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A NON-COMPACT KREIN-MILMAN THEOREM

D. K. OATES

This paper describes a class of closed bounded convex
sets which are the closed convex hulls of their extreme points.
It includes all compact ones and those with the positive
binary intersection property.

Let K be a closed bounded convex subset of a Hausdorff locally
convex linear topological space F. Denote by EK the extreme points
of if, by co EK their convex hull and let co EK be its closure. We
are interested in showing when

K= cόEK .

The principal known results are the following:

THEOREM 1.1. // either
(a) K is compact;

or (b) K has the positive binary intersection
property;

then K=coEK.

Case (a) is the Krein-Milman Theorem [3? p. 131]. Case (b) was
proved by Nachbin in [6], and he poses in [5, p. 346] the problem of
obtaining a theorem of which both (a) and (b) are specializations.
This is answered by Theorem 4.2. For the whole of this paper, S is
a Stonean (extremally disconnected compact Hausdorff) space,1

A simplified version of Theorem 4.2 reads as follows:

THEOREM 1.2. Let X be a normed linear space. Then any
norm-closed ball in the space 33 (X, C(S)) of continuous linear oper-
ators from X to C(S) is the closure of the convex hull of its extreme
points in the strong neighborhood topology.

The result concerning the unit ball of a dual Banach space in its
weak*-topology and that concerning the unit ball in C(S) in its norm
topology are special cases of Theorem 1.2.

A sublinear function P from a vector space X to a partially or-
dered space V satisfies

P(χ + v)^ P(χ) + P(v)

and

1 Theorem 2.3 and its proof are valid when S is zero-dimensionaL
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P(tx) = tP(x)

for all x, y in X and £ ̂  0.
A linear operator T from X to V is dominated by P if To; <Ξ P#

for all a? in X. The set of all linear operators from X to V dominated
by P will be written L(P).

2. Let P be a sublinear function into C(S), where S is Stonean.
We obtain a compact approximation to L(P) by considering a finite
partition ^ = {Ϊ7i, , 17*} of S into disjoint open-and-closed sets. Let
C{SW) denote the set of all function in C(S) whose restrictions f\ Uk

are constant. The constant values will be written as f(Uk).

LEMMA 2.1. Let P be a sublinear function from a vector space
X to C(SW) and let L(P^) be the set of all linear operators from X
to C(Sf/) dominated by P. Then

EL{PW) s EL(P) .

Proof Suppose Te EL(P^). For k = 1, •••, M let tk be chosen
arbitrarily in Uk. If G,HeL(P) and T= 1/2(G+H) define G', H'e
L(P*) by

G'x = Σ (Gx)(tk)χk H'x = Σ J2α(ί*)Z*

where χfc is the characteristic function of Uk. Since 1/2(G' + Jϊ') = T
and TeEL(P^), we have G' = H' = T. Hence, for each x e l and
& = 1, •••, M,

G'x{Uk) = ί ί ^ ( ^ ) = Tx{Uk)

so that

Ga;(ίfc) = Hx(tk) =

Since tk was chosen arbitrarily in Uk, G = J ϊ = Γ. Hence TeEL(P).

DEFINITION 2.2. Let X and i? be linear topological spaces and let
35(X, E) be the space of all continuous linear operators from X to E.
The strong neighborhood topology for 93 (X, J57) is the topology with a
base given by sets of the form

N(T; xl9 •••,&»; £7) = {Se^8(X,E): (T-S)xie U, i = 1, ••-, n)

where x19 , xn e X and 17 is a neighborhood of 0 in E.

If 2? is normed, then we write
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N(T; xγ, •••,#»; ε) for N(T; x19 •••,<&»; U) when U is the open

ε-ball about 0.

THEOREM 2.3. Let CW" be a finite partition of S into nonempty
open-and-closed subsets. Let P be a sublinear function from a linear
space X into C(S^). Then L(P) = co EL(P), with the closure in
the strong neighborhood topology of 23(X, C(S)).

Proof Let ^ be any finite partition of S into nonempty open-
and-closed sets. From Lemma 2.1, co EL(P) 3 co EL(PW). Now L(P//)
can be linearly identified with a certain compact convex subset of a
finite product X* x ••• x X*, where X* is the algebraic dual of X
with the topology w(X*, X). Hence, from the Krein-Milman Theorem,
w EL(PW) = L(P*).

