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REGULAR ELEMENTS IN P.L-RINGS

I. N. HERSTEIN AND LANCE W. SMALL

It follows from the proof of Posner's theorem that
half-regular elements are regular in prime rings satisfying
a polynomial identity (prime P. I.-rings). In this paper we
extend these results to semi-prime rings and present counter-
examples to several avenues of further generalization.

Throughout this paper all rings will be algebras over a commutative
ring. We further assume that the polynomial identities which occur
have at least one invertible coefficient. If T is a subset of a ring R
then l(T) (r(T)) will denote the left (right) annihilator of T. The
word "ideal" will mean two-sided ideal. Finally, we recall that if R is
semi-prime and if U is an ideal of R then 1{U) = r{U). In this case
we write l(U), unambiguously, as Ann(U).

2* We begin with a mild generalization of a result due to
Amitsur [1].

LEMMA 1. Let R be a ring such that Ra satisfies a polynomial
identity; then, if l(a) = 0, Ra contains a nonzero ideal of R.

Proof. Among the left ideals Rά1 suppose that Rak satisfies an
identity of lowest degree. We may assume that this identity is
multilinear and has form

q(xt , xn) = qt(xly , Xn-^Xn + q2(xlf ,xn)

where q1 is of lower degree than q and where xn does not occur as the last
variable of any monomial of q2. Substitute rάa

2k for x3- for j = 1, , n — 1
and rna

k for xn, where ru , rn are arbitrary elements of R, in
q(x19 •••, xn). Since Ra2k c Rak, Ra2k satisfies q and, by our choice of
k, no identity of lower degree. Therefore there exist ru , rn^ in R
such that ffifaα2*, •••, rn^a2k) Φ 0. Freeding this into our identity q
we obtain

ίifoα2*, , rn^a2k)rna
k = -q2(r1a

2k, , rn^a2k

9 rna
k)

which is contained in Ra2k from the form of q2. Since l(a) = 0 this
yields ^(nα2*, ,rn_xa

2k)rn e Rak. In short, g^nα2*, , rn^aik) RaRak,
hence the nonzero ideal Rq^r^a21*, , rn^a2k)R is contained in Rak, and
so, in Ra. This proves the result.

The plan now is to study Ra by looking at the ideals of R con-
tained in it. The crucial step is
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THEOREM 2. Suppose that R is a semi-prime ring) if ae R is such
that l(a) = 0 and Ra satisfies a polynomial identity then Ra contains
an ideal of R whose annihilator is zero.

Proof. Let U be the sum of the ideals of R which are contained
in Ra. We claim that Ann(U) =_0. If not, let W = Ann(U) Φ 0, and
V = Ann(W). Pass to the ring R= R/V. If xa = 0 in R then xaeV
hence Wxa = 0; since l(a) = 0 this gives Wx = 0, and so, x e F, x — 0.
Thus l(a) = 0. Clearly Ra satisfies a polynomial identity. Therefore
Ra contains a nonzero ideal f of R; the inverse image T of T thus lies
in Ra + V. Since T Φ 0, T ςt V therefore 0 ^ WT a Ra + WV. But
WV = 0. Consequently WT is a nonzero ideal of R lying in Ra. As
such, it must be contained in U. But WU= 0, so (WT)2 c P P T = 0.
Thus semi-primeness of R then forces the contradiction WT = 0. With
this, the theorem is proved.

From Theorem 2 many good things flow.

THEOREM 3. Suppose that R is a semi-prime P.I.-ring. If ae R
satisfies l(a) = 0 then

1. r{a) = 0
2. i?α is essential.

Proof. 1. Let Z7 be the ideal in Ra of Theorem 2. If αa; = 0
then Ux = 0, which is not possible unless x = 0. Thus r(α) = 0.

2. If I is a nonzero left ideal then 0 Φ UI c C7 Π / c #α Π /.

A ring R is said to be von Neumann finite if for x, ye R, xy — 1
implies 2/α? = 1. If Rn is v. N. finite for all n, we call R ΛΓ-finite.

COROLLARY. A P. l.-ring is N-finite.

Proof. The result follows easily from the following two observa-
tions:

1. if R is a P. I.-ring then Rn is a P. I.-ring [3].
2. R is v. N. finite if and only if R/J(R) is, where J(i2) is the

Jacobson radical of R.
Hence we can reduce to the semi-simple (and so, semi-prime) case.

If xy = 1 then l(x) = 0 where, by Theorem 3, r{x) = 0. Since
x(l — yx) = 0 we get yx = 1.

