ON A PARTITION PROBLEM OF H.L. ALDER

George E. Andrews

Abstract

We study $\Delta_{d}(n)=q_{d}(n)-Q_{d}(n)$, where $q_{d}(n)$ is the number of partitions of n into parts differing by at least d, and $Q_{d}(n)$ is the number of partitions of n into parts congruent to 1 or $d+2(\bmod d+3)$. We prove that $\Delta_{d}(n) \rightarrow+\infty$ with n for $d \geqq 4$, and that $\Delta_{d}(n) \geqq 0$ for all n if $d=2^{s}-1, s \geqq 4$.

In 1956, H. L. Alder proposed the following problem [1].
"Let $q_{d}(n)=$ the number of partitions of n into parts differing by at least d; let $Q_{d}(n)=$ the number of partitions of n into parts congruent to 1 or $d+2(\bmod d+3)$; let $\Delta_{d}(n)=q_{d}(n)-Q_{d}(n)$. It is known that $\Delta_{1}(n)=0$ for all positive n (Euler's identity), $\Delta_{2}(n)=0$ for all positive n (one of the Rogers-Ramanujan identities), $\Delta_{3}(n) \geqq 0$ for all positive n (from Schur's theorem which states $\Delta_{3}(n)=$ the number of those partitions of n into parts differing by at least 3 which contain at least one pair of consecutive multiples of 3). (a) Is $\Delta_{d}(n) \geqq 0$ for all positive d and n ? (b) If (a) is true, can $\Delta_{d}(n)$ be characterized as the number of a certain type of restricted partitions of n as is the case for $d=3$?"

This problem was again mentioned in [2; p. 743] as still being open. A recent general result on partitions with difference conditions [3] allows us to give some partial answers to Alder's problem.

First we derive a partition theorem which is somewhat analogous to the type of result asked for by Alder.

Theorem 1. Let ν be the largest integer such that $2^{\nu+1}-1 \leqq d$. Let $\mathscr{L}_{d}(n)$ denote the number of partitions of n into distinct parts $\equiv 1,2,4, \cdots$, or $2^{\nu}(\bmod d)$. Then

$$
q_{d}(n) \geqq \mathscr{L}_{d}(n)
$$

We may utilize some asymptotic formulae of Meinardus [4], [5] to prove

Theorem 2. For any $d \geqq 4, \lim _{n \rightarrow \infty} \Delta_{d}(n)=+\infty$
Finally, Theorem 1 may be utilized to prove a result which settles Alder's problem in an infinite number of cases

Theorem 4. If $d=2^{s}-1$ and $s=1,2$, or $\geqq 4$, then $\Delta_{d}(n) \geqq 0$ for all n.

The proof of Theorem 4 relies on the following result which is of independent interest.

TheOREM 3. Let $S=\left\{a_{i}\right\}_{i=1}^{\infty}$ and $T=\left\{b_{i}\right\}_{i=1}^{\infty}$ be two strictly increasing sequences of positive integers such that $b_{1}=1$ and $a_{i} \geqq b_{i}$ for all i. Let $\rho(S ; n)$ (resp. $\rho(T ; n)$) denote the number of partitions of n into parts taken from S (resp. T). Then

$$
\rho(T ; n) \geqq \rho(S ; n)
$$

for all n.
2. Proof of Theorem 1. In Theorem 1 of [3] set $N=d, a(1)=1$, $a(2)=2, \cdots, a(\nu+1)=2^{\nu}$. Thus in the notation of [3], $D\left(A_{N} ; n\right)$ becomes $\mathscr{L}_{d}(n)$. Now $D\left(A_{N} ; n\right)=E\left(A_{N}^{\prime} ; n\right)$ where the latter partition function is the number of partitions of n :

$$
\begin{gathered}
n=b_{1}+b_{2}+\cdots+b_{s} \\
b_{i} \equiv 1,2,3,4, \cdots, 2^{\nu+1}-1(\bmod d)
\end{gathered}
$$

with

$$
b_{i}-b_{i+1} \geqq d w\left(\beta_{d}\left(b_{i+1}\right)\right)+v\left(\beta_{d}\left(b_{i+1}\right)\right)-\beta_{d}\left(b_{i+1}\right) .
$$

Here $\beta_{d}(m)$ is the least positive residue of $m \bmod d, w(m)$ is the number of powers of 2 in the binary representation of m and $v(m)$ is the least power of 2 in the binary representation of m. Consequently if b_{i+1} $\equiv 2^{j}(\bmod d), 0 \leqq j \leqq \nu$,

$$
d w\left(\beta_{d}\left(b_{i+1}\right)\right)+v\left(\beta_{d}\left(b_{i+1}\right)\right)-\beta_{d}\left(b_{i+1}\right)=d \cdot 1+2^{j}-2^{j}=d
$$

