AN N-ARC THEOREM FOR PEANO SPACES

J. H. V. Hunt

Abstract

G. T. Whyburn gave an elementary inductive proof of the n-arc theorem for Peano spaces, which had originally been proved by G. Nobeling and K. Menger. In the course of doing this he gave a necessary and sufficient condition for there to be n disjoint arcs joining two disjoint closed sets A and B in a Peano space S. In this paper we split the set A into n disjoint closed subsets $A_{1}, A_{2}, \cdots, A_{n}$ and give a necessary and sufficient condition for there to be n disjoint arcs joining $A_{1} \cup A_{2} \cup \cdots A_{n}$ and B in S, exactly one arc meeting each A_{i}. Our proof uses the inductive technique that Whyburn introduced.

In this paper we present a theorem and a conjecture that arise from [2].

We first recall some definitions from [2]. Let A, B and X be closed subsets of a topological space S. We say that X broadly separates A and B^{\prime} in S if $S-X$ is the union of two disjoint open sets (possibly empty) one of which contains $A-X$ and the other of which contains $B-X$. The space S is n-point strongly connected between A and B provided no set of less than n points broadly separates A and B in S. An arc $a b$ joins A and B if $a b \cap A=\{a\}$ and $a b \cap B=$ $\{b\}$.

The following theorem, in which we have replaced "completeness" by "local compactness," appears in [2]. It is called the second n-arc theorem by Menger in [1].

The Second N-Arc Theorem. Let A and B be disjoint closed subsets of a locally connected, locally compact metric space S. A necessary and sufficient condition that there be n disjoint arcs in S joining A and B is that S be n-point strongly connected between A and B.

In § 2 we split the closed set A into n disjoint closed subsets A_{1}, A_{2}, \cdots, A_{n}. The theorem then gives a necessary and sufficient condition for there to be n disjoint arcs joining A and B, one meeting each A_{i}.

In § 3 we split A and B into disjoint closed subsets $A_{1}, A_{2}, \cdots, A_{n}$ and $B_{1}, B_{2}, \cdots, B_{n}$. The conjecture then gives a necessary and sufficient condition for there to be n disjoint ares joining A and B, one meeting each A_{i} and one meeting each B_{i}. (I have given a proof of this conjecture for the case $n=4$, which is the first case that offers difficulties, but it is not included here.)

It will be noticed that the space S in the theorem and in the conjecture is not actually a Peano space, as the title of the article states, but it becomes one when the property of connectedness is placed on it.
2. The theorem. Let $A_{1}, A_{2}, \cdots, A_{n}$ and B be disjoint closed subsets of a topological space S. We shall say that a subset X of S is a large point of S (with respect to $A_{1}, A_{2}, \cdots, A_{n}$) if it is a onepoint set or one of the sets A_{i}. We shall say that S is n-point strongly connected between $A_{1}, A_{2}, \cdots, A_{n}$ and B provided the union of less than n large points does not broadly separate $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ and B in S.

We shall say that a system of n disjoint arcs in S joins

$$
A_{1}, A_{2}, \cdots, A_{n}
$$

and B if each arc joins $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ and B and each A_{i} is joined to B by exactly one of the arcs.

Theorem. Let $A_{1}, A_{2}, \cdots, A_{n}$ and B be disjoint closed subsets of a locally connected, locally compact metric space S. A necessary and sufficient condition that there be n disjoint arcs in S joining

$$
A_{1}, A_{2}, \cdots, A_{n}
$$

to B is that S be n-point strongly connected between $A_{1}, A_{2}, \cdots, A_{n}$ and B.

