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ON THE HYPERPLANE SECTION THROUGH A
RATIONAL POINT OF AN ALGEBRAIC

VARIETY

WEI-EIHN KUAN

Let V/k be an irreducible affine algebraic variety of di-
mension ^ 3 defined over an infinite field k with p as its prime
ideal in k[Xu -, Xn]. Let P be a rational normal point on
V/k. It is proved that (1) for a generic hyperplane Hu through
P, (p, Hu) is a prime ideal and (p, Hu) is quasi-absolutely (ab-
solutely irreducible) if p is quasi-absolutely (absolutely irre-
ducible). (2) It is not true in general that V Π Hu is normal
at P; however, V Π Hu is normal at P if the local ring of
V/k at P is also Cohen-Macaulay (Theorem 8).

It is well known [11] that if V/k is a normal variety of dimen-
sion >̂ 2, then for almost all hyperplanes H the section V Π H is again
a normal variety. This research is motivated by this result to study
the following* problem: If V/k is normal at a rational point P on V,
will hyperplane sections of V through P be normal at PΊ Section 1
localizes some of the results of [11]. Section 2 describes the ideal de-
composition of the generic hyperplane section through a given rational
point of an irreducible variety, and Section 3 gives a negative answer to
the problem of normality. As a consequence the converse of [3; Lemma
4, p. 360] is invalid in general.

1* Generalities* In the following and the subsequent sections, a
variety V/k shall mean an irreducible algebraic variety in the affine
space An defined over a field k of arbitrary characteristic.

Recall the following definitions.

DEFINITION 1. Let V/k be a variety with (ζ) = (£x, •••,£*) as a
generic point over k, and let P be a point on V. Let

and g(P) Φ 0

be the local ring of V at P in the function field k(ξ) of V over ft.
We say that P is ft-normal on V if ft[f]p is integrally closed in k(ζ),
that P is ft-simple on F if k[ζ]p is a regular local ring, and that P is
singular on V if P is not ft-simple on V.

DEFINITION 2. Let F/ft be a variety of dimension r, and let P
be a point on F. We say that V/k is locally free of s-dimensional
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singularities at P if every s-dimensional subvariety of V containing P
is fc-simple on V.

DEFINITION 3. Let R be a finite integral domain k[ξu ••-,?„] over
a field fcora localization thereof relative to a prime ideal of k[ξlf •••,.£•]•
Let p be a prime ideal of R we define

fcί t> = max. (length of chains of prime ideals contained in p),

depth p = max. (length of chains of prime ideals containing p),

dim p — transcendence degree of the quotient field of R/p over k,

dim R = transcendence degree of the quotient field of R over k .

It is well known that htp + depth p = dim iϋ and dim p = depth p.

The following criterion for local normality is parallel to [11; Th
3, p. 363] and is well known [8; (12.9), p. 41].

PROPOSITION 1. Let V/k be a variety of dimension r defined over
a field k, and let P be a point of dimension s on V. P is k-normal
on V if and only if (1) V/k is locally free of (r — 1)-dimensional
singularities at P, (2) every nonzero principal ideal (a) k[ξ]p is
unmixed of dimension r — s — 1.

PROPOSITION 2. Let V/k, (£), and P be the same as those in Pro-
position 1, let k[ξ]p be the integral closure of k[ξ]p, and let &p be the
conductor of k[ξ]p. If V is locally free of (r — 1)-dimensional sin-
gularities at P and if &p Φ (1), then every nonzero element of &P

generates a mixed principal ideal.

Proof. Let ae k[ξ]p not in k[ξ]p, and let ce (£,, whence cae k[ζ]pτ

say ca — b,be k[ξ]p. Then (c) k[ζ]p must be mixed. Indeed, if (c) k[ξ]p

were unmixed, and let pί9 , pt be the associated prime ideals of
(c) k[ξ]py then dim t>< = r — s — 1, for i = 1, 2, , t. a is integral
over k[ξ]p, hence integral over (k[ξ]p)p for i = 1, 2, , t. By hypothe-
sis (k[ζ]p)p is a regular local ring of dimension 1, for i = 1, 2, •••, t,

therefore (fc[ί]p)p is integrally closed for i = 1, 2, •••,£. Hence cte
Π U (*[£],)„ and'δ e ( Π U (<0(*[£],)„ ) Π k[ξ]p = ΠU q<, where qxn Π qt

is a primary decomposition of (c) ^[ίjj,. Thus b e (c) b[ξ]p, i.e., ae k[ζ]pt

a contradiction.
Let V/k be a variety of dimension r defined over a field fc with

(f) as a generic point, and let P be a point on V. Let % be an in-
determinate over k(ξ), it is well known that V is a variety over k(u)
with (ί) as a generic point of V over the pure transcendental extension
field k(u). Let k(u)[ξ]p = {/(%; f)/<7(̂ ; £) I /, 0 e fc(w)[£] and ^(^ p) Φ 0}
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be the local ring of V at P over k(u). We have, by [10, (d), p. 64],
the following lemma.