Let TeL(P) and let N(T; x19 fxn; ε) be a strong neighborhood
of T. The functions {ΪX : i — 1, •••,%} are continuous so for each
fixed i there is a finite covering

of S by open sets such that

Yar(Txi9 Vi)<ε

for all k.
Since S is zero-dimensional, there is a finite partition

of S into nonempty open-and-closed sets that simultaneously refines
5^(1), •••, ̂ {n). By taking a further refinement if necessary, ^ may
also be assumed to be a refinement of "W and then the functions P(x)
are constant on each of the sets Uk.

For each k = 1, •••, If define a sublinear functional gfc on X by
qk(x) = sup{Γa?(ί): teUk}. From the Hahn-Banach Theorem, there
exists a linear functional ^ on X dominated by qk. Define 7\: X
by

ϊ 7 ^ = Σ Φu(χ) iuk.

Then T.eLiP^) and, for i = 1, •••, n,

Γ C7fc)< ε .

DEDUCTION of THEOREM 1.2. With X and S as in the state-
ment of the theorem, let ^ be the closed unit ball in 35 (X, C(S)).
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The set 3^ is L{P), where P is the sublinear function P(x) — \\x\\ ef

e being the unit function in C(S). By Theorem 2.3 fdx — co E^&1 and
the result for any closed ball then follows by a scalar multiplication
and translation.

3* Nachbin's problem* Let if be a closed bounded convex
subset of a linear topological space E. Recall that K has the positive
binary intersection property if every pairwise-intersecting subfamily
of

{x + XK: xeE, λ ^ 0}

has nonempty intersection.
If K is bounded and has the above property, it may be shown to

be centrally symmetric with a unique centre c, and to have the binary
intersection property where the restriction λ ^ 0 is removed. This is
proved in [6].

Results in [4] and [2] then show that the set KQ = K — c gener-
ates a subspace of E which is a hyperconvex normed space and iso-
morphic to C(S), with S Stonean.

THEOREM 3.1. Let E be a locally convex Hausdorff linear
topological space containing a closed bounded convex subset K with
the positive binary intersection property. Let p be a continuous sub-
linear functional on a locally convex Hausdorff linear topological
space X.

If L is the set of linear maps T: X—+ E such that for all x in
X

Txe± [p(x) - p(-x)] e + i- [p(x) + p(-x)] Ko
Δ Δ

where e is any extreme point of Ko, then L = co L, with the closure
taken in 33(X, E) with the strong neighborhood topology.

Proof. Because p is continuous the set L(P) is closed in the
space S3 (X, E) in the strong neighborhood topology. Since K is
centrally symmetric, Ko has the binary intersection property and is
linearly isomorphic to the unit ball in a space C(S) with S Stonean.
The isomorphism may be chosen as in [4] so that e is mapped onto
the unit function of C(S). Using e to denote also this unit function,
we may define a sublinear function P(x) — p(x) e from X to C(S)r

which is the situation of Theorem 3.1. with W~ = {S}.
Given TeL(P), x19"*yxneX and ε > 0 there exists AecoEL(P)

with
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(T - A) Xi e eK0 (i = 1, . . , n) .

Given a neighborhood U of 0 in E, there exists r > 0 with Ko S f U,
since E" is bounded. So choosing ε = r~ι there exists A e co EL(P)
with

(T - A) a?t. 6 r-1 iΓ0 £ U (ί = 1, . , n) ,

which completes the proof.

DEDUCTION OF THEOREM 1.1. (a) Let pκ be the sublinear func-
tional defined on F* by

Then, from the bipolar theorem,

L={ge F**: (/(/) ^ pκ(f) for all / 6 F*}

is identical with the canonical image K oί K under the evaluation
map. Now apply Theorem 3.1 with E = R, K = [ — 1,1], e = 1 and
X = iΓ*, taken with the topology of uniform convergence on compact
subsets of F. This shows that K is the closure of co EK in the
topology w(F**, F*), which is equivalent to K being the w(F, F*)
and hence the strong closure of co EK in F.

(b) Apply Theorem 3.1 with X = R and E = F. Then, under
the natural isomorphism of S3 (X, E) and E, Ko corresponds to L,
which satisfies L — coEL. Since i? is a linear topological space we
have
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