Theorem 2 also tells us something about the nature of the iden-
tities satisfied by R and Ra.

THEOREM 4. If R is a semi-prime ring and if ae R satisfies
l(a) — 0 then R satisfies any polynomial identity satisfied by Ra.
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Proof. The argument follows one by Goldie [2]. Since R is semi-
prime, 0 = n P « where Pa are prime ideals. Let UczRabe an ideal of R
such that Ann(U) = 0. Now Uς£Pβ for some prime ideal Pβ. Divide
the prime ideals of R into two parts: those which contain U and
those which do not. The intersection of the primes in the first part
contains U and is annihilated by the intersection of the primes in the
second part. But Ann(ί7) = 0, so this latter intersection must be 0.
Hence 0.= Π Pr where the Pr are prime ideals and UςtPr for each 7.
We find, then, that Rr = RjPr has a nonzero ideal (Z7+ Pr)/Pr which
satisfies an identity. Since Rr is prime, it satisfies the same
identity as (U + Pr)/Pr [1] To finish up, we note that R is a sub-
direct sum of the Rγy hence satisfies any identity of U, therefore any
identity of Ra.

3* In this section we present several counter-examples to possible
generalizations of the results in § 2. We begin with examples to show
that "semi-prime" is needed in Theorem 3.

Let F be a field and F [x] the polynomial ring in x over F. Form

the ring S{1) — I L J ™ j , where F[x] acts on F in the usual way

{identifying F = F[x]j(x) as an ^[.τj-module). S(1) satisfies the identity

(ab - ba)2 = 0. It is easy to see that l(^ *j) = 0, but r( Q ^ V o .

Now form the ring S{2) = ( A^ *^ J with the obvious actions

on F[x]. S{2) satisfies the same identity as Sw. The element ( Q l ) i s

regular in S{2) but( J J )>S(2) n ( Q ζ) = 0—that is, the right ideal

( 0̂  1 ) ^ 2 ) *s n o ^ e s s e n *^ a ^ We pause to note that this implies that
S{2) does not satisfy the right Ore condition. Yet S{2) possesses a ring
of left quotients which even is Artinian.

We conclude this section with a simple example of a right Noe-
therian ring which lacks a right ring of quotients. Let R be any
commutative Noetherian ring with the following property: there exists
an element ae R which is not regular but its image, α, is regular in
R = R/N where N is the nil radical of R. (An example of such is

where a = y + O2, xy).) Our example is S{2) = (7: p
R)

The element (Q 1 ) i s Quickly seen to be regular in S(3). If the

right Ore condition were valid we would have an equation

a 0\/d c\_ /0 ϊ \ / f s

0 i J U 6 ; - Vo OAO t
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where ( 1 f ) was regular. This forces t to be regular in R.
\ u i j ^

Writing the relations out explicitly, we have ac — t, which means
that ac = t + n where ne N. But t is regular, hence t + n is and
so ac is regular. This contradicts our choice of a.

4* To finish up, we present a result on the rank of free modules
over P. I.-rings which, for commutative rings, is a well-known
theorem on homogeneous systems of linear equations. The proof we
give may be of additional interest in that we cannot, of course, use
determinants.

Denote by RR{n) the external direct sum of n copies of RR, that
is, the free module on n basis elements.

THEOREM 5. If R is a P. I.-ring, then Rw c R{m) implies n ^ m.

Proof. Suppose that n > m. First note that this forces Rw c Rim)

for arbitrary t. To see this, write R{n) = R[m) 0i? ( T O~w ). We can find
a copy of Rw in the first summand, so i ? w 0 β ( w ' m ) c R{m). We
now repeat the process on the "new" Rin). In particular, we obtain

Rvm) ( = R{m)m τ h i g m e a n s t h a t Rw contains a set, au •••, α2TO, of 2m
linearly independent elements. We can consider the a's as 1 x m
row vectors and form the m x m matrices X and Y where the rows
of X are aly -• ,am and those of F a r e am+1, •• ,«2 m. In Rm it is
immediate that l(X) = 0 and l(Y) — 0 since alt , a2m are independent.
But Rm is a Pβ I.-ring, so by Lemma 1 RmX contains a nonzero ideal
U. Now, since l(Y) = 0, URmY' Φ 0 and is contained in RmX. This
yields nonzero matrices A and B such that AX = BY. Writing this out
explicitly gives a dependence relation among the α's, a contradiction.
The proof is complete.
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