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DIVISOR CLASSES IN PSEUDO GALOIS EXTENSIONS

WiLLiaAM C. WATERHOUSE

Let R be a Krull domain with fraction field K. Let L
be a finite extension of K, and let S be the integral closure
of R in L; then S is also a Krull domain, Let Z#(R,S) be
the group of divisor classes in K becoming principal in S.
Suppose there is a group scheme (or Hopf algebra) acting on
S with fixed ring E. Then there is a cohomology group which
contains (R, S) and equals it if the action is Galois at each
minimal prime, This generalizes and unifies some results of
Samuel.

1. Definition of the cobhomology group. Let E, K, L and S be
as above. Let H be a cocommutative Hopf algebra over R, with 4, ¢,
and p its comultiplication, counit, and coinverse. One calls S an H-
module algebra [9, p.207] if it has an H-module structure such that
h-1=¢(h) and h- (ss') = > (h; - s)(hi-s’) where d(h) = D h,Qhl. We
say that R is the fixed ring in S if

R ={seS|h-s=¢e(h)s for all he H}.

In this case L is naturally an H-module algebra with fixed ring K.

Suppose now S is an H-module algebra with fixed ring R, and
consider the set

{beL*|b'(h-b)e S for all he H}.
This is a group under multiplication: if b and ¢ are in it, we have
(be)"h e (be) = >, (b7'h; - b)(c TR - ©)
and
(o= 6790 = 3 Ry - [b7'(0R:) - b] .

It contains S* and K* as subgroups. We write H°(H, L*/S*) for its
quotient by S*, and «(H, S) for the quotient by S*K*. Note that
hi—b"*h - b defines a function H — S; it is easy to check that b and
¢ give the same function if and only if b¢™ is in the fixed ring K,
and hence we can also view & as these functions modulo the functions
coming from units be S*.

PROPOSITION 1. Assume S is an H-module algebra with fized ring
R. Then there is a canonical injection

FR,S)—<H,S) .
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Proof. Let D be a divisorial ideal of R with div (DS) principal,
say = bS. Let P be a minimal prime of R, and choose » € K with
ord, r = ord, D; then bS, = »Sp. For any he H we have

h'beh”rSlerh’Spg’rSP:bSP,

and hence b~ -bec NS, = S. The element b is well determined up
to multiplication by an element of S*, and thus we have a map (ob-
viously a homomorphism) from such ideals D to H°(H, L*/S*). Since
div (DS) = S implies D = R, the map is injective. Divide now by K*
in both places.

One can define [9] a sequence of cohomology groups H*(H, S*).
In that theory H'(H, S*) consists of certain equivalence classes of
functions H — S; it maps naturally to H'(H, L*), and the kernel
comprises functions of the form A+ b~k - b. Under our hypotheses also
H(H, S*) = R* and H°H, L*) = K*. Thus our group H°(H, L*/S*)
fits into an exact sequence, and £ (H, S) is its image in H'(H, S*).

Suppose that G is a group, H = R[G]. To make S an H-module
algebra is simply to let G act as R-algebra automorphisms of S. The
definition of fixed ring is then the usual one, and H°(H, L*/S*) is the
subset of L*/S* fixed by G. In addition [9, p.211], the cohomology
H'(H, S*) is naturally isomorphic to H'(G, S*).

Suppose on the other hand that H is the polynomial ring R[X],
with 6(X) = XR1+ 1R X,eX) =0, and o(X) = —X. Then an H-
module algebra structure is given by an R-linear derivation D: S— S
(where Ds = X -s). The fixed ring is {s|Ds = 0}. The values b~'h - b
are determined by b—'Db, and all lie in S if this one does; hence
«”(H, S) can be identified with the logarithmic derivatives Db/b lying
in S, modulo the logarithmic derivatives of elements of S*. Thus it
is the group introduced by Samuel in [7, p.86], and our formalism
unifies the two separate theories he presents. We could similarly
take a finite set of derivations, let H be an enveloping algebra for
them, and get the group used in [10] and [11]. (The paper [11] con-
tains a different connection between Samuel’s group and cohomology,
but it appears to be ad hoz rather than natural.)