If $b_{i+1} \not \equiv 2^{j}(\bmod d) 0 \leqq j \leqq \nu$, then

$$
\begin{aligned}
d w\left(\beta_{d}\left(b_{i+1}\right)\right) & +v\left(\beta_{d}\left(b_{i+1}\right)\right)-\beta_{d}\left(b_{i+1}\right) \\
& \geqq 2 \cdot d+1-\left(2^{\nu+1}-1\right) \geqq 2 d+1-d=d+1 .
\end{aligned}
$$

Thus the difference condition is always $b_{i}-b_{i+1} \geqq d$ or stronger. Therefore $E\left(A_{N}^{\prime} ; n\right) \leqq q_{d}(n)$ and Theorem 1 follows.
3. Proof of Theorem 2. Meinardus has proved a general theorem on asymptotic formulae for partitions with repetitions [4]. Following the notation of Meinardus [4; pp. 388-389], we see that to treat $Q_{d}(n)$, we must have his

$$
a_{n}=\left\{\begin{array}{l}
1 \text { if } n \equiv 1, d+2(\bmod d+3) \\
0 \text { otherwise }
\end{array}\right.
$$

Under these circumstances, Meinardus's $D(s)$ satisfies

$$
D(s)=(d+3)^{-s}\left(\zeta\left(s, \frac{1}{d+3}\right)+\zeta\left(s, \frac{d+2}{d+3}\right)\right)
$$

where $\zeta(s, a)=\sum_{n=1}^{\infty}(n+a)^{-s}$, the Hurwitz zeta function [6; Ch. XIII], α, the abscissa of convergence for $D(s)$ is 1 , and A, the residue at $s=1$ is $2 / d+3$.

$$
g(\tau)=\frac{e^{-\tau}+e^{-(d+2) \tau}}{1-e^{-(d+3) \tau}} .
$$

One may now easily verify that Meinardus's analytic conditions on $D(s)$ and $g(\tau)$ are fulfilled, thus

$$
\begin{equation*}
\log Q_{d}(n) \sim 2 \pi \sqrt{\frac{n}{3 d+9}} . \tag{3.1}
\end{equation*}
$$

In [5], Meinardus has derived the asymptotic formula

$$
\begin{equation*}
\log q_{d}(n) \sim 2 \sqrt{A_{d} n} \tag{3.2}
\end{equation*}
$$

where

$$
A_{d}=\frac{d}{2} \log ^{2} \alpha_{d}+\sum_{r=1}^{\infty} \frac{\left(\alpha_{d}\right)^{r d}}{r^{2}},
$$

and α_{d} is real $>0, \alpha_{d}^{d}+\alpha_{d}-1=0$.
If we put $\alpha_{d}=e^{-\lambda_{d}}$, so that $e^{-d \lambda_{d}}+e^{-\lambda_{d}}=1$, then

$$
\begin{aligned}
A_{d} & =\frac{d}{2} \lambda_{d}^{2}+\sum_{r=1}^{\infty} \frac{\alpha_{d}^{d \cdot r}}{r^{2}}>\frac{d}{2} \lambda_{d}^{2}+\alpha_{d}^{d} \\
& =\frac{d}{2} \lambda_{d}^{2}+1-e^{-\lambda_{d}}>\frac{d}{2} \lambda_{d}^{2}+\lambda_{d}-\frac{1}{2} \lambda_{d}^{2} \\
& =\frac{d-1}{2} \lambda_{d}^{2}+\lambda_{d} .
\end{aligned}
$$

Now the following table shows that

$$
A_{d}>\pi^{2} /(3 d+9) \text { for } 4 \leqq d \leqq 14
$$

Table 1.

d	$\lambda_{d}>$	$\frac{d-1}{2} \lambda_{d}^{2}>$	$A_{d}>$	$\frac{\pi^{2}}{3 d+9}<$
4	0.32	0.153	0.473	0.471
5	0.28	0.15	0.43	0.42
6	0.25	0.15	0.40	0.37
7	0.22	0.14	0.36	0.33
8	0.20	0.14	0.34	0.30
9	0.19	0.14	0.33	0.28
10	0.18	0.14	0.32	0.26
11	0.16	0.12	0.28	0.24
12	0.15	0.12	0.27	0.22
13	0.15	0.13	0.28	0.21
14	0.14	0.12	0.26	0.20