LEMMA 1. k[ξ]p is integrally closed if and only if k(u)[ξ]p is
integrally closed.

Recall the definition of the ground form of an unmixed r-dimensional
ideal 2Γ, [11; p. 373], as following: Let 21 be an unmixed r-dimensional
ideal in the polynomial ring k[X19 , Xn], we form r + 1 linear forms
in the X/s with indeterminates coefficients uiό: z{ = UnXt + + uinXn,
i = 1,2, , r + 1, and consider the ideal SC k(u)[X] Π k(u)[zlf , zr_λ],
where k(u)[X] — k(un, ur+11)[Xι, •••, XJ, which is a principal ideal
(E(z19 , zr+ι; u)) in k(u)[X]. If E is normalized so as to be a poly-
nomial in the uiS and primitive in them, so that E is defined to within
a factor in k, then E is the elementary divisor form or the ground
form of 2L The polynomial E is integral in any z{ over the other z^s
and is a polynomial in z19 *',zr+1 of least degree in zr+1, which is in
2ί k(u)[X\. If SI is prime, then its ground form is irreducible, the
converse is not true in general; but 21 is primary if and only if its
ground form is a power of an irreducible polynomial [9; Th. 9, p. 252],
21 is prime and absolutely irreducible if and only if (E) is prime and
absolutely irreducible [9; Th. 15, p. 259]. If 21 is prime and quasi-
absolutely irreducible, then (E) is prime and quasi-irreducible [11, p.
373].

PROPOSITION 3. Let V/k be an r-dimensional variety defined over
a field k with p as its prime ideal in k[X] ( — k[Xly •••, Xn]). Let p
be a point on V and let E be the ground form of p. Then V is k-
normal at p if and only if (p, dE/dzr+ί) k(u)[X]v is unmixed.

Proof. By Lemma 1, V is fc-normal at P if and only if V is
&O)-normal at P. By [13; Lemma 2, p. 132] V/k(u) is free of (r - 1)-
dimensional singularities at P. Let (ξ) be a generic point of V/k(u),
and pass to k(u)[ξ], we assert that k(u)[ξ]p is integrally closed if and
only if (dE/dzr+1) k(u)[ξ]p is unmixed, where the bar denotes residue.
By the proof of [11; Th. 5, p. 365], we have dE/dzr+ίe (£, the conductor
of k(u)[ξ] in its integral closure k{u)[ξ\*. Let &p be the conductor of
k(u)[ξ]p in its integral closure k(u)[ξ]^. By [15; Lemma, p. 269], (£
k(u)[ξ]p = ε p . Therefore dE/dzr+1e (£p. By Proposition 2, we have that
k(u)[ξ\p is integrally closed if and only if (dE/dzr+1) k(u)[ξ]p is unmixed.

2* Irreducibility of generic hyperplane section through a
normal point. Let V/k be a variety of dimension r Ξ> 2. Let Pe V
be a rational point. We are studying the generic hyperplane section
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of V through P. Without loss of generality, we may assume once for
all in the sequel that V passes through (0) the origin of the affine
space and that P= (0). We shall denote the prime ideal of V/k by p
in the sequel. Let u19 * ,un be n indeterminates over k, and let Hu

be the generic hyperplane through (0) defined by uιXι + + unXn = 0.
We shall use Hu in two senses whenever it is proper: (1) Hu means
t h e l i n e a r p o l y n o m i a l u 1 X 1 + ••• + unXn i n k(u)[X] ( = k ( u 1 9 * 9 u n )
[X19 , Xn])j (2) Hu stands for the hyperplane defined by uλXλ + +
unXn — 0. Let k(u) = k(u19 •••, un), V is a variety over k(u) and
V Π Hu is defined over k(u). Let (ft Hu) = qx n Π q* be an irre-
dundant primary decomposition with plf * ,ft as the associated prime
ideals. Let ft, , ft, s ^ t, be the isolated prime ideals. Since (0) e V,
(ft i ί j c (X:, , XJ fc(%)μΓ]. Hence (X19 , Xn) A:(^)[X] must con-
tain at least one of the pi9 i ^ s, say ^ . Let us denote ft by ft and
let TΓ% be the variety over k(u) of ft Wu is of dimension r — 1 as
it is well known that any component of V Π H9 where H is a hyper-
surface, is of dimension r — 1. Let (ξ) be a generic point of Wu over
fc(tt). Since tr. άegk{ζ) k(u; ζ) + tr. degfc k(ξ) — tr. degfc k(u; ζ) = tr. degfc

