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INTERPOLATION IN C(Ω)

BENJAMIN B. WELLS, JR.

It is known from the work of Bade and Curtis that if 5ί
is a Banach subalgebra of C(Ω), Ω a compact Hausdorff space,
and if Ω is an F-space in the sense of Gillman and Hendriksen
then % = C(Ω). This paper is concerned with the extension
of this and similar results to the setting of Grothendieck
spaces (G-spaces for short). An important feature of the
extension is that emphasis is shifted from the underlying
topological structure of Ω to the linear topological character
of C(Ω).

As a corollary we show that if Ωt and Ω2 are infinite compact
Hausdorff spaces, then Ωγ x Ω2 is not a G-space. Consequently if Ω is
a G-space then C(Ω) is not linearly isomorphic to C(Ω x Ω).

If A is a commutative Banach algebra whose spectrum is a totally
disconnected G-space, a second corollary of our extension is that the
Gelfand homomorphism is onto. This establishes for G-spaces a result
due to Seever for iV-spaces.

Two definitions of G-space are to be found in the literature.
(A) A Banach space X is a G-space if every weak-* convergent

sequence in X*, the dual of X, is weakly convergent.
(B) A compact Hausdorff space Ω is a G-space if C(Ω) is a G-space

in the sense of (A).
Unless otherwise noted we shall accept (B) as our definition.

It is known from the work of Seever [7] that if Ω is an i^-space,

i.e., if disjoint open Fσ subsets of Ω have disjoint closures, then Ω

is a G-space. A result due to Rudin [3] states that if Ωγ and Ω2 are

infinite compact Hausdorff spaces then Ωλ x Ω2 is not an F-space.

Corollary 2.6 is an extension of this to G-spaces. Although an example

of a G-space which is not an F-space is given in [7], no necessary

and sufficient topological characterization of the G property is known.

1* Preliminaries* Let M(Ω) be the space of regular Borel measures

on Ω equipped with the total variation norm. A sequence {μn} in

M{Ω) converges for the weak-* topology if for each / in C(Ω), the

space of continuous complex valued functions on J2, the sequence

{£*»(/)} is convergent. Weak convergence of [μn] means convergence

of {Ύ(μn)} for every 7 in M*(Ω), the dual of M(Ω). If Ω is any set

l^Ω) will denote the Banach space of point mass measures on Ω with

the total variation norm.

A Banach subalgebra (subspace) 21 of C(Ω) is a subalgebra (subspace)
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of C(Ω) under the pointwise operations and is a Banach algebra (space)
such that the embedding 21—>C(Ω) is continuous. Si is said to be
normal if for each pair Fί9 F2 of disjoint compact subsets of Ω there
is an fe Sί such that / = 1 on F1 and / = 0 on F2. Following [2] we
call SI ε-normal if for each pair F19 F2 of disjoint compact subsets of
Ω there exists an /eSί satisfying

(i)
(ii) \f(ω)\<ε,ωeF2.

If Ωy. and Ω2 are compact Hausdorff spaces the projective tensor
product V = C(Ωj) 0 C(Ω2) is the set of all functions of the form

a n d g{(y) e C(Ω2) s u c h t h a t Σ Γ = u II f t I I - I I Λ I I - < ° ° Ίf h e V t h e n

|| Λ If,- = i n f { Σ II f i I I - II ft I I - : Λ = Σ Λ f t } .
U = i

Two Banach spaces X1 and X2 are isomorphic if there is a one-
to-one continuous linear map from X1 onto X2. If X2 is a closed
subspace of Xx, it is said to be complemented in X1 if there exists a
closed subspace Y of Xx such that X2 + Y = Xx and X2Π Y = {0}.
We write X, = X2 © Γ.

If Z) is a discrete space, C(D) will denote the bounded continuous
functions on D. It is well known that C(D) is isometrically isomorphic
to C(βD) where βD is the Stone-Cech compactification of D. A com-
pact HausdorfE space is totally disconnected if there is a basis for the
topology consisting of open and closed neighborhoods.

2* We shall need to recall here a criterion due to Grothendieck [5]
for relative weak compactness in M(Ω). Namely, a bounded sequence
{μn} in M(Ω) is relatively weakly compact if and only if for every
sequence {0J of pairwise disjoint Borel sets lmii ̂ μnφi) = 0 uniformly
in n. By the Eberlein Smulian theorem this is equivalent to every
subsequence of {μn} having a weakly convergent subsequence.

LEMMA 2.1. If Ω is a G-space and K is a closed subspace of Ω,
then K is a G-space.