Suppose that H is finite, i.e., a finitely generated projective R-
module; this is the most important case. Let A = Hom (H, R) be the
linear dual, a commutative Hopf algebra. Making S an H-module
algebra is then the same thing as giving an algebra homomorphism
0:S— A@;, S suitably compatible with the comultiplication and counit
of A (cf. [5, p.33]); in geometric language, this is an action of the
finite group scheme Spec A on Spec S over Spec R. In these terms

@ (H, S) = {o(B)b|be L*, o(b)b~ e (A ® S)*}/S* ;
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the group H'(H, S*) is the quotient by S* of the equalizer of two
homomorphisms from (4 ® S)* to (A® A® S)*, and so on. One could
phrase all the results equally well in terms of A, and I have used H
only because it is closer to the language used in the literature.

2. Conditions for isomorphism. Assume S is an H-module
algebra with H finite. We say that S with this structure is Galois
if the following equivalent conditions hold [5, p. 66]:

(I) S is a finitely generated projective R-module, and the map
H®:S—End,; S given by 2 ® s, [s+ sk + 8] is an R-module iso-
morphism. 4

(II) S is a faithfully flat R-module, and

(0,1Q1ds): S@r S —> A@r S

is an R-algebra isomorphism. In geometric language, this says [6, p.
27] that Spec S is a principal homogeneous space for Spec A. It im-
plies that R is the fixed ring.

PROPOSITION 2. Suppose H 1s finite. If L is Galois as an
H®r K-module algebra, then

@ (H, S) = H\(H, 8*) .

Proof. This will follow if we show that H'(H, L*) = 0. But it
is easy to see from the definition (cf. end of §1) that this group equals
HYHQ K, L*), which since the structure is Galois equals [9, p. 219]
the Amitsur cohomology H'(L/K, G,); this is 0 by the generalized
Hilbert Theorem 90 [1, p. 96 or 6, p.15].

THEOREM 1. Assume S is an H-module algebra with H finite.
The following are equivalent:

(i) For all minimal primes P of R, the Hp-structure on S, is
Galois.

(ii) R 1is the fized ring, and for all minimal primes P of R
the Hp/PHp-structure on Sp/PSp is Galois.

(ili) R s the fized ring, and for all minimal primes P of R
the map

S,/PS; ® Sp/PS, — Au/PA, ® S»/PS,

s an 1somorphism.

(iv) The map SQS—ARS is a pseudo-isomorphism [in the
sense that its R-module kernel and cokermel vanish when localized to
any minimal prime]. These conditions imply

(v) R is the fixed ring, and the map H®S—End, S is a
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pseudo-isomorphism; they are equivalent to it if we assume either R
Noetherian or S a finitely generated R-module.

Proof. If (i) holds then R is the fixed ring because R = () R».
Obviously (i) is equivalent to (iv), which implies (iii); and (iii) is equiva-
lent to (ii) since A4,/PA; is the R,/PR,-dual of H,/PH,. If we now
assume (ii) we have dim H,/PH, = dim S;/PS;. We know [3, p. 147]
that the latter is <|L: K|, with equality only if S; is a free R,-module.
But we also know that K is the fixed ring in L, and it follows |9,
p. 219] that dim H,/PH, = dimxy HQ K = |L: K|. Hence we conclude
that S, is free. But then the map S, ® S, — 4, ® Sy, which is an
isomorphism modulo P, is an actual isomorphism by Nakayama’s lemma.

As for (v), we have the diagram

(HQ S)p — (End )

| l

H,® S, — End (SP) y

where we know that the arrow on the right is injective for any S and
surjective if S is finitely generated [4, p.49]. If we assume (i) we
have an isomorphism on the bottom, and hence we must have an iso-
morphism on the top; if S is finitely generated we can reverse the
implication.

