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SINGULAR PERTURBATIONS OF DIFFERENTIAL
EQUATIONS IN ABSTRACT SPACES

HUSSAIN S. NUR

In a recent paper, Kisynski studied the solutions of the
abstract Cauchy problem εx"(t) + x'(t) + Ax{t) = 0, x(0) = XQ
and x'(0) = Xι where 0 ^ t ^ T9 ε > 0 is small parameter and
A is a nonnegative self-adjoint operator in a Hubert space
H. With the aid of the functional calculus of the operator
A, he has showed that as ε —> 0 the solution of this problem
converges to the solution of the unperturbed Cauchy problem
x'(t) + Ax(t) = 0, x(0) = XQ. Smoller has proved the same
result for equation of higher order.

The purpose of this paper is to study the solution of a
similar problem and allowing the operator A to depend on t.

To be precise, we shall show that if the initial data is taken
from a suitable dense subset of iϊ, then the solution of the Cauchy
problem:

(1.1) εx~{t) + x'{t) + A(t)x(t) = 0, x(0) = x0, x'(0) = x,

converges to the solution of the unperturbed Cauchy problem

(1.2) x'(t) + A(t)x(t) = 0, x(0) = xQ

as ε —> 0 where 0 ^ £ f g T , ε > 0 is a small parameter, A(t) is a
continuous semi-group of nonnegative self-adjoint operators in H with
infinitesimal generator A.

2. The problem (1.1) when H = Rx. Before considering (1.1)
in the general case, it is necessary to consider (1.1) in the case
when H = Rx (i.e., the real line). Thus we consider the Cauchy
problem:

(2.1) εu"(t) + u-(t) + eμtu(t) = 0 . u(0) = xQ, w(0) = xL

when t ^ 0, μ ^ 0. ε > 0.
According to theorem (1) in [2], equation (2.1) has two linearly

independent solutions:

m—l m~ 1

0 0

^2 = Σ u23(t)ε3'e~tlε + εmE0 , u2 — Σ (d/dt)[u2j(t)e~tε]ε3' + εm~1E1
0 0
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where wfJ (ί) (ί — 1, 2) are C°° functions on [0, T] and Mt 0(£) (i = 1, 2)
does not vanish at any point of [0, T] and Eo, Eι are functions of ε
and others, but bounded for small ε ^ 0.

Hence the general solution of equation (2.1) is u = cxuγ + c2^2.
Solving for cλ and c2 by using the initial condition we obtain u =
xosm + x1s01 and w — x0s10 + x1s11 where

sm = H~\ε)[v$ήutf) - uι(0)u2(t)]
sQ1 = H-^luM^it) - ^(OKίί)]

(2.3) _ __ tf

dt

and

H(e) = ^(0)^(0) - ^(0)^(0)

How taking the limit as ε-*0, we find that

s o o (ί , ε, /i) > ff0tt10(£)

Consequently, w(ί, ε) —> a;0u10(ί). From equation 15 in [2] we find that
ulo(t) is the solution of the equation

(2.5) u + e!ίtu = 0

and this is what we wished to show.

3* Estimates for the Functions si3(t, ε, μ). In this section we
would like to find estimates for the functions %(£, ε, μ) (ί, i = 0, 1).
We may do so by solving for ui5{t) (ί = 1, 2; j" = 0, 1, , m — 1)
from equation 15 in [2]. Since this would be rather tedious we will
take the simpler approach of estimating ^( ί , ε, μ) and Ui(t, ε, μ)
(ί = 1, 2). Multiplying (2.1) by w and integrating between 0 and t
we obtain:

2 ' )«

Consequently

u2 ^ 2 I c I + μΓwVeZί .
Jo

Now using Bellman's lemma, we obtain
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*(3.1) u2 £ 2/c/eeμt .

For estimating w(t), we multiply equation (2.1) by e~μtum, integrating
between 0 and t and using Bellman's lemma we obtain:

(3.2) u'2(t) ^ 2ε-1/c/e2*ίt .

In [2] page 323 we proved that for all small ε ;> 0 H(ε) Φ 0, there-
fore we see that (2.3), (3.1), and (3.2) yield,

(3.3) I βoo I ̂  JSΓ(ε) exp (-ξl

K(ε) is a bounded function in ε, and

•(3.4) \s

K(ε) is a bounded function in ε.
To obtain an estimate for sίy (ί, i = 1, 2) we write equation (2.1)

in amatrix form as:

U- = AU

when

A = ( ° *
\ — ε1ex^)(μt) — ε1

Hence

ί/ = exp
" \s10

and from the equation

SoΛ /Soo S01\/ 0 1

/ o κ . Uo su/ Uo sn)\-έ1exp(μt) -έ1

(ό.D)