We need two more definitions for the proof of the theorem. Let $A_{1}, A_{2}, \cdots, A_{n}$ be disjoint closed sets in a topological space S, and let $\beta_{1}, \beta_{2}, \cdots, \beta_{m}$ be disjoint arcs in S. We shall say that A_{i} is a zero, a single or a multiple with respect to $\beta_{1}, \beta_{2}, \cdots, \beta_{m}$ according as to whether it meets zero, one or more than one of the $\operatorname{arcs} \beta_{1}, \beta_{2}, \cdots, \beta_{m}$. A subarc β of some β_{i} is said to be a bridge of $\beta_{1}, \beta_{2}, \cdots, \beta_{m}$ spanning $A_{1}, A_{2}, \cdots, A_{n}$ if β joins some A_{j} to some A_{k}, for $j \neq k$. Clearly there are only a finite number of bridges in $\beta_{1}, \beta_{2}, \cdots, \beta_{m}$ spanning $A_{1}, A_{2}, \cdots, A_{n}$.

Proof. Using the terminology and notation of the theorem, it is clear that the condition is necessary for the existence of n disjoint arcs joining $A_{1}, A_{2}, \cdots, A_{n}$ to B in S. So we turn to proving that it is sufficient.

By the arcwise connectivity theorem, the condition is sufficient for $n=1$. So we assume its sufficiency for each positive integer $<n$ and prove its sufficiency for n by induction.

By the second n-arc theorem there are n disjoint arcs $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$ in S joining $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ and B. Let p be the number of singles of $A_{1}, A_{2}, \cdots, A_{n}$ with respect to $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$. We shall suppose that $p<n$ and show how to construct a second system of n disjoint arcs joining $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ and B with respect to which the number of singles is $p+1$. The process can be repeated $n-p$ times to obtain the desired system of arcs joining $A_{1}, A_{2}, \cdots, A_{n}$ and B.

Let $A_{1}, A_{2}, \cdots, A_{p}$ be the singles, $A_{p+1}, A_{p+2}, \cdots, A_{q}$ the zeros and $A_{q+1}, A_{q+2}, \cdots, A_{n}$ the multiples of $A_{1}, A_{2}, \cdots, A_{n}$ with respect to $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$. Since $p<n$ there is at least one zero and at least one multiple here. We shall construct a system of n disjoint arcs joining $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ and B with respect to which $A_{1}, A_{2}, \cdots, A_{p+1}$ are singles. To this end we consider the locally connected, locally compact space $S-A_{p+2} \cup A_{p+3} \cup \cdots \cup A_{n}$. Since it is ($p+1$)-point strongly connected between $A_{1}, A_{2}, \cdots, A_{p+1}$ and B and $p+1 \leqq q<n$, it follows from the inductive hypothesis that it contains $p+1$ disjoint $\operatorname{arcs} \alpha_{1}, \alpha_{2}, \cdots, \alpha_{p+1}$ joining $A_{1}, A_{2}, \cdots, A_{p+1}$ and B. We suppose, further, that α_{r} meets A_{r} for $r \leqq p+1$.

We now use an inductive technique that is familiar from [2]. We relabel $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$ so that β_{r} meets A_{r} for $r \leqq p$, and we start by defining $\alpha_{r}=\alpha_{r}^{\prime} \cap A_{r}$ for $r \leqq p+1$ and $\beta_{r}^{0}=\beta_{r}$ for $r \leqq p$. Now we suppose that we have defined systems of arcs $\alpha_{1}^{m}, \alpha_{2}^{m}, \cdots, \alpha_{p+1}^{m}$ (possibly degenerate) and $\beta_{1}^{m}, \beta_{2}^{m}, \cdots, \beta_{p}^{m}$ such that (a) $\alpha_{r} \cap A_{r} \subset \alpha_{r}^{m} \subset \alpha_{r}$ and α_{r}^{m} does not meet $B \cup \beta_{p+1} \cup \beta_{p+2} \cup \cdots \cup \beta_{n}$, (b) $\beta_{s} \cap B \subset \beta_{s}^{m} \subset \beta_{s}$, (c) if A_{r}, β_{s}^{m} meet then α_{r}^{m} is degenerate, (d) if $\alpha_{r}^{m}, \beta_{s}^{m}$ meet then they meet in a common end point, (e) exactly one of the sets

$$
\alpha_{1}^{m} \cup A_{1}, \alpha_{2}^{m} \cup A_{2}, \cdots, \alpha_{p+1}^{m} \cup A_{p+1}
$$

