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MINIMAL FIRST COUNTABLE HAUSDORFF SPACES

R. M. STEPHENSON, JR.

If 7 is a property of topologies, a Z-space (X, 7 ) is
called a “-minimal space if there exists no Z-topology on
X properly contained in 7. Throughout the following,
&% = first countable and Hausdorff and & = first countable
and completely Hausdorff (a space X is called completely
Hausdorff if the continuous real valued functions defined on
X separate the points of X).

In this paper we give examples of 57 -minimal & -spaces
that are (i) not regular and (ii) regular but neither completely
regular nor countably compact.

Two other results obtained are the following. (a) Every
locally pseudocompact zero-dimensional 5% -space can be
embedded densely in a pseudocompact zero-dimensional 57 -
space. (b) Let ° = %, completely regular 57, or zero-
dimensional 57, and suppose that X is a -space such that
for every “’-space Y and continuous mapping f: X > Y, f is
closed. Then X is countably compact.

N will denote the set of natural numbers, and C(X, Y) will
denote the family of continuous mappings of X into Y. For definitions,
see [4].

1. An embedding theorem and some examples. Recall that a

space (X,.77) is said to be semiregular if {T|Te .7} is a base for
7. If (X, .97) has a property &7, then (X,.7) is said to be F-
closed provided that it is a closed subset of every .Z7-space in which
it can be embedded.

For many properties &7, it is known that Z”?-minimal and 7-
closed spaces are closely connected. For the case .77 = 57 the follow-
ing two results, established in [11], will be used below. An S5#-space
X is 57 -closed if and only if every countable open filter base on X
has nonempty adherence. An S#-space is S#°-minimal if and only
if it is semiregular and 2S#-closed.

We shall now describe constructions which can be used to densely
embed certain & -spaces in S#-minimal (57 -closed) % -spaces. As
special cases, we shall obtain examples with the properties mentioned
in the introduction. First some terminology is needed.

A space X is said to be locally pseudocompact (W. W. Comfort)
if every point of X has a pseudocompact neighborhood.
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A filter base .# is said to be pseudocompact if for every Fe &
and Ge &, F — G is pseudocompact. & is called zero-dimensional
if the sets belonging to it are open- and-closed.

Notation. (B. Banaschewski). Let _# be a family of open filter
bases on a space X. Let {p(F )5 €.~} be a new set of distinet
points, and let X(_#') be the space whose points are the elements of
XU{p(F )| e _} and whose topology has as a base sets of the
form V* = V U {p( )|V contains some member of 7}, where V is
any open subset of X.

THEOREM 1.1. Let X be an S#-space containing a point a such
that X-{a} s a zero-dimensional locally pseudocompact space. Let
N ={F|F 1is a free, countable, pseudocompact, zero-dimensional
filter base on X}, and denote by _Z a maximal subset of 4~ such
that whenever F, <€ e _# with F =+ &, then there exist disjoint
sets Fe & and GeZ.

Then the space X(.#) 1s an S# -closed & -space in which X is
embedded as a dense subset, and X(_#) is S7-minimal if and only
of X 1s semiregular.

Proof. X(_) is clearly an S#7-space. Furthermore, it follows
from the hypothesis that each point of X(_#) — {a} has a fundamental
system of feebly compact open neighborhoods. Thus the characteristic
functions of open-and-closed subsets of X(_#) separate the points of
X(.) and X(_#) is a & -space.

Suppose that & is a countable open filter base on X(_#") and
no point of X is an adherent point of #. A slight modification of
the proof of Lemma 2.17 in [11] shows that there exists a free,
countable, pseudocompact, zero-dimensional filter base & on X which
is stronger than the filter base .# |X. By the maximality of _#,
there exists %% e _# with G N H nonempty forall Ge & and He 5.
Thus p(-2¢") is an adherent point of Z#.

To check semiregularity, it suffices to observe that if

aeV = Int,Cl,V, then V* = Inty _,Cly . V*.

THEOREM 1.2. Let X and a be as in Theorem 1.1, and suppose
that {V,/ne N} is a fundamental system of open meighborhoods for a
such that V,=X and each V,DCIlyV,,. Let _# be a marimal
family of free, countable, pseudocompact, zero-dimensional filter bases
on X such that (a) whenever & , < € # with F # &, then there
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exist disjoint sets Fe 7 and Ge <, and (b) for every 7 € 7 there
exists ne N such that U7 CV, — V..

Then X(.#) 4s a regular & -space that is SF-mimimal and
contains X as a dense subspace. If each V, is closed in X, then
X(.#) 1is zero-dimensional.

Proof. Since {p(# )| e _#} — {a} is a closed discrete subset
of X(_#') — {a}, it follows from (b) that Cly _,, V%, = Vi, UCl;V 4.
Thus X(_#') is regular, and if each V, is closed in X, then X(_#)
is zero-dimensional.