&(t&) + tr. degA;(tt) Λ(w; ξ) = n + r — 1 and tr. deg^^ A:(u; ζ) <^ n — 1, we
have tr. deg^) k(u; f) ^ r. But (ξ) e F, therefore tr. deg/c Λ(f) = r. We
thus have

LEMMA 2. // dim V ^ 2 , α generic point of Wu over k(u) is also
a generic point of V over k.

LEMMA 3. // ζj Φ 0, then u19 u3-^19 uj+1, , un are algebraically
independent over k(ζ).

Proof. Say

i = 1, t r . deg^, . . . ,^) k(u19 - ,un;ξ)

+ tr. degjc k(u29 un) = n + r -- 1 .

Therefore tr. deg^,. . . ,^)^,. . . ,^;?) = r .
Since

£̂<?2 + ' " + Unξn ,{ ... V - Z ... ϊ\
t /l/̂ fcO2» f Ujni S i) > ^ Λ / f

S i

we have fc(^, , un; ζ) = k(u29 , wΛ"> ί) Now

t r . degA(f, &(%2, , un; ζ) + r = r + w - 1 .

Therefore t r . degk{$) k(u29 , un; ζ) = n — 1, i.e., u29 - -, un are alge-
braically independent over k(ξ).

PROPOSITION 4. Let (ί), ft αtwZ TFtt be as above. Then (ft Hu):
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(Xly , Xu)
p = pu for sufficiently large integers p, where (Xlf , Xn) =

(X, ..-,XJ

Proof. Let F(uly , un; X) e pu be a polynomial, we may assume
F(uly , wn; X) 6 fcfo, , ̂ ] [ X ] . If ξλ Φ 0, i ^ , , un; ξ) = 0 im-
plies that F(—(u2ξ2 + + ujζjξi), u2y , wΛ; f) = 0. Hence there
exists a nonnegative integer σ such that XΛ

9 ̂  ^ Un

vanishes at (£). By Lemma 3, the prime ideal determined by (ί) in
k(u2, , %Λ)[-3Γ] is pk(u2, , ̂ ) [ X ] . Thus

u2X2 + >> + ̂ X u i^ . . w ;

for sufficiently large σ. But

X a τpί U2X2 + + UnXn , Λ, . "ϊΛ

- XΐFiu,, .- ,un;X) ~0

mod (t&i-Xi. + . . . + %ΛJ5ΓJ fc(^)[X] for sufficiently large σ. We have
XiFiuu " ,un;X)e (p, Hu) fc(w)[X] for sufficiently large σ. The
above discussion is symmetric with respect to those ξt Φ 0. Therefore
for any ζt Φ 0, we have X^Fiμ^ , un; X) e (p, Hu) for sufficiently
large integer σ{ and for all Fe pu. For any j such that ξj = 0, X^ e t>.
Thus XpFe (p, Hu) for any positive integer σ3 and for all Fepu. Thus
(J>, £ΓW): (Xj, •••, X%)p ZDpu for sufficiently large integer p. We now
show the other inclusion. Let g(uly , un; X) be an element in
(ί>, fl-J: (Xl9 , XJ^. Then for any h(u19 , un; X) e (X,, . . . , XJ^,
h(u; X) ί/(^; X) e (p, BΓJ. Therefore, there exists m,i(u; X), n(w; X) e
/φ)[X] such that A(w; X)g(u; X) = Σί=i w*(w; X) ^ ( X ) + Λ(W; X)HU1

where (i^, , F8) fc[X] = p. Thus A(w; ί)flf(w; ί) = 0. If g(u; ξ) Φ 0,
then h(u;X) = 0 at (ξ) for all fe(u; X) e (X^ -- ,XW)^, which implies
that (ς) = (0), a contradiction. Thus g(u; X) = 0 at (£) and therefore

COROLLARY, (p, Hu) has only one isolated component.

Proof. Suppose p2 is another isolated component, by Proposition 4,
we have (p, Hu):. (X19 , Xn)

p' = p2y for sufficiently large integer p\
Hence we have p2 = (py Hu) = (Xιy , Xn)

p = pu.