fails to meet $\beta_{1}^{m} \cup \beta_{2}^{m} \cup \cdots \cup \beta_{p}^{m}$, (f) if b_{m} is the number of bridges of $\beta_{1}^{m}, \beta_{2}^{m}, \cdots, \beta_{p}^{m}$ that span

$$
\alpha_{1} \cup A_{1}, \alpha_{2} \cup A_{2}, \cdots, \alpha_{p+1} \cup A_{p+1}
$$

then $b_{m}<b_{m-1}$ for $m \geqq 1$. We now show how the induction may be continued to the next stage and how it leads, after at most a finite number of stages, to the construction of n disjoint arcs joining

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n}
$$

to B with respect to which $A_{1}, A_{2}, \cdots, A_{p+1}$ are singles.
We proceed by denoting by $\alpha_{t}^{m} \cup A_{t}$ the set, given in (e), which does not meet $\beta_{1}^{m} \cup \beta_{2}^{m} \cup \cdots \cup \beta_{p}^{m}$. We let x be the first point of α_{t} in the direction $\alpha_{t} \cap A_{t}, \alpha_{t} \cap B$ that belongs to the union of the three sets $\beta_{1}^{m} \cup \beta_{2}^{m} \cup \cdots \cup \beta_{p}^{m}, \beta_{p+1} \cup \beta_{p+2} \cup \cdots \cup \beta_{n}$ and

$$
B-\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{n}
$$

We consider separately the three mutually exclusive cases (1)

$$
x \in \beta_{1}^{m} \cup \beta_{2}^{m} \cup \cdots \cup \beta_{p}^{m}
$$

(2) $x \in \beta_{p+1} \cup \beta_{p+2} \cup \cdots \cup \beta_{n}$ and (3) $x \in B-\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{n}$.

We first consider case (1) and let $x \in \beta_{u}^{m}$. We define $\alpha_{r}^{m+1}=\alpha_{r}^{m}$ for $r \neq t, r \leqq p+1$, and α_{t}^{m+1} as the subarc of α_{t} whose endpoints are $a_{t} \cap A_{t}, x$. We define $\beta_{s}^{m+1}=\beta_{s}^{m}$ for $s \neq u, s \leqq p$, and β_{u}^{m+1} as the subarc of β_{u}^{m} whose endpoints are $\beta_{u} \cap B, x$. It is easily seen that (a)-(d) of the inductive hypotheses are preserved. In order to verify that (e) is preserved, we notice that it follows from (a)-(d) that each β_{s}^{m} meets at most one $\alpha_{r}^{m} \cup A_{r}$. Thus it follows from (e) that the relation $\left(\alpha_{r}^{m} \cup A_{r}\right) \cap \beta_{s}^{m} \neq \varnothing$ establishes a one-to-one correspondence between the collections $\beta_{1}^{m}, \beta_{2}^{m}, \cdots, \beta_{p}^{m}$ and

$$
\alpha_{1}^{m} \cup A_{1}, \alpha_{2}^{m} \cup A_{2}, \cdots, \alpha_{t-1}^{m} \cup A_{t-1}, \alpha_{t+1}^{m} \cup A_{t+1}, \cdots, \alpha_{p+1}^{m} \cup A_{p+1} .
$$

If we now let $\alpha_{v}^{m} \cup A_{v}$ be the set that correspond to β_{u}^{m} under this relation, it is clear that by (d) $\alpha_{v}^{m+1} \cup A_{v}$ does not meet

$$
\beta_{1}^{m+1} \cup \beta_{2}^{m+1} \cup \cdots \cup \beta_{p}^{m+1},
$$

and that it is the only set among $\alpha_{1}^{m+1} \cup A_{1}, \alpha_{2}^{m+1} \cup A_{2}, \cdots, \alpha_{p+1}^{m+1} \cup A_{p+1}$ with this property. It is clear that (f) is also preserved, since

