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ON A PARTITION PROBLEM OF H. L. ALDER

GEORGE E. ANDREWS

We study Δd(ri) = qd(n) — Qd(n), where qd(ri) is the number
of partitions of n into parts differing by at least d, and
Qd(ri) is the number of partitions of n into parts congruent
to 1 or d + 2 (mod d + 3). We prove that Δd(n) -> + oo with
n for d ^ 4, and that Δd(ri) ̂  0 for all n if d = 2s — 1, s ^ 4.

In 1956, H. L. Alder proposed the following problem [1],
"Let qd{n) — the number of partitions of n into parts differing by

at least d; let Qd(n) = the number of partitions of n into parts con-
gruent to 1 or d + 2 (mod d + 3); let ΛW = ^(w) — Qd{n). It is known
that A^n) — 0 for all positive n (Euler's identity), A2(n) = 0 for all
positive n (one of the Rogers-Ramanujan identities), Az(n) ^ 0 for all
positive n (from Schur's theorem which states A3(n) = the number of
those partitions of n into parts differing by at least 3 which contain
at least one pair of consecutive multiples of 3). (a) Is Ad(n) ^ 0 for
all positive d and nΊ (b) If (a) is true, can Ad(n) be characterized as
the number of a certain type of restricted partitions of n as is the
case for d = 3?"

This problem was again mentioned in [2; p. 743] as still being
open. A recent general result on partitions with difference conditions
[3] allows us to give some partial answers to Alder's problem.

First we derive a partition theorem which is somewhat analogous
to the type of result asked for by Alder.

THEOREM 1. Let v be the largest integer such that 2*+1 — 1 g d.
Let Jzfd(n) denote the number of partitions of n into distinct parts
= 1, 2, 4, , or 2" (mod d). Then

We may utilize some asymptotic formulae of Meinardus [4], [5]
to prove

THEOREM 2. For any d >̂ 4, lim^^ Ad(n) = + °o

Finally, Theorem 1 may be utilized to prove a result which settles
Alder's problem in an infinite number of cases

THEOREM 4. // d = 2s — 1 and s = 1, 2, or ^4, then Ad(n) Ξ> 0
for all n.

279



280 GEORGE E. ANDREWS

The proof of Theorem 4 relies on the following result which is of
independent interest.

THEOREM 3. Let S = {α<}Γ=i and T = {6ί}Γ=i be two strictly in-
creasing sequences of positive integers such that bx = 1 and a{ Ξ> bι
for all i. Let ρ(S; n) (resp. ρ(T; n)) denote the number of partitions
of n into parts taken from S (resp. T). Then

p(T; n) ^ p(S; n)
for all n.

2* Proof of Theorem 1. In Theorem 1 of [3] set N = d, α(l) = 1,
α(2) = 2, ., a(v + 1) = 2\ Thus in the notation of [3], D(AN; n)
becomes Sfd{n). Now D(AN; n) = E(A'N; n) where the latter partition
function is the number of partitions of n:

n — b1 + b2 + + b8,

b, = 1 , 2 , 3 , 4 , - , 2^+1 - 1 (modd)

with

hi - bi+1 ^ dw(βd(bi+1)) + v(βd(bi+ί)) - βd(bi+1) .

Here βd(m) is the least positive residue of m mod d, w(m) is the number
of powers of 2 in the binary representation of m and v(m) is the least
power of 2 in the binary representation of m. Consequently if bi+1

= 2j (modd), 0 ^ j ^ v,

dw(βd(bi+1)) + v(A(6ί+1)) - βdφi+i) = d.l + 2*-2>' = d.

If δ<+1 ^ 2j (mod d) 0 ^ j ^ v, then

ί + 1)) + v(βd(bi+1)) - βd(bi+ι)

Thus the difference condition is always bi — bi+1 Ξ> d or stronger.
Therefore i?(A^; π) ^ ^d(^) and Theorem 1 follows.

3* Proof of Theorem 2. Meinardus has proved a general theorem
on asymptotic formulae for partitions with repetitions [4]. Following
the notation of Meinardus [4; pp. 388-389], we see that to treat Qd(n),
we must have his

(1 if n = 1, d + 2 (mod d + 3)

(O otherwise .

Under these circumstances, Meinardus's D(s) satisfies
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where ζ(s, a) = Σ~=i(w + a)~% the Hurwitz zeta function [6; Ch. XIII],
a, the abscissa of convergence for D{s) is 1, and A, the residue at
s = 1 is 2/d + 3.

1 _ e-«*+3)r

One may now easily verify that Meinardus's analytic conditions on
D(s) and g(τ) are fulfilled, thus

(3.1) logQd(n)

In [5], Meinardus has derived the asymptotic formula

(3.2) log qd(n) ~ 2VAdn ,

where

Ά-d ~~ ~~~los?ad + ±
2 r=i r 2

and αrf is real >0, aj + ad — 1 = 0.
If we put αrf = e~λ*, so that e~d^ + e~x* — 1, then

2

.Now the following table shows that

Ad > ττ2/(3d + 9) for 4 ^ d ^ 14

TABLE 1.

