

(4.2) Uω(x)f(y) = ω(x, y - x)f(y - x) .

The projective representation Uω is of the form

(4.3) Uω(x) = Aa(x, ) U0(x)

where Aω(x, y) = ω(x, y — x) is a function of modulus one on G x G.
The (projective) group property of Uω implies that

(4.4) ω(x, y)Aω(x + y, z) = Aω(x, z)Aω(y, z - x)

and the strong continuity of Uω implies that AJx, ) is a strongly
continuous operator valued function in x.

Observe that Aω differs from the ordinary cocycle (§ 2) in two
respects; first, Aω is a function on G x G instead of merely on A x G,
and, secondly, (4.4) replaces (2.2). We say that Aω is a projective
cocycle.

We say that ω is trivial if

(4.5) ω(x, y) = p(x)p(y)/p(x + y)

for some continuous function p of modulus one on G. In this case any
projective representation U with multiplier ω can be made into an
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ordinary representation merely by multiplying U(x) by p(x). The pro-
duct of two multipliers is again a multiplier and two multipliers whose
quotient is trivial are said to be equivalent.

If ω and σ are equivalent multipliers so that

(4.6) ω(x, y)/σ(x, y) = p(x)p(y)/p(x + y)

then a direct computation will give

(4.7) Aω(x, y)/Aσ(x, y) = p(x)(<p(y)/<p(y - x))

where φ{y) = l/p(y). In particular if ω is trivial then Aω is p times
a coboundary and conversely.

Now suppose that G has a continuous one-parameter subgroup
A = {et ί t e R} and let Aω be a projective cocycle on G with ί7ω the
corresponding protective representation as given by (4.3). We wish
to extract an ordinary cocycle A from Aω in such a way that A will
not be the product of a constant cocycle and a coboundary if ω is a
nontrivial multiplier.

Restrict Uω to A so that it is a protective representation of the
reals. It follows that (see the last paragraph of this section) Uω is
equivalent to an ordinary representation U given by

(4.8) U(et) = p(et)Uω(et)

where

(4.9) ω(et, eu) = p(et)p(eu)/p(et + eu)

for some continuous function p on A and for all et, eue A. Observe
that U satisfies the Weyl commutation relation

(4.10) U(et) F0(λ) = χλ(-et) F0(λ) U(et)

because Uω does.
Consequently the operator U(et) U0( — et) commutes with all the

V0(λ) so that

(4.11) U(et) = A(et, )U0(et),eteΛ ,

for some ordinary cocycle A.
From (4.8) and (4.11) we see that

(4.12) A(et, x) = p{et)Aω{et, x)

for all eteA and a.e. (x).
We say that A is the cocycle induced by Aω; it is uniquely de-

termined up to a constant cocycle factor. If A is the product of a
constant cocycle eitλ and a coboundary φ(x)/φ(x — et) then (4.12) and
(4.7) imply that ω is trivial.
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This analysis will have to be refined to yield the desired result
on the torus T2 for T2 has no nontrivial multipliers. However, there
are £n(n — 1) + 1 inequivalent local multipliers on Tn or Rn as shown
by Bargmann [1] and local multipliers are sufficient for our purposes.
Notice, in particular, that R has no nontrivial local projective repre-
sentations.

5* Local multipliers and cocycles on T2. A local projective
multiplier ω on the torus T2 is a continuous function on some neigh-
borhood ^V x ^4r of the identity in T2 x T2 which satisfies the same
functional equation and normalizing condition as a multiplier whenever
x, y and x + y belong to ^V. Unfortunately (4.3) cannot be used to
define a local projective representation Uω, or, equivalently, a local
projective cocycle Aω. We must resort to an ad hoc construction of
Uω starting from a specific nontrivial local projective multiplier ω.
We can then extract a cocycle from Uω in much the same manner as
in § 4 and it is a matter of detail to prove that A is not the product
of a constant cocycle and a coboundary.

Let T2 be realized as the square [ — π, π] x [ — π, π] with the op-
posite edges identified and let ^V be the open neighborhood ( — π, π) x
( — π, π) of the identity. For a one-parameter subgroup A we will
take the familiar winding line with irrational slope a.

Define ω on Λ^ x ^A^ by

o)(x, y) = exp i((x2 - axjy, ~ (y2 - ayjxj
(̂ •-1) ., v

= e x p ι(x2y1 - y2x1)

w h e r e x = (x19 x2), y = (y19 y2) w i t h —π<xi,yi< π. T h i s is t h e c a n o -
nical example of a nontrivial local projective multiplier on T2 [1].