$$
\left(\beta_{u}^{m}-\beta_{u}^{m+1}\right) \cup\{x\}
$$

is an arc that joins $\alpha_{v}^{m} \cup A_{v}$ and $\alpha_{t}^{m} \cup A_{t}$, and so it contains at least one bridge of $\beta_{1}^{m}, \beta_{2}^{m}, \cdots, \beta_{p}^{m}$ spanning $\alpha_{1} \cup A_{1}, \alpha_{2} \cup A_{2}, \cdots, \alpha_{p+1} \cup A_{p+1}$ that is not contained in $\beta_{1}^{m+1} \cup \beta_{2}^{m+1} \cup \cdots \cup \beta_{p}^{m+1}$; i.e., $b_{m+1}<b_{m}$.

Thus in case (1) the inductive hypotheses are preserved. We notice that it follows from (f) that case (1) can occur for only a finite number of values of m, since b_{0} is finite. Thus case (2) or case (3) must eventually occur. We complete the proof of the theorem by showing that in either of these cases we can readily obtain a system of n disjoint arcs joining $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ and B with respect to which $A_{1}, A_{2}, \cdots, A_{p+1}$ are singles.

We shall only deal with case (2), as case (3) is practically identical to it. Thus we let $x \in \beta_{w}, p+1 \leqq w \leqq n$. We define α as the subare of α_{t} whose endpoints are $a_{t} \cap A_{t}, x$ and β as the subarc of β_{w} whose endpoints are $\beta_{w} \cap B, x$. We first notice that it follows from (a)-(d) that if $\alpha_{r}^{m} \cup A_{r}, \beta_{s}^{m}$ meet, then $\alpha_{r}^{m} \cup \beta_{s}^{m}$ is an arc joining A_{r}, B. Since a one-to-one correspondence is established between the collections

$$
\alpha_{1}^{m} \cup A_{1}, \alpha_{2}^{m} \cup A_{2}, \cdots, \alpha_{t-1}^{m} \cup A_{t-1}, \alpha_{t+1}^{m} \cup A_{t+1}, \cdots, \alpha_{p+1}^{m} \cup A_{p+1}
$$

and $\beta_{1}^{m}, \beta_{2}^{m}, \cdots, \beta_{p}^{m}$ by the relation $\left(\alpha_{r}^{m} \cup A_{r}\right) \cap \beta_{s}^{m} \neq \varnothing$ it follows that the union of

$$
\alpha_{1}^{m}, \alpha_{2}^{m}, \cdots, \alpha_{t-1}^{m}, \alpha_{t+1}^{m}, \cdots, \alpha_{p+1}^{m}, \beta_{1}^{m}, \beta_{2}^{m}, \cdots, \beta_{p}^{m}
$$

may be expressed as a union of p disjoint arcs joining

$$
A_{1}, A_{2}, \cdots, A_{t-1}, A_{t+1}, \cdots, A_{p+1}
$$

and B. Furthermore, by (a), (b) these arcs are disjoint from the arcs $\beta_{p+1}, \beta_{p+2}, \cdots, \beta_{w-1}, \beta_{w+1}, \cdots, \beta_{n}, \alpha, \beta$. Thus the union of

$$
\begin{aligned}
\alpha_{1}^{m}, \alpha_{2}^{m}, \cdots, \alpha_{t-1}^{m}, \alpha_{t+1}^{m}, \cdots & \cdots \alpha_{p+1}^{m}, \beta_{1}^{m}, \beta_{2}^{m}, \cdots, \beta_{p}^{m}, \\
& \beta_{p+1}, \beta_{p+2}, \cdots, \beta_{w-1}, \beta_{w+1}, \cdots, \beta_{n}
\end{aligned}
$$

α, β may be expressed as a union of n disjoint arcs joining

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n}
$$

and B with respect to which $A_{1}, A_{2}, \cdots, A_{p+1}$ are singles. This completes the proof of the theorem.
3. The conjecture. Let $A_{1}, A_{2}, \cdots, A_{n}$ and $B_{1}, B_{2}, \cdots B_{n}$ be disjoint closed subsets of a topological space S. We shall say that a subset X of S is a large point of S (with respect to $A_{1}, A_{2}, \cdots, A_{n}$ and $B_{1}, B_{2}, \cdots, B_{n}$) if it is a one-point set, a set A_{i}, or a set B_{i}. We shall say that S is n-point strongly connected between $A_{1}, A_{2}, \cdots, A_{n}$ and $B_{1}, B_{2}, \cdots, B_{n}$ provided the union of less than n large points does not broadly separate $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ and $B_{1} \cup B_{2} \cup \cdots \cup B_{n}$ in S.