THEOREM 1. If V/k is of dimension r ^ 2, then (py Hu) k
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is either a prime ideal pu or an intersection of the prime ideal pu

with a primary ideal of which (X19 •••, Xn) k(u)[X] is its radical.

Proof. Let 33 = (p, Hu) and let 23 = q1 Π Π qt be the irredun-
dant primary representation of 33 with &,•••,& as the associated
prime ideals. By the corollary, there exists only one isolated prime
component, say qi9 and denote pt by pu. Let m = (X19 , Xn) k(u)[X].
Since S3: mp = £M for sufficiently large ^, we have (q<: mp) = £tt. There
are two possibilities (I) no fo contains mλ for any nonnegative integer
λ, or (II) some of & contains a power of m. (I) leads to S3 = pM. In
case of (II), say p2 contains mλ for some λ then m = p2. We may as-
sume that there is no other pj to contain mλ for any 0 ^ λ G Z. Thus
for ί = 1, 3, 4, r, q<: m* = q4 for any O g λ e Z . Since q2: m^ = /c(u)[X]
for large p, hence S3: m' = (q*: m )̂ Π (q2: m )̂ Π Π (qγ: m )̂ = qL Π q3 Π
q4 Π Π qt and thus pu Π q2 = (ϊ>, fl"«).

COROLLARY 1. // V is normal over k, then (p, Hu) — pu.

Proof. Passing to the coordinate ring of V, k(u)[η], we have that
{uj], + + uj]^ k(u)[η\ is unmixed. Letting pu = pjp, q2 = qjp we
have ( Σ UiTji) = 5« Γ) Q2 or ( Σ ̂ <̂ <) = ft*> by Theorem 1. The unmixed-
ness implies that ( Σ ufli) = pu, i.e., (p, Hu) = ί?tt.

COROLLARY 2. // F is k-normal at (0), ίΛ^^ (]?, JEίJ — pu i.e.,

(p, Hu) is a prime ideal.

Proof. By Theorem 1, (p, Hu) = pu or φ, fΓJ = pu Π q2. Passing
to the local ring k{u)[η]w, of V at (0), we have (Σwφ)i(%)M(fl) = pi
or K Π qf where ^w = pjp, q2 = ς2/Wi a n d q2% are extensions of pu and
q2 in A(w)[ί7](o) respectively. Since k(u)[η\w is integrally closed, the
unmixedness of ( Σ ufli) k(u)[η]w implies that ( Σ Ui7}i)k(u)[q] = pu and

Recall that V/k is a quasi-absolutely irreducible variety if k is
quasi-algebraically closed in the field k(ξ19 * ,ί») of rational functions
on V/k; a prime ideal 21 in k[X19 •••, Xn] is quasi-absolutely irreducible
if k[X19 « ,XJ2ί is primary, where k is the algebraic closure of k.
By [11; Th. 10, p. 371], p is quasi-absolutely irreducible if and only if
V/k is quasi-absolutely irreducible. V/k is absolutely irreducible if k
is algebraically closed in k(ζ) and k(ξ) is separable over k. A prime
ideal SI in k[X19 •••, JSΓJ is absolutely irreducible if fc[XL, •••, JSΓJ. 21
is a prime ideal. It is well known that the prime ideal p of V/k is
absolutely irreducible if and only if V/k is.

THEOREM 2. If V/k is quasi-absolutely irreducible of dimension
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r ^ 3 and if k is infinite, then V Π HJk(u) is quasi-absolutely irre-
ducible.

Proof Let {rj) be a generic point of Vf)Hu over

k{u) = k(u19 >-,un) .

By Lemma 2, {η) is a generic point of V over k. Let ηl9 η2, and ηn

be algebraically independent over k. By Lemma 3, {ή) is a generic
point of V over ά(w2, , un). By [11; Lemma 5, p. 368], k(u2, , u j
is quasi-algebraically closed in k(u2, , un)(η). Let J? = fc(^2, , un^)
(η), un is algebraically independent over Σ. Viewing k(u2, •••, u%_i) as
the field k and un as the w in [11; corollary, p. 369], we have Σ(un) =
fe(w2, •••, un-J(un)(η) = k(u)(ξ). Let fx and ζ2 in [11; corollary, p. 369]
be replaced by -(u2η2 + ••• + V Λ - i ) / ί i and -)?%/Ml respectively, one
sees that — (u2η2 + + un_1ηn_^)lη1 and 37,,/̂  are algebraically inde-
pendent over k(u2, •• ,^»_i). Hence by the same corollary we have
that

k(u2, , V i ) W ( - (̂ 2% + + tt—i)/ft -Un

quasi-algebraically closed in ^( tO = k(u)(Ύ]).