κ — ελ exp(μt) — έ1/

we obtain

(3.6) s10 = -solε-1exp(μt)

(3.7) s — s — ε~ιs

4. The problem (1*1) in abstract Hubert space* We shall
now consider the problem (1.1) in any Hubert space H with
norm II II.
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Since {A(t)} is a semi-group of a nonnegative selfadjoint operator
in H, with infinitesimal generator A, there is a resolution of the
identity Eμ such that A(t) has the spectral representation:

A(t) = \ V
Jo

We shall next use the functional calculus of the operator A(t). For
fixed ε > 0, ί ^ 0, we define the operator S i y on H by

(4.1) Si3{t, e) = (~sίy(ί, ε, μ)dEμ (i, j = 0, 1)
Jo

where the si3(t, ε, μ) are defined by (2.3). If we let D denote the
dense domain of the operator eA2{t) for all t, then our estimates (3.2)
through (3.7) imply that D is contained in the domain of Sij(t, ε)
for every i, j — 0, 1.

For #0 and ^ in ί) , we write

(4.2) xe(t) = SJt, ε)xQ + SQl(t, e)xL

and we see that xε(t) is in the domain of A(t) for every ε > 0. We
now state the main theorem.

THEOREM. Let xε(t) be defined as in (4.2) when xQ, xL are in
D. Then x£(t) is the unique solution of the Cauchy problem (1.1)
and xε(t) converges to the solution of (1.2) as ε —> 0.

To prove this theorem we first prove the following lemmas:

LEMMA 1. For xeD, (d/dt)Sij(t, ε)x exists and

(4.3) (d/dt)Si3{t, e)x = [°(d/dt)si3(t, ε, μ)dEμx (i, j = 0, 1) .
Jo

Proof. We shall prove the lemma for i = j = 0. Since t h e proofs
for t h e other cases are similar, they will be omitted. For xeD and
t 2̂  0 fixed, we have:

II S00(t + Jt, ε) - S0Q(t) ς (f w

 2

— x — o10^6, ε)x
II At

= V°rso0(t + M,ε,μ)-s00(t,ε,μ) _ ^ ^ ^ „ β | | 2

J o L At -I

= ( [sio(ί'» e, / i) - s l o ( ί . ε . / i ) ] 2 d |ί ^ . τ | | 2 ,
Jo

where t ^ f ^ t + Aty using the theorem of the mean and (2.3).
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Now there is a Γ such that t + At ^ T for all At sufficiently
.-small, so that if we use (3.3) through (3.7) we see that

I sl0(t', ε, μ) - s l o ( ί , ε, μ) \ £ \ sl0(t', e , μ ) \ + \ slQ(t, ε, μ) \
e'meμτ rg N(e, T)e«μτ

where N(ε, T) is a constant depending on T and ε only. Therefore
the function | slo(ί', ε, μ) — slo(t, ε, μ) |2 is summable with respect to
the measure d\\Eμx\\2 if At is sufficiently small. Furthermore,

lim [slo(t\ ε, μ) - sn(t, ε, μ)f = 0 .
At-*O

So that the Lebseque dominated convergence theorem yields:

lim Γ[s l0(ί', ε, μ) - slo(ί, e, μ)]2d \\ Eμx ||2 - 0 .
/Jί-»0 Jo

This completes the proof of the lemma.

L E M M A 2 . F o r x e D and t^O, w e have

<(4.4) lim I SJt, ε)x - exp ( - [ i l^c fo^ I = 0
ε->0 II \ J / II

.(4.5)
e-»0

Proof.

/ Γ \ II2

ί, ε)x - exp ^-\A(s)ds) x

(ί'ε> ^ "•exp (~ Γ^'*)) \d

From (3.3) we see that soo(t, ε, μ) — exp ί — I eμsds) is summable with

respect to the measure d\\Eμx\\2 and, as we have seen in (2.4) and
(2.5), the integrand converges pointwise to zero. We apply the
Lebesgue dominated convergence theorem to conclude that the integral
likewise converges to zero as ε—*0. This proves (4.4). Relation
(4.5) follows from (2.4) and (2.5) likewise.

LEMMA 3. Let B be a bounded operator in H. If χ (t) + Bx(t) = 0,
0 ^ t ^ 0, and x(0) = 0, then x(t) = 0.

The proof of the above lemma is in [3] and therefore will be
^omitted.

The proof of the theorem. That xε(t) defined by (4.2) is a solu-
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tion of (1.1) follows at once from Lemma 1 by direct verification..
The uniqueness of x£(t) follows from Lemma 3 just as in [1], Finally,,

since expί — 1 A(s)dsjx0 is the solution of (1.2) Lemma 2 shows that.

I f rt \ II

xε(t) — exp ( — \ A(s)ds )x0 = 0 .
\ J / II

This completes the proof of the theorem.
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