We claim now that (End; S) ® K = End, L if and only if S is an
R-lattice in L. Indeed, if S is an R-lattice, then End; S is an R-lattice
in Endg L by [4, p.45]. For the converse let 1 =s, s, +++, s, be a
basis of L, and consider the maps @,: >, a;s;— (a;)l. If End,; S is
sufficiently large there is a 0 % re R such that the »®, map S into
S, and then S < (1/r)(Rs, + -+ + Rs,).

Now assume (v) with R Noetherian. The fact that K is the fixed
ring implies again that rank (H) = |L: K|, so by dimension count
(End S) ® K is all of End; L. Then S is an R-lattice, hence finitely
generated, and the earlier argument applies.

If the conditions of the theorem hold, we say that S with its H-
structure is pseudo-Galois. One result of the proof deserves to be noted:

Porism. If R is Noetherian and S is pseudo-Galois, then S is
finitely generated over R.

THEOREM 2. Assume that S 1s a pseudo-Galois H-module algebra.
Then

Z(R,S)= «&(R,S) = H(H, S*) .
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Proof. We know (by further localization) that L is Galois for
HQ K, so the second isomorphism is just Proposition 2. Take now a
be L* with z - bebS for all € H; we must prove that bS comes from
a divisor of R. This is a local statement, so we may assume that R
is a discrete valuation ring and S is Galois. It follows then that 5S
is mapped to itself by all elements of End, S. Choose a basis s, «+-, s,
of S and elements », «++, », in K such that s, ---, 7,3, is a basis of
bS; permuting the s;,, we see that bS = »,S.

COROLLARY 1. Suppose L is a Galois field extension of K with
group G, and assume that all the minimal primes of R are unrami-
fied in S. Then S is pseudo-Galois for R[G], and hence

Z(R, §) = H'(G, §%) .

Proof. The fact that S, is Galois for R,[G] when there is no
ramification is a well-known bit of folklore; much more general results
are proved, e.g., in [2].

COROLLARY 2. Suppose L over K 1s purely inseparable of degree
», and D is a K-derivation with DS = S. Let H= R[X] as above,
and let H, be the image of H in End S. Assume DS is not contained
wn any minimal prime of S. Then S is pseudo-Galois for H,, and
hence

PR, S) = &(H, S) = <(H,S).

Proof. The hypotheses imply readily that D? = AD for some A e R
[8, p.63], and we have H,= R[X]/(X®* — AX). Functions hr—b""h-D
are equal on H if and only if they are egual on H, so the second
isomorphism is trivial. To prove that S is pseudo-Galois we may
localize and assume that R is a discrete valuation ring with maximal
ideal P; by inseparability there is a unique maximal ideal @ of S lying
over it. By hypothesis S/PS has a nontrivial derivation D over R/P;
in particular the two cannot be egual, and so S/PS either is a p-di-
mensional field extension or has the form (R/P)[Y]/Y?. In either case
the hypothesis DS & @ shows that Dy is invertible for a generator
of S/PS. If D, is the derivation with D,y = 1, we have D, = (1/Dy)D
in the image of H,/PH,® S/PS. But it is well known (and trivial)
that D, and S/PS generate End S/PS. Thus the map from H,/PH,®
S/PS is a surjection, and dimension count shows it is an isomorphism.

The isomorphism .&” = & could be proved for these two cases by
using the idea in Theorem 2, showing from the given hypotheses that
an element b with A -bebS comes locally from R. This is essentially
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what is done in [7]. But our argument brings out the general result
underlying Samuel’s two theorems. It also yields the extension to
several derivations in [10, Th. 2.9]. In addition, the example in the
next section shows that we can treat problems (with L* £ K) which
cannot be handled by derivations.