LEMMA 4. Lβί ίΓ δβ α regular finitely generated extension of an
infinite field k with tr. degfc K ^ 3. Let x, y, z be three elements of
K algebraically independent over k, and z/x (Kpk, where p is the
characteristic of k. Then for all but a finite number of constants
cekj K is a regular extension of k(y + cz/x). Moreover, let τ be an
indeterminate K(τ) is regular over k(τ)(y + τz/x).

Proof [5; Lemma 3].

THEOREM 3. If V/k is an absolutely irreducible variety of di-
mension r ^ 3 defined over an infinite field k, then V Π HJk(u) is
an absolutely irreducible variety.

Proof. V Π HJk(u) is irreducible. Let (ξ) be a generic point of
V(λHu over k(u). By Lemma 3, (£) is a generic point of V over k,
hence tr. degk k(ξ) ^ 3 and k(ξ) is a regular extension over k by [12;
Proposition 1, p. 69], Let ζ19 ξ2 and ξn be three elements in a separa-
ble transendental basis of k(ζ) over k. Let K — k(u2, , un_^)(ξ), un

is algebraically independent over K. Viewing k(u2, , un_ ) as the
field k and un as the τ in Lemma 4, we have K(un) = k(u)(ξ) Let

+ + un_Sn-di % — ξn and x = flf then a?, ?/ and « are
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algebraically over k(u2, , un^). By [6, Proposition 1, p. 185] and [6;
corollary to Proposition 2, p. 186], z/x = — £«/& ί Kpk(u2, , π ^ ) , we
have that K(un) is a regular extension over

Therefore k(u)(ξ) is a regular extension over k(u), hence V f] HJk(u)
is an absolutely irreducible variety.

Let {F19 •••, Fs} be a set of generators of p in &[#]. Let P be a
point on V. According to [14], P is fe-simple on V if and only if the
mixed Jacobian of {F19 •••, Fs} is of rank w - r at P, When k(P) is
separable over k, P is ^-simple on V if and only if the classical Jacobian
of {F19 , JPJ is of rank n — r at P.

Following Theorem 1, we denote pu as the sole isolated component
of (p9 i ϊ j and WJk(u) as its variety in the sequel.

THEOREM 4. Le£ V/k be of dimension r ^ 2. ϊ%ew P e PPU is
k(u)-simple if and only if P is k-simple on V.

Proof. Let PeWu be fc-simple on V. By Theorem 1, (p, Hu) =
Pu Π 21, where 21 is the embedded component with (X19 , Xn) as radical.
Let (77) be a generic point of V over &(%), and let (ξ) be a generic
point of Wu over &(%). Let k(u)[η]p and Λ(u)[ί]p be the local rings of
V and Wu at P respectively, fc^f^jp is regular and

k(u)[ξ]p s fcMtolp/p. fc(^)[i?]p ,

where pu is the residue of pu modulo p. If P Φ (0)1, let 21 be the
residue of 21 modulo p and let mp be the maximal ideal of k(n)[η\pi

then %k(n){η] ςt mp. For otherwise (ηίf •• ,i}n)
pczmp for some integer

p > 0, as (Xx, , XJ P c 2Ϊ. Thus P = (0), a contradiction. Therefore,
when P =£ (0), {luflά /b(u)[^]p - pu . feίu)^],, and fc(w)[f]p = fc(w)[^],/
(-Σ'Wi^ftίw)^],,. By [16; Th. 26, p. 303], to show that k(u)[ξ]p is regular
it is sufficient to show that X uirji $ mp. But this is the case, for if
Σ ^ ϊ Ξ . m p , taking partial derivatives with respect to vH for i =
1, 2, •••,%, we have ^ e m p for i = 1, 2, , n, i.e., P = (0) a con-
tradiction. Therefore k(u)[ξ]p is regular. If P = (0), then (0) is k-
normal on V. By Corollary 2 to Theorem 1, (p, Hu) — pu. In viewing
[14, Th. 7, p. 28], we let Fιy---,FS be a basis of p, and let F/s and
Xi's be so arranged that (det (3i*y3X, ))(0) ^ 0, where i, i = 1, 2, •••,
w — r, and the subscript (0) means that we replace (X) by (0) after
the determinant of the Jacobian is formed, as the rank of

1 If P ^ 0, and if P is Λ -simple on V, then P remains simple on Wu/k(u) follows
also from [13; the theorem of Bertini, p. 138].
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J(F19 . . . , F s ; X 1 , . . . , X n ) ( 0 ) = rc- r .