We shall say that a system of n disjoint arcs in S joins

$$
A_{1}, A_{2}, \cdots, A_{n} \quad \text { and } \quad B_{1}, B_{2}, \cdots, B_{n}
$$

if each arc joins $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ and $B_{1} \cup B_{2} \cup \cdots \cup B_{n}$, and each A_{i} meets just one arc, and each B_{i} meets just one arc.

Conjecture. Let $A_{1}, A_{2}, \cdots, A_{n}$ and $B_{1}, B_{2}, \cdots, B_{n}$ be disjoint closed subsets of a locally connected, locally compact metric space S. A necessary and sufficient condition that there be n disjoint arcs in S joining $A_{1}, A_{2}, \cdots, A_{n}$ and $B_{1}, B_{2}, \cdots, B_{n}$ is that S be n-point strongly connected between $A_{1}, A_{2}, \cdots, A_{n}$ and $B_{1}, B_{2}, \cdots, B_{n}$.

The necessity of the condition is again trivial, so it is the sufficiency of the condition that is interesting.

The conjecture is clearly true if the sets

$$
A_{1}, A_{2}, \cdots, A_{n} \quad \text { and } \quad B_{1}, B_{2}, \cdots, B_{n}
$$

are compact. For in this case the quotient space Q obtained by identifying a pair of points if they belong to a common A_{i} or a common B_{j} is locally compact, locally connected and metrizable. If π is the natural projection from S onto Q, it is clear that Q is n-point strongly connected between

$$
\pi\left(A_{1}\right) \cup \pi\left(A_{2}\right) \cup \cdots \cup \pi\left(A_{n}\right) \quad \text { and } \quad \pi\left(B_{1}\right) \cup \pi\left(B_{2}\right) \cup \cdots \cup \pi\left(B_{n}\right) .
$$

Consequently it follows from the second n-arc theorem that there are n disjoint ares in Q joining

$$
\pi\left(A_{1}\right) \cup \pi\left(A_{2}\right) \cup \cdots \cup \pi\left(A_{n}\right) \quad \text { and } \quad \pi\left(B_{1}\right) \cup \pi\left(B_{2}\right) \cup \cdots \cup \pi\left(B_{n}\right) .
$$

The π-inverse of each of these arcs contains a connected closed set which meets both $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ and $B_{1} \cup B_{2} \cup \cdots \cup B_{n}$, from which it easily follows that there are n-disjoint arcs in S joining $A_{1}, A_{2}, \cdots, A_{n}$ and $B_{1}, B_{2}, \cdots, B_{n}$.

When some of the sets $A_{1}, A_{2}, \cdots, A_{n}$ or $B_{1}, B_{2}, \cdots, B_{n}$ fail to be compact, the above argument does not suffice as the quotient space Q is not in general metrizable.

There ought to be a combinatorial proof of this conjecture along the lines of the proof in $\S 2$, which would work equally well whether some of the sets $A_{1}, A_{2}, \cdots, A_{n}$ or $B_{1}, B_{2}, \cdots, B_{n}$ fail to be compact or not. Such a proof has been given for the case $n=4$, as was remarked in paragraph § 1.

References

1. K. Menger, Kurventheorie, Teubner, Berlin-Leipzig, 1932, chap. VI.
2. G. T. Whyburn, On n-arc connectedness, Trans. Amer. Math. Soc., 63 (1948) 452-456.

Received August 26, 1970. The theorem in this paper is taken from the author's doctoral dissertation, presented to the University of Warwick, Coventry, in March 1970.