3. The surface Z? = XY. Let k be a field of positive charac-
teristic p, and let L be the fraction field of S = k[x, y]. Let ¢ be a
power of p, and let K be the fraction field of R = k[x% ¥, 2y]. Asin
[8, p.65], it is easy to see that R = SN K and so is a Krull domain;
it is the affine coordinate ring of Z* = XY with «*= X and y*= Y.
Let G be a cyclic group of order ¢, with generator g. Set A = R[G]
and map S— A®;S by t—9g Q2 and y— g @ y. Then the dual
H = Rf has a basis of idempotents e, e, -+, ¢,_, With ¢; + x’y’ equal
to x'y’ if A =1 — J (mod @) and equal to 0 otherwise. As an R-module,
S = @ e,;S; the fixed ring is ¢,S = R.

The map SRS =P e.SKRS— AR S takes 5, Xt to ¢°Qs;t for
s;€¢;S. Thus to show that S is pseudo-Galois we must show that the
multiplication maps ¢,S@ S — S are isomorphisms at each minimal
prime P of R. Since L is purely inseparable over K, we know that
S, is a local ring; the condition then is that e;S contain a unit of S,
i.e., not lie in the maximal ideal. But obviously e;S, which contains
both ¢ and »*, does not lie in any minimal ideal of S = k[z, y].
Hence S is pseudo-Galois for H.

Take now an element b with all ¢;b € bS; multiplying by an element
of K*, we may assume b is a polynomial. Then e;b consists of some
of its ‘terms, and for all these to be multiples of b requires that b =
e;b for some 1. All such elements are K-multiples of «¢, and these
give us a cyclic group of order gq. Since S has unique factorization,
all divisors of R become principal, and we have proved

PROPOSITION 4. Let k be a field of characteristic p, and q¢ a power
of p. Then the divisor class group of kl[x?, %, xy] is cyclic of order q.

We can carry out the same proof assuming only that % is a unique
factorization domain, just as was done in [8, p. 65]. (The result could
be proved there, of course, only for ¢ = p.)

4. Galois extensions and the kernel of Pic. Among the divi-
sorial ideals of R are the invertible ideals, and the group Pic R of
invertible ideals modulo principal ideals is a subgroup of the divisor
class group. Thus the kernel of the map Pic R— Pic S is a subgroup
of #(R,S). In general it may well be smaller. In the example of
§ 3, for instance, (R, S) is generated by the inverse image of xS,
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which [4, p.89] is just SN R; this is not an invertible ideal. Sup-
pose however that S is flat over R. Then a divisorial ideal D is
mapped simply to DS [4, p.20]; since S is integral, it is faithfully
flat over R, and so DS principal implies D invertible. Hence we
have proved the following generalization of [10, Corollary 2.8]:

PROPOSITION 5. Assume that S is a pseudo-Galois H-module
algebra and ts flat over R. Then

«'(H, S) = Ker (Pic R — Pic S) .

These hypotheses are true if S is Galois for H. In fact, they
nearly imply S Galois, as the following theorem shows.

THEOREM 3. Assume S is a pseudo-Galois H-module algebra. The
following are equivalent:

(1) S is Galois for H.

(2) S is a projective R-module.

Proof. By definition (1) implies (2), so assume (2). In the proof
of Theorem 1 we saw that S is an R-lattice; then S® S and AR S
are projective R-lattices, and the map between them is an isomorphism
at every minimal prime P.

To complete the proof we just recall that if M is a projective
R-lattice in a K-space V, then M is finitely generated and M = [} M,.
Since this result seems to have been omitted from [4], we sketch the
proof. Writing M as a direct summand of a free module gives us
linear functions f;: 4/ — K and elements m,e M such that (*) m =
S fim)ym; for all me M. There is a natural extension of f; to a linear
function V— K, and (*) then holds for all me V. Let v, ---, v, be
a basis of V, with dual basis vf, ---, 2}, and write f; = 3 a,,v}.
Applying (*) to the v, shows that a;., = 0 for all but finitely many ¢;
thus M is finitely generated. If me N M, then fi(m)e N B, = R, so
me M.

COROLLARY. Assume R Noetherian, S pseudo-Galois and flat.
Then S is Galois.

Proof. We have S flat by hypothesis and finitely generated by
the Porism to Theorem 1; hence S is projective.
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