C o n s i d e r

" dFJdX, . dFJdXn_r dFJdX,-

A3 = det

uL

where η — r + 1 ^ i < 27. If z/y = 0 for some j then wly , un..r, u3-
are algebraically dependent over k. This is a contradiction, hence (0)
is fc-simple on Wu. Conversely, assume that P e Wu is k(%)-simple on
Wu. If PΦ (0), we have k(u)[ξ]p = k{u)[η\Pl{Σuiη%) k{u)[η]p from the
above. If P = (0), then P is k(u)-normal on TFtt. By Theorem 6 in
the following V/k is normal at (0), therefore (p, Hu) = pu and k(u)[ξ]{Q) ~
H^)lV](Q)K^uiVi) ^WM(o). Therefore k{u)[ξ]p~k{u)[η]Pl(Σu{η^ k{u)[η]p

if P is &(^)-simple on Wu. Since ht(^utfi) A;(%)[̂ L) = 1, it follows
from [8; (9; 11), p. 28] that k{u)[η]v is a regular local ring. Hence P
is A:-simple on V.

By an argument similar to the proof of Lemma 2, we have the
following.

COROLLARY. // V/k is of dimension r ^ 3 and if V/k is locally
free of (r — 1)-dimensional singularities, then V Π HJk(u) is locally
free of (r — 2)-dimensional singularities.

Note. If r = 2, the corollary is clearly false as one sees by taking
V to be a cone with vertex at (0).

THEOREM 5. // V/k is a complete intersection of dimension ^ 3
and if V is k-normal at (0), then the generic hyperplane section
V Π Hu is also k(u)-normal at (0).

Proof. V/k(u) is k (u) -normal at (0), by Lemma 1. By corollary
to Theorem 1, (p, Hu) = pu is prime. For any polynomial F Φ 0 in
k(u)[X], by [7; Th. p. 49] or [16; Th. 26, p. 203], (p%, F) = (p, Hu, F)
is unmixed. Hence, passing to the quotient modulo pu, we have that
every nonzero principal ideal in the coordinate ring k(u)[ζ] of V Π Hu

is unmixed. It follows that every nonzero principal ideal in the local
ring of V Π Hu at (0), k(u)[ξ]{G), is also unmixed. Since V/k is /c-normal
at (0), therefore V/k is locally free of (r — 1)-dimensional singularities
at (0). By the above corollary, V f] Hu is locally free of (r — 2)-di-
mensional singularities at (0). It follows from Proposition 1 that V f] Hu

is k (u) -normal at (0).
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THEOREM 6. If V n Hu is k(u)-normal at (0), then V/k is normal
at (0).

Proof. This theorem is really a consequence of [3; Lemma 4, p.
360] ([8; (36.9), p . 134]). Indeed, let {η) be a generic point of V over
k(u). Passing to k(u)[η], by Theorem 1, we have {u{ηv-+ ••• + unηn)
k(u)[η] — pu Π q, where pu and q are residues of pu and q modulo p
respectively. I t is clear t h a t (1) {uιη1 +'••• + unrjn) A(^)[>7](0) = 5«

n q φ ) [ 5 ? ] ( 0 ) , ^ i + ••• + wn^Λ is in the Jacobson radical of
, (2) {UJI, + ••• + nj]n) (k(u)[η]w)^u = pu (k(u)[r}][0))^ and

(3) let (ί) be a generic point of VΓ\HU over &(>&), then

which is integrally closed as Vf] Hu is A;(V)-normal at (0). Moreover,
let k(u)[η]f0) be the integral closure of k{u)[r)]w in k(u)(η), and let p'
be a minimal prime divisor of {uίηι + + unηn) k(u)[η]?Q). It follows
from [2; Th. 2, p. 253] and [2; Th. 3; p. 254] that kt(p' ΓΊ k(u)[η]i0)) =
htp = 1. Therefore ί)' Π k(u){η]w = p., i.e., every minimal prime divisor
of (uιηι + ••• + u»yn) ifc(̂ )[̂ )io) lies over pu. The above verify the
conditions of [3; Lemma 4, p. 360], therefore k{u)[η)m is integrally
closed.

3* The local normal problem* Throughout this section let V/k
be a variety of dimension r ^ 3, passing through (0) with (ξ) as a
generic point over k and let Hu: u1X1 + + unXn = 0 be a generic
hyperplane through (0). If V/fr is normal at (0), is it true that Hu Π V
k(u)-normal at (0)? If V/k is a complete intersection then by Theorem
5, the answer to the question is yes. However we shall prove the
answer to the question is negative in general.