Ob

4
5
6
7
8
9

10
11
12
13
14

0.32
0.28
0.25
0.22
0.20
0.19
0.18
0.16
0.15
0.15
0.14

d-1 2

2 λd>

0.153
0.15
0.15
0.14
0.14
0.14
0.14
0.12
0.12
0.13
0.12

Ad>

0.473
0.43
0.40
0.36
0.34
0.33
0.32
0.28
0.27
0.28
0.26

7Γ2

3^ + 9*^

0.471
0.42
0.37
0.33
0.30
0.28
0.26
0.24
0.22
0.21
0.20
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For d ^ 15, we have

e~d(2/d) + e-2/d > e-2 + I _ 2/d > 1 ,

Hence, λd > 2/d and

4̂ > ^ ~ 1 / 2 Y _j_ g/^ __ _1_/^ _ 2/d) > -i^- > π

2 \dJ d 3d 3 d + 9

Thus for all d ^ 4,

^ Λ > 3 d T 9

Hence comparing (3.1) with (3.2) we find

lim (log qd(n) - log Qd(n)) = +

Thus l i m ^ Jd(w) = lim%_ qd(n)(l - Qd{n)lqd{n)) = + oo.
and we have Theorem 2.

I would like to thank the referee for aid in simplifying and ex-
tending Theorem 2.

4* Proof of Theorem 3. Let us define S{ — {aly a2, •••&*•} and
Ti = {blyb2, , 6J. We shall proceed to prove by induction on i that
p(Ti\ n) ^ p{Si\ n); this will establish Theorem 3 for if we choose I
such that α7 > n,bΣ> n, then ρ(T; n) = ,o(T7; w) ^ ^(S7; w) = p(S; n).

First we remark that p(Ti n) is a nondecreasing function of n;
this is because 1 = bte Ti and thus every partition of n — 1 into parts
taken from 7̂  may be transformed into a partition of n merely by
adjoining a 1.

Now |θ(Tί; n) = 1 for all w since Tt = {1}. Since S, = {αj

fl if αjw

(0 otherwise .

Hence

Now assume that piT^; n) ^ p(Si^; n) for all %. Hence if we
define ^(Γ*; 0) - p(S4; 0) = 1,

Λ

ί1' "Ti ,τ \/-ί _A \ / -ί-1
# i 1 - g 6i / V 1 - qat (1 - qaή(l - qH) J i=i 1 - gα;
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1

+Λ i _
- π 1 ) + q q π

>i +Λ i ^ ; (i q^fJti

- 1 * α . ( Σ (p(T^; n) - p(S^; n))ςT
1 — q * v»=«

+ Σ (piTi , n-bi)- (HJϋ n - at))<A .

Now the coefficients of these two infinite series are nonnegative:
the first by the induction hypothesis, and the second by the fact that
ρ(Ti\n) is a nondecreasing sequence. Since (1 — qa^)~ι = ^J=Qqjai, we
see- that all coefficients in the power series expansion of our last ex-
pression must be nonnegative. Hence

and Theorem 3 is proved.

5* Proof of Theorem 4. Since d = 2s — 1, we see that the v
of Theorem 1 is just s — 1. Now

Σ £fd(n)q* = Π (1 + Qdi+1)(l + Qdj+2) (1 + qdj+2U)

Thus <2fd(ri) = ρ(T; n) where T = {m|m = 1, d + 2, d + 4, , or
d + 2s-1(mod2d)}. Clearly, l e Γ . We now show that for s ^ 4 the
ith element of T (arranged in increasing magnitude) is no larger than
the i t h element of S where S = {m\m = 1, d + 2 (modcί + 3)}. Since
5 ^ 4 , the first four elements of T are

1, d + 2, d + 4, d + 8 (2d + 5 > d + 8 since d ^ 15) .

Thus the first four elements of T are less than or equal the first four
elements of S respectively. In general the (4m + 1) — st element of
T is ^ 2dm + 1 while the (4m + 1) - st element of S is 2m(d + 3) + 1 ;
for 2 <: i ^ 4 the (4m + j) - th element of Γ is ^ 2dm + d + 25'"1

while the (4m + j) - element of S is ^ 2m(d + 3) + d + 2 and for
2 ^ j ^ 4, m ^ 1, 2dm + d + 2i~1 ^ 2dm + d + 8 ^ 2dm + d + 6 + 2 ^
2m(d + 3) + d + 2. Hence, the conditions of Theorem 3 are met, and
therefore

qd(n) ^ ^ ( Λ ) - p(T; n) ^ /o(S; n) - Qd(n) .

Thus Theorem 4 is established.

6. Conclusion. By modification of the results in [3], it appears
possible to apply the techniques of §4 to prove that Δd(n) ^ 0 for
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any d Ξ> 15 which is a difference of powers of 2; however, since this
approach does not yield a complete answer to Alder's problem it seems
hardly worth undertaking.

Lengthier versions of the following table indicate that Alder's
problem may be extended as follows.

Conjecture. Ad(n) > 0 f o r n Ξ> d + 6 i f d ^ 8 .

Ύi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Δs(n)

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

Δln)

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

2

2

2

2

2

3

4

Δln)

0

0

0

0

0

0

0

0

0

0

1

1

2

1

1

0

0

0

1

2

3

3

3

3

Jβ(n)

0

0

0

0

0

0

0

0

0

0

0

1

1

2

2

2

1

1

0

0

1

2

3

4

Δi{n)

0

0

0

0

0

0

0

0

0

0

0

0

1

1

2

2

3

2

2

1

1

0

1

2

Δ
8
(n)

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

2

2

3

3

3

2

2

1

1
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