For $d \geqq 15$, we have

$$
e^{-d(2 / d)}+e^{-2 / d}>e^{-2}+1-2 / d>1
$$

Hence, $\lambda_{d}>2 / d$ and

$$
A_{d}>\frac{d-1}{2}\left(\frac{2}{d}\right)^{2}+2 / d=\frac{1}{d}(4-2 / d)>\frac{10}{3 d}>\frac{\pi^{2}}{3 d+9} .
$$

Thus for all $d \geqq 4$,

$$
A_{d}>\frac{\pi^{2}}{3 d+9}
$$

Hence comparing (3.1) with (3.2) we find

$$
\lim _{n \rightarrow \infty}\left(\log q_{d}(n)-\log Q_{d}(n)\right)=+\infty
$$

Thus $\lim _{n \rightarrow \infty} \Delta_{d}(n)=\lim _{n \rightarrow \infty} q_{d}(n)\left(1-Q_{d}(n) / q_{d}(n)\right)=+\infty$. and we have Theorem 2.

I would like to thank the referee for aid in simplifying and extending Theorem 2.
4. Proof of Theorem 3. Let us define $S_{i}=\left\{a_{1}, a_{2}, \cdots a_{i}\right\}$ and $T_{i}=\left\{b_{1}, b_{2}, \cdots, b_{i}\right\}$. We shall proceed to prove by induction on i that $\rho\left(T_{i} ; n\right) \geqq \rho\left(S_{i} ; n\right)$; this will establish Theorem 3 for if we choose I such that $a_{I}>n, b_{I}>n$, then $\rho(T ; n)=\rho\left(T_{I} ; n\right) \geqq \rho\left(S_{I} ; n\right)=\rho(S ; n)$.

First we remark that $\rho\left(T_{i} ; n\right)$ is a nondecreasing function of n; this is because $1=b_{1} \in T_{i}$ and thus every partition of $n-1$ into parts taken from T_{i} may be transformed into a partition of n merely by adjoining a 1 .

Now $\rho\left(T_{1} ; n\right)=1$ for all n since $T_{1}=\{1\}$. Since $S_{1}=\left\{a_{1}\right\}$

$$
\rho\left(S_{1} ; n\right)= \begin{cases}1 & \text { if } a_{1} \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Hence

$$
\rho\left(T_{1} ; n\right) \geqq \rho\left(S_{1} ; n\right)
$$

Now assume that $\rho\left(T_{i-1} ; n\right) \geqq \rho\left(S_{i-1} ; n\right)$ for all n. Hence if we define $\rho\left(T_{i} ; 0\right)=\rho\left(S_{i} ; 0\right)=1$,

$$
\begin{aligned}
\sum_{n=0}^{\infty} & \left(\rho\left(T_{i} ; n\right)-\rho\left(S_{i} ; n\right)\right) q^{n} \\
& =\prod_{j=1}^{i} \frac{1}{1-q^{b_{j}}}-\prod_{j=1}^{i} \frac{1}{1-q^{a_{j}}} \\
& =\left(\prod_{j=1}^{i-1} \frac{1}{1-q^{b_{j}}}\right)\left(\frac{1}{1-q^{a_{i}}}+\frac{q^{b_{i}}-q^{a_{i}}}{\left(1-q^{a_{i}}\right)\left(1-q^{b_{i}}\right)}\right)-\prod_{j=1}^{i} \frac{1}{1-q^{a_{j}}}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{1-q^{a_{i}}}\left(\prod_{j=1}^{i-1} \frac{1}{1-q^{b_{j}}}-\prod_{j=1}^{i-1} \frac{1}{1-q^{a_{j}}}\right)+\frac{q^{b_{i}}-q^{a_{i}}}{\left(1-q^{a_{i}}\right)} \prod_{j=1}^{i} \frac{1}{1-q^{b_{j}}} \\
= & \frac{1}{1-q^{a_{i}}}\left(\sum_{n=0}^{\infty}\left(\rho\left(T_{i-1} ; n\right)-\rho\left(S_{i-1} ; n\right)\right) q^{n}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\rho\left(T_{i} ; n-b_{i}\right)-\rho\left(T_{i} ; n-a_{i}\right)\right) q^{n}\right) .
\end{aligned}
$$