Proof. Suppose {μn} in M{K) is weak-* convergent. One may
regard {μn} as a weak-* convergent sequence in M(Ω). It is therefore
weakly convergent as a sequence in M(Ω), and so by the Hahn-Banach
Theorem it is a weakly convergent sequence in M(K).
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LEMMA 2.2. Let Ω be a G-space and X a dense Banach subspace

such that X Φ C(Ω). Then for every M > 0 there is a measure μ with

no atomic part such that \\μ\\^>M and sup{| μ(f) \ :fe X, \\f\\Σ ^ 1}^1.

Proof. We shall write μa for the atomic part of μ and μc for the
continuous part. By a well known theorem of Banach there is a
sequence {μn} of measures such that \\μn\\^> n and sup

{\μ.(f)\:feX,

for each n. Since X is dense in C(Ω) setting vn = μj\\μ»\\ we have
lim%ι^ = 0 weak-* and hence lim%v% = 0 weakly since Ω is a G-space.
The natural projection p: M(Ω) —* lx(Ω) given by pμ — μa is continuous
and hence weakly continuous. Hence lim%v%,α = 0 weakly. Since in
l^Ω) weakly convergent sequences are norm convergent, it follows that
lim Λ | | i ; n f α | | = 0. Thus for an appropriate sequence of scalars {cn} we
have lim f t | |cnv f t f β | | = oo and

:feX,

for every n.

THEOREM 2.3. Let Ω be a G-space and let X be a dense Banach

subspace of C(Ω). Then there exists a finite open covering U19 •••, Un

of Ω such that X\Ut = C(Ui), 1 £ i ^ n.

Proof. From the compactness of Ω it suffices to show that each
point p of Ω has a neighborhood Uv such that X\ Up = C(UP). Suppose
this fails for some p, and choose U1 a neighborhood of p. Let X1 denote
the quotient space of X by all functions in X vanishing on Ό^
Applying Lemmas 2.1 and 2.2 it follows that there is a regular Borel
measure μ1 with no atomic part such that \\μ^\\ >̂ 1, supp μt S Ux and
s u c h t h a t \μx{f)\ ^ \\f\\Xί £ \\f\\x f o r e v e r y feX.

From the regularity of μx we may choose open U2 g ί/Ί, p e U2

such that iμ.Kϋ, - U2)> 1/2 Wμ^. Since X\U2 Φ C(U2) we may choose
in the same way a μz with no atomic part such that supp μ2 £ ϋ29

| |All ^ 2 and \μ2(f)\ ^ \\f\\x for all feX.

Continuing in this fashion, define inductively a sequence of
measures {μn} with no atomic parts such that \\μn\\ ̂  n, \μn(f)\ ^ il/llx
for every feX, supp μn s Un and | ^ 1 ( ^ - Un+1)> 1/2 | | ^ | | .

Setting vn = A/I I Λ 11 w e s e e limn^« — 0 weak-* from the density
of X. However, since \vn\ (Un — Un+1)>l/2 for each n9 {vn} is not
weakly convergent by the Grothendieck criterion. This contradiction
establishes the theorem.

REMARK. Theorem 2.3 is the sharpest result in the sense that
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for every compact Hausdorff space Ω there is a dense Banach subspace
X of C(Ω) such that X Φ C(Ω). By a result of [8] (corollary 3.2 page
201) there are closed subspaces Y, W of C(Ω) such that Y + W is
dense in C(Ω) but Y + W Φ C(Ω); in the terminology of that paper
every C(Ω) contains a quasi-complemented uncomplemented subspace.
Setting X = Y 0 W we have the result.

Our next theorem is an extension to G-spaces of a result of [2].
The work is all done by the following:

LEMMA 2.4. [2] Let Ω be a compact Hausdorff space, and let Sϊ be
a Banach subalgebra of C(Ω) such that

( i ) 21 is ε-normal for some ε < 1/2,
(ii) There is an open covering UΊ, •••, Un of Ω such that

Then SI - C(Ω).
Combining this with Theorem 2.3 and the remark that density

implies ε-normality we obtain:

THEOREM 2.5. Let Ω be a G-space, and let % be a dense Banach
subalgebra of C(Ω). Then 2ΐ = C(Ω).

REMARK. AS demonstrated in [2] ε-normality for some ε < 1/4 and
density of a Banach subspace of C(Ω) are equivalent in case Ω is an
i^-space. We do not know if "dense" may be replaced by "ε-normal"
in Theorem 2.5.

