INTERSECTIONS OF NILPOTENT HALL SUBGROUPS

MARCEL HERZOG

A family \mathcal{H} of subgroups of a finite group G is said to satisfy (property) B^* if whenever $U = H_1 \cap \cdots \cap H_r$ is a representation of U as intersection of elements of \mathcal{H} of minimal length r, then $r \leq 2$. The aim of this paper is to prove

THEOREM 1. Let H be a nilpotent Hall π -subgroup of a group G and assume that if H_1 , $H_2 \in S_{\pi}(G)$ then $H_1 \cap H_2 \triangleleft H_1$. Then $S_{\pi}(G)$ satisfies B^* .

All groups in this work are finite. A family \mathcal{H} of subgroups of a group G will be said to satisfy (property) B if there exist H_1 and H_2 in \mathcal{H} such that

$$H_1 \cap H_2 = \bigcap \{H \mid H \in \mathscr{H}\}$$
.

We will denote by $S_p(G)$ the family of Sylow *p*-subgroups of G and the (possibly empty) family of Hall π -subgroups of G will be denoted by $S_{\pi}(G)$. It was shown by Brodkey [1] that if G possesses an Abelian Sylow *p*-subgroup, then $S_p(G)$ satisfies B. Itô has shown in [3] that if G is of odd order, hence solvable by [2], then $S_p(G)$ satisfies B for all primes. He has also shown that if G is solvable, then $S_p(G)$ satisfies B in several other cases.

As indicated above, we will consider here a more restrictive condition B^* on families of subgroups of G. It follows from our main result, Theorem 1, that even the property B^* is satisfied by $S_{\pi}(G)$, whenever G possesses an Abelian or Hamiltonian (i.e., Dedekind) Hall π -subgroup. Theorem 1 yields the following

COROLLARY 1. Let H be a nilpotent Hall subgroup of the group G and suppose that the index $[H: H \cap H^x]$ is prime for all $x \in G - N_G(H)$. Then either $H \triangleleft G$ or for all $x, y \in G$ such that $xy^{-1} \notin N_G(H)$ we have

$$H^x \cap H^y = B \triangleleft G$$

and [H: B] = p, a prime. B is independent of x and y.

2. Generalizations. As a matter of fact, we will prove a more general result than Theorem 1. We will say that a group N satisfies

(property) D_{π} , where π is a set of primes, if N contains at least one Hall π -subgroup, any two Hall π -subgroups of N are conjugate and each π -subgroup of N is contained in a Hall π -subgroup of N. The set of all maximal π -subgroups of a group G will be denoted by $\operatorname{Syl}_{\pi}(G)$. Theorem 1 follows from

THEOREM 2. Let the group G satisfy the following conditions.

(i) If H_1 , $H_2 \in \operatorname{Syl}_{\pi}(G)$ then $C = H_1 \cap H_2 \triangleleft H_1$ and

(ii) If $C = H_1 \cap H_2 \not\subset G$, then $N_G(C)$ satisfies D_z . Then $Syl_z(G)$ satisfies B^* .

A subgroup N of the group G will be called a π -local subgroup of G if $N = N_c(H)$, where H is a nontrivial π -subgroup of G. An N_z -group is a group all of whose π -local subgroups are solvable. Theorem 1 yields the following

THEOREM 3. Let G be an N_{π} -group and suppose that all its maximal π -subgroups are Dedekind groups. Then $Syl_{\pi}(G)$ satisfies B^* .

As a consequence, we have

COROLLARY 2. Let G be a nonsolvable N_{π} -group and suppose that each $H \in Syl_{\pi}(G)$ is a Dedekind group. Then there exist H_1 , $H_2 \in Syl_{\pi}(G)$ such that:

$$o(G) \geq o(H_1)o(H_2)$$
.

3. Proofs. We begin with a proof of Theorem 2. Let $U = H_1 \cap \cdots \cap H_r$ be a representation of U as intersection of elements of $Syl_{\pi}(G)$ of minimal length and suppose that r > 2. It follows from assumption (i) and the minimality of r that

$$(1) U \subsetneq H_1 \cap H_2 = C \triangleleft H_1, H_2.$$

The minimality of r also implies that $C \not\subset H_3$ and consequently $C \not\lhd G$. By assumption (ii) $N = N_G(C)$ has the D_{π} -property and by (1) $H_1, H_2 \in S_{\pi}(N)$. There exists $Q \in S_{\pi}(N)$ containing $H_3 \cap \cdots \cap H_r \cap N$ and since the elements of $S_{\pi}(N)$ are conjugate in N, there exists $R \in S_{\pi}(N)$ such that $Q \cap R = C$. Since Q and R are conjugates of H_1 , they belong to $Syl_{\pi}(G)$. However,

$$egin{aligned} U &= Q \cap R \cap H_3 \cap \cdots \cap H_r \supset R \cap N \cap H_3 \cap \cdots \cap H_r \ &= R \cap H_3 \cap \cdots \cap H_r \supset U \end{aligned}$$

in contradiction to the minimality of r. The proof of Theorem 2 is complete.

Theorem 1 follows immediately from Theorem 2 and Wielandt's Theorem [4] which states that if G contains a nilpotent Hall π -subgroup then G satisfies D_{π} . Theorem 3 also follows immediately from Theorem 2.

Corollary 1 follows from Theorem 1. Suppose that $H \not\triangleleft G$, and let $H_1, H_2 \in S_{\pi}(G), H_1 \neq H_2$. Since by our assumptions and the above mentioned Theorem of Wielandt $[H_1: H_1 \cap H_2]$ is prime, it follows that $H_1 \cap H_2 \triangleleft H_1$. Let $B = \bigcap \{H^x \mid x \in G\}$; obviously $B \triangleleft G$ and since $H \not\triangleleft G, B \subsetneq H$. By Theorem 1 there exist $u, v \in G$ such that for all $x, y \in G$ we have:

$$H^{\scriptscriptstyle u}\cap H^{\scriptscriptstyle y}=B\,{\subset}\, H^{\scriptscriptstyle x}\cap H^{\scriptscriptstyle y}$$
 .

Suppose that $xy^{-1} \notin N_{\scriptscriptstyle G}(H)$; then $H^x \neq H^y$ and

$$p = [H^u: B] = [H^x: B] = [H^x: H^x \cap H^y] [H^x \cap H^y: B]$$
.

Since $[H^x: H^x \cap H^y] > 1$, it follows that $H^x \cap H^y = B$. The proof of Corollary 1 is complete.

Finally, Corollary 2 follows from Theorem 3. Since G is a nonsolvable N_{π} -group, $\bigcap \{H \mid H \in \operatorname{Syl}_{\pi}(G)\} = \{1\}$. Consequently, by Theorem 3, there exist $H_1, H_2 \in \operatorname{Syl}_{\pi}(G)$ such that $H_1 \cap H_2 = \{1\}$. Obviously $o(G) \leq o(H_1)o(H_2)$ and the proof is complete.

References

1. J. S. Brodkey, A note on finite groups with an abelian Sylow group, Proc. Amer. Math. Soc. 14 (1963), 132-133.

2. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 755-1029.

3. N. Itô, Uber den kleinsten p-Durchshschnitt auflösbarer Gruppen, Arch. Math. 9 (1958), 27-32.

4. H. Wielandt, Zum Satz von Sylow, Math. Z. 60 (1954), 407-409.

Received June 3, 1970.

TEL-AVIV UNIVERSITY TEL-AVIV, ISRAEL