DEFINITION 4. (a) Let R be a Noetherian ring. Subset {alf , aq)
of R is a prime sequence if for each i = 1, 2, , g, α< is not a zero
divisor in the ring R/(a19 •••, α ^ ) J?.

(b) Let i? be a local ring, the number of elements of a maximal
prime sequence in R is called the homological co-dimension of R, and
is denoted by cod h(A). If cod h(A) = dim A, we say that A is a Cohen-
Macaulay ring.

For a general commutative ring R and a multiplicative system S
which does not contain 0, it is well known [15, p. 219] that (3ϊ:S3) c
21*: S3* and (X: 2))c c 36C: 3)% where (*)* - (*) R8, (*)c - / ^ ί * ) , / is the
canonical homomorphism of R into Rs and where 21,33 are two ideals
in Ry and 3£, 2) are two ideals in Rs.
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PROPOSITION 5. Let 51, S3, X and 2) be the same as above. Then
(a) (21: 33)β = §Ie: 23β; if §I=)Ker/ <md 33 is finitely generated, also (b)
(X: ?))c = Xc: 2)c ΐ/ 2) is finitely generated.

Proof. Let 33= &, •• ,δί)J2, we have 23* = (/(&,), ,/(δ,)) Λ..
Let x e %e: 93e. Then xS3e c 2Ie and xfφ%) = /(α,)//(s,) for some α< e 21 and
* e S. Therefore f(πiSi)xfΦi) e/(2I.). For each δ e/(83), & = Σi/fo)/(δi)
for some r^R. Now fiπ^^xb = ^5 f{πiS^xf{r,)fφ3) G/(2I), which im-
plies that /(TΓA)O? e/(2I): /(SB). Hence a? e (/(S2ΐ): /(93))i?s. Since 2Γ =) Ker/,
by [15; (15), p. 148], /(2I): /(SB) - /(SI: S3). Therefore <ce(2ί:$B)< and
21- as* = (91: 33)e. The proof of (b) is similar.

LEMMA 5. k(u)[ξ]w is Cohen-Macaulay if and only if k[ζ]i0) is
Cohen-Macaulay, where k[ξ] is the coordinate ring of V/k, and u is
an indeterminate over k(ξ).

Proof. If k[ζ]{0) is Cohen-Macaulay, then there exist <, ••• 4 such
t h a t {4, 4} forms a maximal prime sequence, where r = dim V.
Thus (4, , *)£[£]<o,: (*+1) fc[f](0, - (4, • • - , * ) • A;[f](0, for i = 1, 2, . . r.
By [15; (1), p. 227], [15; (15), (21), p. 148] Proposition 5 and [16; (3),
p. 221] one has (4 . , /ύk(u)[ξ]w: (A+ί)k(u)[ξ](0) = (4, . . , A)k{u)[ζ]Wi for
i = 1, 2, , r. Therefore {4, , 4} remains as a maximal prime
sequence of k(u)[ξ]w. Thus k(u)[ζ]{0) is Cohen-Macaulay.

Conversely, let k(u)[ξ]{0) be Cohen-Macaulay, let {^(u ξ), ••• 4(^;ί)}
be a maximal prime sequence of k(u)[ξ]{0). Then, for i — 1, 2, , r, we
have (4(^; ί), , 4(u; ζ)) k(u)[ξ]w: (si+1(u; ξ)) k(u)[ζ]m = (φ,\ 5), ,
4(u; f)) &(t6)[^]f0). By [15; (21), p. 148], going back to the polynomial ring
k(u)[x], we have (4(u; x), , ^(u; x), p)k(u)[x]{Q): (si+1(u; x), p)k(u)[x]{0) =
(/L(u; x), , 4(^; »), ί3)fc(^)[^](0). In viewing [4; Satz 3, p. 59], one sees
that

(/[(u; x), , Si(u; x), p)k(u)[x]{

(si+1(u; x), P)k(u)[x]{0) = (4(%; a;), , /{{%\ x), p)k(u)[x]w

almost always for i — 1, 2, r, where the bar means specialization of
u to elements in k. Passing to the local ring of V/k(u) at (0), by [15;
(15), p. 148], we have 4 ^ ; g, . . . , A(u; ξ))k(u)[ξ]i0): si+ι(u; ξ)k(u)[ξ]i0) =
{φb; ξ), , A{u; ξ))k(u)[ξ]m almost always for i = 1, 2, r. Let α e k
be such that the above holds and 4(α; ξ) Φ 0, for i = 1, 2, , r, then
(4(α; ί), , 4(α; ί))^[ί] ( 0 ): (4+i(α; f))fc[ί](0) - (4(α; ί), , /-(a; ζ)) fc[f](0)

for i = 1, 2, r. Therefore {4(α, ξ), , 4(α, <f)} forms a system of
prime sequence of k[ξ]w. Hence k[ξ]iQ) is Cohen-Macaulay.