COROLLARY 2.6. If Ωx and Ω2 are infinite compact Hausdorff spaces
then Ωx x Ω2 is not a G-space.

Proof. We need only take 21 = Cψύ ® C(Ω2) and note that 81 is a
dense Banach subalgebra of C(Ωι x Ω2). (Sί happens to be normal as
well.) But it is well known that 31 Φ C(Ω1 x Ω2).

Let X± and X2 be Banach spaces such that X2 is a continuous
linear image of Xx. It is an easy consequence of the Hahn Banach
theorem that if X1 is a G-space in the sense of definition A, then so
is X2. Consequently if Ω is a G-space then C(Ω x Ω) is not even a
continuous linear image of C(Ω). This is contrasted with a result of
Milutin [6, p. 42] which states that if Ω1 and Ω2 are uncountable
compact metric spaces then C(ΩX) is isomorphic to C(Ω2). In particular
for such Ω, C(Ω) is isomorphic to C(ΩxΩ).

These notions may be of use in solving complementation problems.
Suppose that X2 is a complemented subspace of Xx. Then if Xx is a
G-space in the sense of definition A, so is X2. For example, if D
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denotes an infinite discrete space, C(βDxβD) may be viewed in a
natural way as a closed subspace of C(DxD). Since β(DxD) is a
G-space, by the above remarks C(βDxβD) has no complement in
C(DxD).

COROLLARY 2.7. [cf. [7] corollary 2 p. 278]. Let A be a com-
mutative Banach algebra whose spectrum Ω is a totally disconnected
G-space. Then the Gelfand homomorphism is onto.

Proof. By the Silov idempotent theorem the image of A in C(Ω)
contains the characteristic functions of open closed sets. Hence A is
a dense Banach subalgebra of C(Ω) and the theorem applies.

REMARK. An interesting fact suggested by the proof of Theorem 2.3
is that if Ω is a G-space then no normal subalgebra A of C(Ω), closed
in the uniform norm, is such that C(Ω)/A has countable (infinite)
dimension. To see this suppose to the contrary that C(Ω)/A has
countable dimension. Recall that if A is a normal subalgebra of C(Ω)
such that every point p of Ω has a neighborhood Up such that
A\UP = C(UP) then A = C(Ω). Thus there is a point p e Ω such that
for every neighborhood Up of p, A\ Uv Φ C(UP). Since A contains the
constant functions, by a result of Glicksberg [4 p. 421] we may choose
μ1eA1,\\μί\\ = l such t h a t \μL\ (U?) > δ > 0 where Uf is a closed

deleted neighborhood of p. By regularity of μ1 we may choose a
neighborhood U2 of p such that U2 <Ξ U1 and \μt\ (U*)<δ/2. Again
we may choose μ2 e A1, \\μ2\\ = 1, such that \μ2\(U2*) > δ > 0. Continuing
in this fashion we get a sequence of measures {μn} e A1, \\μn\\ = 1, and
a nested sequence of neighborhoods of p, {Un}, Un+1 <Ξ Un such that
\μn\{Un— Un+1)>δ/2 for each n. By Grothendieck'e criterion no sub-
sequence of {μn} is weakly convergent. Since C(Ω)/A is separable, the
unit ball in AL is weak-* sequentially compact. Thus a subsequence
of {μn} may be found which is weak-* convergent and hence weakly
convergent. This contradiction completes the proof.

In [7] the following theorem is proved.

THEOREM 2.8. If Ω is an F-space, and if X is a normal Banach
subspace of C(Ω), then X — C(Ω).

Question [7]. In Theorem 2.8 can "F" be replaced by "G"? In
the terminology of that paper is every G-space an JV-space? The
following may be of help in giving an answer.

THEOREM 2.9. Let X be a G-space in the sense of definition A,
and let Y be a closed subspace such that X/Y is separable. Then Y
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is a G-space.

Proof. Let {yX} denote a sequence in Y*. It suffices to show that
if \imnyZ = 0 weak-* then {yt} has a subsequence {yXk} such that
limkyXk — 0 weakly. Let x* be any normpreserving extension of
yX to all of X. Since X/Y is separable, a sequence {wn} in X may
be found such that sp{wn} + Y is dense in X. By a diagonal argument
a subsequence {#* J of {#i} may be found such that {xlk} converges
on each member of {wn} and hence on sp{wn} + Y. Since {||#*J|} is
bounded, {xXk} is weak^ convergent in X and hence weakly convergent.
Thus UmkyXk = 0 weakly.

Finally the author would like to thank the referee for his helpful
suggestions, and in particular for the statement of Theorem 2.9.
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