Now the coefficients of these two infinite series are nonnegative: the first by the induction hypothesis, and the second by the fact that $\rho\left(T_{i} ; n\right)$ is a nondecreasing sequence. Since $\left(1-q^{a_{i}}\right)^{-1}=\sum_{j=0}^{\infty} q^{j a_{i}}$, we see that all coefficients in the power series expansion of our last expression must be nonnegative. Hence

$$
\rho\left(T_{i} ; n\right) \geqq \rho\left(S_{i} ; n\right),
$$

and Theorem 3 is proved.
5. Proof of Theorem 4. Since $d=2^{s}-1$, we see that the ν of Theorem 1 is just $s-1$. Now

$$
\begin{aligned}
\sum_{n=0}^{\infty} & \mathscr{L}_{d}(n) q^{n}=\prod_{j=0}^{\infty}\left(1+q^{d j+1}\right)\left(1+q^{d j+2}\right) \cdots\left(1+q^{d j+2^{\nu}}\right) \\
& =\prod_{j=0}^{\infty} \frac{1}{\left(1-q^{2 d j+1}\right)\left(1-q^{2 d j+d+2}\right)\left(1-q^{2 d j+d+4}\right) \cdots\left(1-q^{2 d j+d+2^{2}}\right)}
\end{aligned}
$$

Thus $\mathscr{L}_{d}(n)=\rho(T ; n)$ where $T=\{m \mid m \equiv 1, d+2, d+4, \cdots$, or $\left.d+2^{s-1}(\bmod 2 d)\right\}$. Clearly, $1 \in T$. We now show that for $s \geqq 4$ the $i^{\text {th }}$ element of T (arranged in increasing magnitude) is no larger than the $i^{\text {th }}$ element of S where $S=\{m \mid m \equiv 1, d+2(\bmod d+3)\}$. Since $s \geqq 4$, the first four elements of T are

$$
1, d+2, d+4, d+8(2 d+5>d+8 \text { since } d \geqq 15) .
$$

Thus the first four elements of T are less than or equal the first four elements of S respectively. In general the $(4 m+1)-s t$ element of T is $\leqq 2 d m+1$ while the $(4 m+1)-s t$ element of S is $2 m(d+3)+1$; for $2 \leqq j \leqq 4$ the $(4 m+j)$ - th element of T is $\leqq 2 d m+d+2^{j-1}$ while the $(4 m+j)$ - element of S is $\geqq 2 m(d+3)+d+2$ and for $2 \leqq j \leqq 4, m \geqq 1,2 d m+d+2^{j-1} \leqq 2 d m+d+8 \leqq 2 d m+d+6+2 \leqq$ $2 m(d+3)+d+2$. Hence, the conditions of Theorem 3 are met, and therefore

$$
q_{d}(n) \geqq \mathscr{L}_{d}(n)=\rho(T ; n) \geqq \rho(S ; n)=Q_{d}(n)
$$

Thus Theorem 4 is established.
6. Conclusion. By modification of the results in [3], it appears possible to apply the techniques of $\S 4$ to prove that $\Delta_{d}(n) \geqq 0$ for
any $d \geqq 15$ which is a difference of powers of 2 ; however, since this approach does not yield a complete answer to Alder's problem it seems hardly worth undertaking.

Lengthier versions of the following table indicate that Alder's problem may be extended as follows.

Conjecture. $\quad \Delta_{d}(n)>0$ for $n \geqq d+6$ if $d \geqq 8$.

n	$\Delta_{3}(n)$	$\Delta_{4}(n)$	$\Delta_{5}(n)$	$\Delta_{6}(n)$	$\Delta_{7}(n)$	$\Delta_{8}(n)$
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0
7	0	0	0	0	0	0
8	0	0	0	0	0	0
9	1	0	0	0	0	0
10	0	1	0	0	0	0
11	0	1	1	0	0	0
12	0	1	1	1	0	0
13	0	0	2	1	1	0
14	0	0	1	2	1	1
15	1	0	1	2	2	1
16	1	0	0	2	2	2
17	1	1	0	1	3	2
18	1	2	0	1	2	3
19	1	2	1	0	2	3
20	1	2	2	0	1	3
21	2	2	3	1	1	2
22	2	2	2	3	1	2
23	2	4	4	2	1	
24	2					

References

1. H. L. Alder, Research problem no. 4, Bull. Amer. Math. Soc. 62 (1956), 76.
2. -, Partition identities-from Euler to the present, Amer. Math. Monthly 76 (1969), 733-746.
3. G.E. Andrews, A general theorem on partitions with difference conditions, Amer. J. Math. 91 (1969), 18-24.
4. G. Meinardus, Asymptotische Aussagen über Partitionen, Math. Zeit. 59 (1954), 388-398.
5. , Uber Partitionen mit Differenzenbedingungen, Math. Zeit. 61 (1954), 289-302.
6. E. T. Whittaker and G. N. Watson, Modern Analysis, 4th Ed., Cambridge University Press, Cambridge, 1927.

Received April 1, 1970. Partially supported by NSF Grant GP-9660.
The Pennsylvania State University
University Park, Pennsylvania