The proof that X(_~) is feebly compact is similar to the correspond-
ing proof given for Theorem 1.1-one just notes that for some m,
7 |(ClyV, — ClyV,.,) is a filter base, and so & can be chosen with
the property that Uz cV, — V,..

REMARK 1.3. In case the set I of isolated points of X is a dense
subset of X, _# can be defined as follows. Let & be a maximal
family of countably infinite subsets of I such that (a) the intersection
of any two members of & is finite, and (b) each member of & is a
closed subset of X (for Theorem 1.2, a closed subset of some
Cly(V, — V,11)). For each Fec ¥ let .# (E) be the complements in F
of finite subsets of £. Take 7Z = {& (K)|Fe&}.

REMARK 1.4. For the case X = N and _~ infinite, the space
X(.#') is due to J. Isbell (see [5, 5I]).

REMARK 1.5. In general, the space X(_#) is not countably
compact and hence not weakly normal, for each {p(& )& e #Z} — V*
is a closed discrete subset of X(_#).

COROLLARY 1.6. Ewery locally pseudocompact zero-dimensional
S#-space can be embedded densely in a pseudocompaet zero-dimensional
SZ-space.

ExampLE 1.7. For the following X, the space X(_#) is an
S7-minimal & -space that is not regular.

Let T ={0}u{l/ne N}, with the usual topology, choose a point
a not in the product space Nx T, and let X = {a} U(Nx T), topologized
as follows: every open subset of Nx T is open in X; a neighborhood
of a is any set of the form V, = {a}U{(z, ¥) e X]x = n and 1/y is an
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even integer}, n e N. (X is homeomorphic to E — {b}, where E is as
in [13, p. 268].)

One can take _# to be a maximal family of infinite subsets of
X — ClV, such that the following hold:

(i) For all M, M'e _, M+ M’ implies MN M’ is finite;

(ii) For all Me _~ and me N, MO ({n}x T) is finite.

ExampLE 1.8. For the following X, the space X(_~") (of Theorem
1.2) is an S#~-minimal & -space that is regular but not completely
regular.

Let Y be the set of ordinal numbers less than the first uncounta-
ble ordinal, with the order topology, let M be the set of limit ordinals
in Y, and denote Y — M by I. Let Z = Ix{0}U Y x N, topologized
as follows: Y x N has the product topology, and Y X N is open in Z;
a neighborhood of a point (¢, 0) € Z is any subset of Z that contains
(7,0) and all but finitely many elements of {i}xN. Let L and R
denote the product spaces Zx {1} and Zx {2}, and set U = LU R, with
the weak topology generated by {L, R}. Let S be the relation on U
defined by the rule: (z,4,75)S(y, k,n) if (a) x=vy,7 =%k, and j = n,
or (b) x =yeM and 7 = k. Denote the quotient space U/S by T.
We shall continue to use the symbols (z, 7, ) for the points of 7.

On the product space T'x N define (¢, n) W(t', ') if (a) ¢ = ¢’ and
n=mn', or (b) t=(x,0,9), ' =(2,0,7), and »’' —nm=75—35 =1or
n—n =7 —j=1. Let V be the quotient space (T'x N)/W. Choose
a new point a and let X = VU{a}, topologized as follows: every open
subset of V is open in X; a neighborhood of a is any set of the form
V. = {a} U{(t, m) e Vim = n}, ne N.

It is not difficult to see that X is a first countable regular space
whose isolated points are dense, and X — {a} is zero-dimensional and
locally compact. X is not completely regular, because for every
fe C(X) there exists me Y such that f is constant on

{(z,0,7,n)lt=m,7=1o0rj=2, and ne N}.

Thus V,, for example, contains no zero set neighborhood of a.

REMARK 1.9. The construction above is a modification of
Tychonoft’s regular but not completely regular space [12].

In [7] F.B. Jones has constructed a % -space that is not com-
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pletely regular but that is a Moore space. His space cannot be used
here, however, because it is neither locally pseudocompact nor zero-
dimensional.

In the literature there are many less messy examples of & -closed
or S#~-minimal spaces that are not regular; however, the author does
not know of any % -minimal space appearing elsewhere that is not
regular (or completely regular).

REMARK 1.10. If one glues together (as in [2]) two copies of the
space in Example 1.8, then one gets an example of a regular S#-
minimal space that is not completely Hausdorft.

2. % -minimal spaces and closed mappings. If & denotes
any one of the usual separation properties, it is known that every
“-minimal completely Hausdorff space is compact (e.g., see [6]).
Moreover C. T. Scarborough [9] has observed that a completely
Hausdorff-minimal space is compact.

One might then expect & -minimal spaces to be well behaved, to
be, say, at least countably compact. Of course, Isbell’s example or
Mrbéwka’s [8] (or ours) shows that this is not the case. The following
characterization theorems may, therefore, be of interest.

DEFINITION. (H. E. Hayes) An open filter base .& on a space X
is said to be completely Hausdorff provided that for every ze X, if »
is not an adherent point of ., then there exist fe C(X) and Fe &
such that f(F) = 0 and f(x) = 1.