THEOREM 7. Le£ F/Λ and Hu be the same as the above. It is not
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true in general that if V/k is k-normal at (0), then V Π HJk(u) is
k(u)-normal at (0).

Proof. Suppose that if V/k is A -normal at (0), then V f) HJk(u) is
ά(i6)-normal at (0). Let (ξ) be a generic point of V over k and let (r?)
be that of Vf)Hu over k(u). Applying the supposition to VΓ\HJk(u),
we get (V f] Hu) Π Hu{2)k(u> w(2))-normal at (0), where

Hui2): u2lX, + + u2nXn = 0

is a generic hyperplane through (0) on

V Π HJk{n) and u(2) — {u21, , u2n}

are algebraically independent over k(u)(ξ, 57). Repeating the supposition
and Corollary 2 to Theorem 1 in this way until dimension r of V is
cut down to 2, we have then

V Γ) Hu Π J H ^ , Π Π Huir_2)k(u> ^(2)> , %(7 - 2))-normal

at (0), where w(i) = {uil9 •••,%»»}, and {%<]L, •••,%<*} are indeterminates
over &(w, M(2), -- ,u(i - l)(f, 9, τ?2, ̂ . J with ^ = (97̂ , . . , ̂ i w) being
a generic point of V f) HUΓ) Hu{2) Π Π Hu{j) over k(u, u(2), u(j)).
Let Z7= {u, u(2), , w(7 - 2)}, then fc(C7) = k(u, u(2), , u(Ύ - 2)).
Consider V/k(U), (ξ) is a generic point of V over &([/) Correspondingly
in the coordinate ring k(U)[ξ] of V over &(Z7) we have then r — 2
quantities st = uilξ1 + + uinζn, i = 1, 2, r — 2, such that (4, , st)
is a prime ideal in k(U)[ζ]{0) and ή + 1 g (4, , ̂ )fc([/)[£](0). Thus
{4, •• ,4_2} is a prime sequence in the local ring k(U)[ζ]{0). Let R be
*(^)[ί](o)/(^ί> #

 ? 4-2) fc(C7)[f](0), then J? is integrally closed of dimen-
sion 2. By [16; (3), p. 397], R is Cohen-Macaulay. Let α, 6efc(ί7)[£](o)
be such that their residues modulo (/[, , 4_2) k(U)[ξ](0) form a
maximal prime sequence of R, then {/1? , 4_2, α, 6} is a prime sequ-
ence of k(U)[ξ]ί0). Therefore άimk(U)[ξ]ί0) = codfefc(ί7)[f](o) and hence
&(^)[ί](o)> is a Cohen-Macaulay ring. It follows from Lemma 5 that
k[ξ]{0) is a Cohen-Macaulay ring. So under the supposition, we conclude
that k[ζ]{0) is integrally closed implies that k[ξ]{0) is Cohen-Macaulay.
But on the other hand, [1; Proposition, p. 655] and [1; Th. 5, p. 653]
yield an example of a local ring of an algebraic variety at a rational
point which is a factorial local ring (hence normal), but not a Cohen-
Macaulay local ring. Hence the above supposition yields a contradiction.

THEOREM 8. // V/k is normal at (0), and the local ring k[ξ]{0)

is a Cohen-Macaulay ring, then V f] HJk(u) is normal at (0).

Proof. By the corollary to Theorem 4, (p, Hu) is free of (7 - 2)-
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dimensional singularities. By Lemma 5, k(u)[ζ]{0) is Cohen-Macaulay.
For any nonzero a(u; ξ) in k(u)[ξ](0) not in the prime ideal

(ttiίi + + uJJ k(u)[ξ]{0), {a(u, ξ), U& + + ujn}

forms a prime sequence of k(u)[ξ]iQ), therefore by [16; Lemma 5, p.
401], (a(u, <?), U& + ••• + ujn) k(u)[ξ]iQ), is unmixed. Hence every
nonzero principal ideal of fc(w)[£](0)/(Wi£i + ••• + unξn) k(u)[ξ]i0), is un-
mixed. It follows from Proposition 1 that V Π Hu is k(u)-normal at
(0).

I would like to take this opportunity to express my thanks to
Professor A. Seidenberg for suggesting the problem, his valuable advice
and continuous encouragement.
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