Since the complement of <yf/" is a null set we can regard ω(x, )
as a unitary function on T2 for each fixed x e ^K Now put Aω(x, y) =
ω(x, y — x) whenever x e ^Y* and y e ^V + x. Then Aω(x, ) is a
unitary function on T2 for each fixed x e Λ^ (the exceptional null set
depends upon x). For xeΛ^ we define the unitary operator Uω(x) by

(5.2) Uω(x) = Aω(x, )U0(x).

It is easily verified that Uω is a strongly continuous operator valued
function on ΛΊ

We will now extract a cocycle A from Aω even though Aω{x, )
is not defined for all x. The discussion parallels that of § 4 and will
only be given in outline.

Let Aγ denote the connected segment of A ΓΊ ^ίr (relative to the
ordinary real line topology on A) which contains the identity and
choose a proper segment Ao of Λι such that O e Λ g Λ + Λ S A
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For x, y e Λo, Uω satisfies (4.1) so that Uω is a local projective re-
presentation of the reals. Consequently Uω is equivalent to a local
ordinary representation U\ this means that equations (4.8) and (4.9)
hold for some continuous function p on Λx (say) and for all et, eue Λo.
The local representation U can be extended to a representation U
(keeping the same notation) of A [5, Th. 63] which must satisfy the
Weyl commutation relation (4.10). Exactly as before we have U(et) =
A(et, )U0(et),eteΛ, for some ordinary cocycle A. We say that A is
the cocycle induced by Aω; notice that

(5.3) A(et, x) = p(et)Aω(et, x)

holds only for eteΛQ, a.e. (x).
We will now show that A is not the product of a constant cocycle

C and a coboundary. If, on the contrary, A is such a product, then

(5.4) Aω{et1 x) = p(et)(φ(x)/φ(x - et))

holds for all et e Ao, a.e. (x) where we have relabeled the continuous
function C/p on Λx by p. In terms of the unitary operators Uω and
U(y) = (φ( )IΨ{ - y))U0(y),yeT\ equation (5.4) becomes Uω(et) =
p(et) U(et) for all et e Λo.

We wish to extend p from ΛQ to A Π ̂ V in such a way that (5.4)
remains valid. A continuity argument will then enable us to extend
p from A Π <yΫ" to .^Γ and this will imply that co is trivial.

To extend p from Λo to Λ Π ̂ 4r let ?/ e Λ n ^ ^ so that 7/ e Jί^o =
{Met\et e ί̂0} for some integer Λί > 0. Thus βt = |/Me ΛQ and suppose,
for the moment, that net e ^V* for all n ^ M. Then

= U(Met) = (U(et))M

= (p(et)Uω(et))M

= [(P(^))M Π £ ι ω(βίf (M - k)et)] Uω(y)

and we can define p(y) to be the value of the expression in the brackets
which obviously is independent of the representation y = Met.

This definition of p(y) is valid whenever (M — k)et is in the domain
of ω(et, ), i.e., whenever nete<yV" for all 0 ^ n ^ M. For each Λf
there are only finitely many y e MΛ0 such that net 0 ^V for some 0 ^
n ^ M. For these exceptional values we can define p(y) by continuity
(relative to the usual real line topology on Λ) so that

(5.5) U(y) = p(y)Um(y)

holds for all ye Ad ^V] or, equivalently, so that (5.4) holds for all et

in A n ^K
To extend p from A n ^<^ to ^V we need only note that A Π ^x^

is dense in ^K Let /̂ e ~V* and choose a sequence yn e A Π ̂ f" which
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converges to y. Hence p(yH)I = U(yn)Uω(—yn) tends strongly to

U(y)Uω(-y)

and this limit must be of the form p(y)I. Alternately, U(y)Uω{—y)
is a multiple of the identity for each y in Λ" because it commutes
with all bounded operators when y varies over a dense subset of
Λ Π ̂ Vl We have now constructed a continuous function p on ^Y*
such that (5.5) holds for all y in <yK Since Uω is a nontrivial local
protective representation of ^/K this is a contradiction. Hence the
induced cocycle A cannot be the product of a constant cocycle and a
coboundary. That completes the proof.

An interesting question remains. If A is a cocycle on T2 can one
find a local protective cocycle Aω which induces A1 An affirmative
answer should enable one to settle some of the open function theoretic
questions on T2.

The author gratefully acknowledges useful conversations with
Professors F. Forelli, J. E. Gilbert and H. Helson.
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