Using usual techniques, one can prove the following.

THEOREM 2.1. Let X be a & -space. The following are equivalent.

(i) X is &€ -closed.

(ii) Ewvery countable completely Hausdorff filter base on X has
an adherent potnt.

(iii) For every € -space Y and fe C(X, Y), f(X) 1is & -closed.

In order to obtain a Z -analogue of Theorem 2.4 of [11], we need
a second definition.

DEFINITION. An open filter base .&# on a space X is said to be
almost completely Hausdorff if there exists pe X se that for every
rxeX — {p}, if  is not an adherent point of &, then there exist
feC(X) and Fe & such that f(F) =0 and f(z) = 1.
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THEOREM 2.2. Let X be a € -space. The following are equivalent.

(i) X is €-minimal.

(ii) Ewvery countable completely Hausdorff filter base on X that
has a unique adherent point s convergent.

(iii) X 1s semiregular, and every countable almost completely
Hoausdorff filter base on X has an adherent point.

The proof is somewhat similar to the proofs needed for Theorems
2.4 and 2.9 in [11].

The next result, to be contrasted with (iii) of Theorem 2.1, is a
partial converse to the following well-known theorem: If X is a
countably compact space, Y is an S#-space (or a space of the type
E, studied in [1]), and fe(C(X, Y), then f is closed.

We shall call an open filter base & on X completely regular if
for each Fe & there exist Ge s and fe(C(X, [0, 1]) such that f
vanishes on G and equals 1 on X — F.

THEOREM 2.3. Let Z° denote either completely Hausdorf, com-
pletely regular, or zero-dimensional, and suppose that X is a F°-space
which s also an S#-space. The following are equivalent.

(i) X 1s countably compact.

(ii) For every s#7-space Y and feC(X, Y), f is closed.

(iii) For every FP-space Y that is an 57 -space and f e C(X, Y),
S s closed.

(iv) For every closed subset C of X and every countable 7-filter
base & on X, if Z|C is a filter base and if N.F = N{F|Fe 7},
then there is a point ¢ e C which is in N F.

Proof. (i) = (ii) is known. (ii) = (iii) is obvious. A proof not
too different from one in [3] shows that (iii) < (iv). We shall prove
that (iv) = (i) for the case & = completely Hausdorff.

Let us suppose then that X is a & -space which contains a
countably infinite closed discrete subset C.

Consider a point ceC. Since X is completely Hausdorff and
C — {c} is countable, there exists f e C(X) for which f(c) ¢ f(C — {c})-
Since C — {c} is a closed subset of X and f is closed, we can choose
geC(( — oo, )) with g(f(c)) = 1 and g(f(C — {c})) = 0. Set h, = g-f.

Let & be the family of all finite intersections of
{h;'(— 1/n,1/n)ine N and ceC}.
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Then it is easy to see that &7 is a countable completely regular (and
hence completely HausdorfF) filter base on X, that N7 = N{F|Fe. &},
and that 7 |C is a filter base. On the other hand, one also has
CnNnN.s = ¢. This contradicts (iv).

REMARK 2.4. There exists an S °-space X that is not countably
compact but which has the property: for every Hausdorff space Y
and feC(X,Y), f is closed. See [3] and [14].

REFERENCES

1. C. E. Aull, A certain class of topological spaces, Prace Mat. 11 (1967), 49-53.

2. M. P. Berri and R. H. Sorgenfrey, Minimal regular spaces, Proc. Amer. Math.
Soc., 14 (1963), 454-458.

3. R. F. Dickman, Jr. and Alan Zame, Functionally compact spaces, Pacific J. Math.,
31 (1969), 303-311.

4. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966.

5. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New
York, 1960.

6. H. Herrlich, T.-Abgeschlossenheit und T.-Minimalitat, Math. Z., 88(1965), 285-294.
7. F. B. Jones, Moore spaces and uniform spaces, Proc. Amer. Math. Soc., 9 (1958),
483-486.

8. S. Mréwka, On completely regular spaces, Fund. Math., 41 (1954), 105-106.

9. C. T. Scarborough and R. M. Stephenson, Jr., Minimal topologies, Colloq. Math.,
19 (1968), 215-219.

10. C. T. Scarborough and A. H. Stone, Products of wnearly compact spaces, Trans.
Amer. Math. Soc., 124 (1966), 131-147.

11. R. M. Stephenson, Jr., Minimal first countable topologies, Trans. Amer. Math.
Soc., 138 (1969), 115-127.

12. A. Tychonoff, Uber die topologische Erweiterung von Riumen, Math. Ann., 102
(1930), 544-561.

13. P. Urysohn, Uber die Machtigkeit der zusammenhingenden Mengen, Math. Ann.,

94 (1925), 262-295.
14. Giovanni A. Viglino, C-Compact spaces, Duke Math. J., 36 (1969), 761-764.

Received February 17, 1970. This research was partially supported by a grant
from the University of North Carolina.

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL








